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On the Gauss Mapping for Hypersurfaces of Constant Mean

Curvature in the Sphère*

By Katsumi Nomizu and Brian Smyth

The proof of the Bernstein conjecture on minimal hypersurfaces in Euclidean

space - for those dimensions in which it is known (see [1], [2], [4]) - raises the fol-
lowing interesting spéculation on the geometry of minimal hypersurfaces in the
Euclidean sphères:

If the Gauss image of a compact minimal hypersurface Mn in the Euclidean sphère
Sn+1 lies in a closed hémisphère ofSn+1, then Mn must be a great hypersphère in Sn+1.

E. de Giorgi [2] and J. Simons [4] hâve shown that the Gauss image of a minimal
hypersurface other than a great hypersphere cannot lie in an open hémisphère. We

prove hère that the above spéculation is indeed true and generalizes to hypersurfaces
of constant mean curvature (Theorem 2).

To prove this resuit we first obtain a characterization of the hyperspheres (great

or small) of Sn+1 among ail complète hypersurfaces of Sn+1 in terms of their Gauss

images (Theorem 1). With this préparation the main theorem follows more or less

directly on using the standard intégral formulas for hypersurfaces in the sphère.

We follow hère the terminology and notations of Chapter VII, Volume II, of
Kobayashi-Nomizu [3].

We should like to acknowledge conversations with W. Fleming which gave the

motivation for this work.

§ 1. The Gauss Mapping

In the sequel M will be a complète orientable Riemannian manifold of dimension

n &ndf:M^>Sn+1 is an isometric immersion of M into the unit sphère Sn+1 in the

Euclidean space E"+2 with centre at the origin. By a hypersphere In in S"1*1 we will

mean the intersection ofSn+* with a hyperplane in E"+2. In is called a great (equatorial)

or small (non-equatorial) hypersphere according as the hyperplane passes through
the origin of En+2 or not. It may of course degenerate into a single point.

Since M is orientable we may choose a global field of unit vectors ^, normal to

M in S"1"*"1 with respect to the immersion/. For vector fields X and F on M the

Riemannian connections V and V of Sn+1 and M, respectively, are related by

This work was supported by National Science Foundation Grants GP-7610, GP-7403.
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where g is the metric on M and A is the symmetric tensor field of type (1.1) on M
defined by

The Gauss mapping

is defined by cj)(p) Çf(p)eSn+1 for cachpeM. (j)(M) is calledthe Gauss image of M.
Depending, as it does, on the choice of £, the Gauss image is only determined to
within the antipodal mapping of *Sn+1. Thus the statement that the Gauss image of M
is contained in a closed hémisphère (or in a hypersphere) of *S"+1 is independent
of the Gauss mapping selected. We remark that <f>(In) is a point (resp. a small
hypersphere) of Sn+i if In is a great (resp. small) hypersphere of Sn+1.

THEOREM 1. Let M be a complète orientable Riemannian manifold of dimension

n^2 isometrically immersed in Sn+i and let </> be the associated Gauss mapping.

i) If cj)(M) is contained in a great hypersphere of Sn+1 then M is imbedded as a

great hypersphere and so (j)(M) is a single point.
ii) If 4>(M) is contained in a small hypersphere of Sn+1 but is not a single point,

then M is imbedded as a small hypersphere and $ (M) is a full small hypersphere.

Proof. We first observe that either of the above conditions on the Gauss image
gives rise to a unit vector a in En+2 for which <£, a} is a constant on M - a say -
with O^a^l. Hère < > dénotes the Euclidean metric on Ew+2. With the usual
identification of tangent spaces under the immersion/of M into Sn+1 we define a

vector field Z on M by

ZP a- <{/(p), a} É/(p) - <x/(p), a> xfip), (1)

where xf(p) is the position vector off(p)eSn+1 in En+2. Denoting the connection on
En+2 by D and differentiating the équation <£, a) aon M, we obtain, for XeT(M):

0 </>,{, a}

<VX£ - <X, O x, a}

since V^= -AX and <JT, O 0. In other words g(v4^, Z)=0 for ail Xer(Af), so
that

ZeKctA (2)
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by the symmetry of A. Moreover

