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Imbeddings of Simplicial Complexes

Branko Grûnbaum1)

1. Introduction

The main aim of the présent note is to show that certain «-dimensional simplicial
complexes which are not imbeddable into the (2«)-dimensional Euclidean space E2n

are minimal with respect to that property, in the foliowing strong sensé: Every proper
subcomplex of one of those complexes is even geometrically imbeddable in E2n. (A
simplicial complex is geometrically imbedded in Ek provided each of its simplices is

a géométrie, rectilinear simplex.) This resuit adds credibility to the following
conjecture, established for n=l by Wagner [14] (see also Fâry [4] and Stojakovic
[13]):

Conjecture. If an n-dimensional simplicial complex is topologically imbeddable
in E2n then it is even geometrically imbeddable in E2n.

It has recently been established by Weber [15] that the weaker conjecture dealing
with pieeewise-linear (instead of géométrie) imbeddings is true.

We shall start (in Section 2) by extending the class of known examples of «-complexes

(that is finite, n-dimensional, simplicial complexes) not imbeddable in E2n.

The only examples of such complexes we found in the literature (van Kampen [8],

Flores [5, 6], Rosen [11], Wu [16]) are:
(i) The complète n-complex ^n(k) with k vertices, where k°^2n + 3; clearly, only

the case k=2n + 3 is interesting.
(ii) The join #° (3) v #° (3) v • • • v #° (3) of n +1 triplets of points.
For «=1 those examples reduce to the well-known graphs of Kuratowski [10],

which may be used to characterize non-planar graphs.
In Section 3 we shall show that each subcomplex of each of the «-complexes con-

structed in Section 2 is geometrically imbeddable in E2n. This generalizes récent

results of Zaks [17], who has established for some of the complexes of Section 2 the

possibility of geometrically imbedding each of their subcomplexes in E2n, while estab-

lishing for the other cases only the possibility of a pieeewise-linear imbedding (see

the more detailed comments in Section 4).

The last Section is devoted to some additional remarks and problems.

I am indebted to the référée for a number of helpful remarks and références.

Research supported in part by Office of Naval Research contract N00014-67-A-0103-0003.
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2. Some «-Complexes Not Imbeddable in E2n

We shall dénote finite simplicial complexes by script capitals #, Jf, etc. ; their
faces (simplices) will be indicated by capitals F, V, etc., and also by enumerating the
vertices; for example, F3 (F0, Vl9 V29 F3). Superscripts will dénote dimension; Sn

is the «-sphère (the unit sphère in En+l if metric considérations are involved), and
Tn indicates the «-simplex. For a complex K imbedded in some Euclidean space we
dénote by set K the set of points underlying the complex. (We find this symbol more
convenient and more indicative than the more usual "absolute value" notation.)

If F' (V0,..., Vn) and F" (W09..., Wm) are disjoint (abstract) simplices, we shall
dénote their join1) by ir'vF" (FOv.., Vn, WO9...9 Wm). For disjoint (abstract)
simplicial complexes Jf' and Jf" the join JT'vJT" is defined by JfT' v Jf"={F' vF" |

| F'eJf', F"eJf"}. Note that this coïncides with the usual définition, since we in-
clude the empty set 0 as face in each complex.

If jT' and Jf " are topological simplicial complexes contained in skew affine sub-

spaces of a Euclidean space, their join Jf' v 0%*" is also a topological simplicial complex.

Its faces F' v F" may be represented by

F' v F" {Àxf + (1 - X) x" | %'eF, x"eF", 0 < X < 1}.

If Jf' and Ctf" are géométrie simplicial complexes in skew affine subspaces of a
Euclidean space, then Jf*' v Ctif" is also a géométrie complex, and the above représentation

simplifies to F' v F" conv(F'vF"), where conv^4 dénotes the convex hull
of the set A. (As is well known, the assumption that Jf*' and Jf" are contained in
skew affine spaces is not essential; the only condition required is that the convex
combinations used do not introduce any unwanted intersections, or degenerate
simplices. We shall assume this condition fulfilled whenever we use the symbol v.)

If A' and A" are topological spaces, the join A' y A" is the space obtained from
the Cartesian product A' x A" x [0, 1] by identifying (a', A", 0) with a! for each a'eA\
and similarly identifying (A', a\ 1) with a" for each a"eA". If j:A'xA"x [0, l]->
-+A'vA" is the identification map, then A'v A" may be topologized by defining
NczA'vA" open if and only i{j'1(N) is open in A'xA"x [0, 1].