WXZ by(2),
DxZ + g(X,Z)x
- <{, a> Dx£ - <Z, a> x - <x, a> Z + g(Z, Z) x by (1),

<{, a> XX - <*, a> X

(aA-j8/)X,

where / is the identity transformation and the function j8 on M is given by fi(p)
<(xy(p), a>. By reason of Codazzi's équation and (2) we hâve

- aA2) X

for each XeT(M), that is,

VZA fiA- olA2 (4)

In particular

Z(TtA) Tr(VzA) fi Tr A - a TrA2 (5)

where Tr dénotes the trace.
The zeroes of the vector field Z occur at those pointsp of M where a is orthogonal

to/*(Tp(M)). If Z=0 on M,f(M) lies in one of the hyperspheres determined by the

System of hyperplanes in En+2 orthogonal to a, and by completeness of M, the set

f(M) is a full hypersphere in Sn+1. In particular, when a=l (i.e. Ç a) we hâve

Z=0 and <x, a> 0, so that/(M) is a full great hypersphere.
We therefore suppose henceforth that Z^O on M and as remarked above we

must then hâve 0^a< 1. It will be shown that/(M) is then a full great hypersphere, a

separate argument being necessary for the case a 0.

By virtue of (2) and (3), VZZ= -j3Z on M and therefore Z/\\Z\\ is a géodésie

vector field on the open submanifold

of M, where ||Z|| dénotes the length of Z. Fixing^eM', let y be the géodésie (para-
metrized by arc length s and extended indefinitely in both directions along M) which

émanâtes from p0 tangent to Zpo. By virtue of the above remarks, the vector field Z
is tangent to y along y. Consider the real function h defined on R by
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where y (s) is the velocity vector of y (s). Let (a, b) be the maximal interval (possibly
semi-infinite or infinité) containing 0 for which y ((#, b)) lies in the connectée! compo-
nent of Mf containing p0. Then

— y (s) g (y (s), Zm)

(6)

by(3),
- poy(s)9 se(a, b),

since y (s) is a multiple of Z when se(a, b) and ZeKerA by (2). Thus

(7)

se(a,b).

The solution of this differential équation with initial conditions dh/ds(0)= — /?oy(0)

V/l-a2-^ is

- a2 cos (s + s0), 5 e (a, 6), (8)

where soe( — nl2, tu/2) is determined by sin^o^^o/^/l—a2. Furthermore, it follows
from (6) that

s0), se (a, (9)

and from (8) that

Zy(s) — se(a, b). (10)

h(0) being positive, it follows that h is positive on (a, b) and we infer from (8) that
(ci, b) is a finite interval. The maximality condition on the interval (a, b) implies that
Zy(a) 0 and Zy(6) 0 which means, by virtue of (10) and continuity, that

cos (a + s0) cos (b + s0) 0 (11)

Letting k(s) (TrA)oy(s) we may rewrite (5) as

dky/l -a2cos(s + s0)-—
as

°n (a, b), that is,

x/^V - (cos (s + s0) k (s)) - a (Tr ,42)y(s) (12)

°n (a, b).
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Consequently the function cos(5+^0) k(s) is monotone decreasing on (a, b) and
vanishes at s a, b. Thus k 0 along (a, b) and it follows from (12) that Tr^2 0

along y ((a, b)), if a^O, and in particular ^4=0 at po — y(O). Assuming a^Owe hâve
therefore proved that ^4=0 on M'. However Z=0 and /?2 1—a2 on the open set

M—M', so that A=((l— a2/a) Jthere, by virtue of (3). SinceMisconnected and M'
is non empty, A=0 on M. The completeness of M now implies that/(M) is a full
great hypersphere.

It remains to attend to the case where Z^O and a 0. Hère the équation essential

to our proof is

ZÇTrA2) TïVzA2 20 TxA2, (13)

which is an easy conséquence of (4). Since a 0 it is readily verified that the équations
(6)-(10) are valid for ail seR. Using thèse équations and setting l(s) (TrA2)oy(s),
(13) reduces to

dl
cos(s + s0) — 2 sin(s + s0) /(s).

as

Thus l(s) c/cos2(s+s0) on —n/2<s+so<n/2 for some constant c, and we hâve a

contradiction unless c - and therefore / - is zéro; thus A 0 on M'. Since a 0 and

Z=0 on M-M', we hâve jS2 l on M-M'; by virtue of (4), A 0 on M-M'.
It now follows as before that/(M) is a full great hypersphere.

In every case it has been shown that / immerses M on a full hypersphere In in
Sn+1. The completeness of M then implies that f:Mn^In is a covering map (p. 176,

Volume I, [3]) and since In is simply connected if «^2,/is an imbedding if n^2.
This complètes the proof of the theorem.

Remark. Theorem 1 remains valid of course if n=l, except that/is no longer
an imbedding in gênerai.

It seems appropriate at this point to emphasise that Theorem 1 is a global resuit,

that is to say that there is no local analogue if the assumption of completeness is

dropped. Indeed the example which follows serves to construct a large class of hyper-
surfaces in Sn+1 whose Gauss images lie in a great hypersphere. There is even a large

class of minimal hypersurfaces having this property.
Example. Let \j/ be an immersion of a connected orientable (n— l)-dimensional

manifold iVinto a great hypersphere Sn in Sn+1 With en+2 denoting the unit vectoi

orthogonal to the hyperplane of Sn in En+2 and angle 0 as coordinate on the unit circle

S1, the suspension f:NxS1-*Sn+1 of the immersion ifr by geodesics from the north
and south pôles of Sn+1 is defined as

f(p, 0) oos0 \l/(p) + sin0 ex*n + 2
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where/? is any point of N. Choosing local coordinates (jc1,.. xn+1) on N we see that

Thus/immerses N' {(p, 0)eNx S1; 6^odd multiple of n/2} in S"4"1. We dénote

by M one of the two connected components of N'.
Let r\ be a unit vector field normal to N in Sn and let i? be the matrix of the second

fundamental form in the coordinates (jc1, xn+1). If £ is a unit vector field normal
to M in *Srt+1 we observe that £ is orthogonal tof(p, 6),f*(ô/dxi) and/*(3/d0) and
therefore to \l/(p), en+2 and di/z/dx1. Consequently, choosing the direction of Ç suitably
we hâve ^/(p,e) ^^(P) for ail (p, 6)eM. In particular <£, en+2}=0 on M, that is, f/ie
Gai/551 image of M lies in a great hypersphère of Sn+1. On the other hand it is easily
seen that

cos 9 ¦

ôx' dxJ ôxl dxJ

ô2f

—--2 — cos0 \j/ — sinO en+2,
du

from which it follows that the matrix of the second fundamental form of M in the
coordinates (jc1, xn+1, 6) is given by

A
COS0LO Oj

Consequently, M is totally géodésie (minimal) if and only if N is totally géodésie

(minimal).

§ 2. The Main Theorem

On an «-dimensional orientable Riemannian manifold isometrically immersed in
SH+l9 the Laplacians of the fonctions <jc, a> and <Ç, a} restricted to M are easily

computed as

à <x, a> Tr A <{, a} - n <x, a>, (14)

J, a> - <grad(Tr A), a> - TvA2 <£, a> + Tr A <x, a>, (15)
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a bemg any constant unit vector in En+2. Since we will now be concernée only with
hypersurfaces of constant mean curvature (î.e. Tr A — constant on M), we rewnte
(15) as

A «, a} - Tr A1 <& a} + Tr A <x, a> (16)

Combimng (14) and (16) we obtain

A <nç + rAx, a} - {n

where Al5 Àn dénote the charactenstic roots of A
The following resuit sharpens and generalizes Theorem 5 2 1 of Simons [4]

THEOREM 2. Let M be any compact connected orientable manifold of dimension

n^-2 immersed in the sphère Sn+1 with constant mean curvature. If the Gauss image

of M lies in a closed hémisphère of Sn + i, then M imbeds onto a hypersphère in Sn+1

Proof The assumption on the Gauss image of M îs équivalent to the existence

of a constant unit vector a m En+2 for which <£, a>^0on M. By virtue of (17), we

hâve A<jtt; + TrAx, a><0 and E. Hopf's lemma implies that (jtÇ + TrAx, a} îs

constant on M. IfMis minimal <£, a} îs constant on M and the resuit follows from Theorem

1. We now assume that TrA^O. By (17) every point of W= {peM, <£/(P), a) >0}
îs an umbihc. However (riÇ + TrAx, a} being constant on M, ît îs clear that <x, a)
îs constant on M— ffî. Therefore M— fFimmerses into a hypersphere of Sn+X so that
M—ffîis also totally umbihc. Thus M immerses totally umbihcally in Sn+1 and must

therefore be an imbedded hypersphere.
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