The connection between the two notions of join is given by the easily established
fact:

For topological simplicial complexes X1 and Jf'', there is a natural homeomor-
phism between set(Jf' y X") and (setJf')v(setJf")-

If B= {b} is a one-pointed set, then A v B is for obvious reasons called the pyramid
over A with apex b; we shall dénote it by A+ (è), or simply A+ if no confusion is

x) Because of lattice-theoretic connotations we prefer to indicate the join-operation by the
symbol V instead of the frequently used
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likely to arise. (A+ (b) is frequently called the "cône" over A with vertex b; we avoid
this term since it is used with a différent meaning in other fields.)

We note the well known and easily established facts :

(1) TnvTm is homeomorphic to Tn+m+1.

(2) SnvSm is homeomorphic to Sn+m+1.

A selftiomeomorphism n of a topological space A is called antipodal provided n
is an involution (that is, n2(a) a for each aeA) and has no fixed points. The unit
«-sphère Sn has a natural antipodality n defined by n{d)= —a. If A1 and A" are
topological subspaces of a Euclidean space, with antipodalities n' and n", then there is a

natural antipodality n=n'vn" on A' v A" defined by

n(M + (i - X) a") An'(a') + (1 - X) n"(a").

The homeomorphism mentioned in (2) above may be chosen in such a manner
as to préserve the natural antipodalities of the sphères involved. Indeed, let

Sn {x (xl9..., xn+m+2)e£M+m+2 | ||x|| 1, xM+2 •••= xn+m+2 0}
and

Sm {x (xl9..., xn+w+2)e£w+m+2 | ||x|| 1, Xl -. xM+1 0};

then the mapping which sends the point Ax+ (1 — À) y of Sn v *Sm (where xeSn, yeSm,

0<A<l) onto the point Xl/2x+(l-X)1/2y oïSn+m+1 has this property.
Let now JT be a topological simplicial «-complex, and let JT* S (Jf be a com-

plex isomorphic to Jf under an isomorphism 9 such that Jf and Jf* are contained

in skew affine spaces. We define a simplicial (2« + l)-çomplex JTV as the subcomplex

of JT v JT* consisting of ail simplices FvF* (where FeJf,F*eJf*, and FnS'1 (F*)
=0) and their faces. If K=setJf, we shall use the notation Kv =set(JTv). The set

Ky has a natural antipodality n defined by

n{kxx + (1 - A) 3(x2)) (1 - A) x2 + À9(Xl)9

where xf belongs to an «-simplex F{ of JT and Ft n F2=0.
We hâve the following lemma:

(3) //*«#** ïj a simplicial nrcomplexf i= 1 ,•••,/?, ^/i^« ^Aer^ w a naturalhomeomorphism

cp, which préserves the natural antipodalities, between (Jf1 v JT2 v ••• v*>Tp)v ^^

Proo/. It is clearly enough to consider the case p=2. Then a typical point o.

i v Jf2) v is of the form

[ + (1 - ,0 xi) + (1

where O^A^'^^^^eF/, tfeFf.Fi', FfesT» and (Fi vFj)n(Ff vF2>0, tha.

is, FinFi'=0 and F^nF'^ty. On the other hand, the typical point of K? v
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given by

y Piw'i + (i - «i) Hy'O) + (i - P) (wi + (i -
where (Ko^, a2, j9< 1, /.eF/, .y/'eF/', F/, F/'e JTt, and F;nF;' 0 for i= 1, 2. As-

suming without loss of generahty that # îs affine, x may be made to correspond to y
by taking x[=y[, x"=y", and

V
' + (1 - X) ii"

2
A(l - pi) + (1 - A) (1 - /)*

The contmuity of the mapping and the préservation of antipodality by ît are easily
checked, and the proof of lemma (3) îs completed.

As a corollary of (3) and (2) we hâve

(4) If jT, is a complex such that Ktv îs homeomorphic to the «rsphere Sni, then
(Jf± v X2 v v JTp) v is homeomorphic to the (p -1 + £f= x «J-sphere Sni v S112 v
v v Snp. Moreover, the homeomorphism may be assumed to préserve antipodes.

Let JT be a topological simplicial «-complex; we construct a new set & as follows.
fc is a subset of ^T+ x K+9 and consists of those pairs (a, b) of points of K+ which
satisfy:

(i) at least one of a, b belongs to K;
(n) there exist disjoint «-simphces Fa and Fb of such that aeF*, beFb+
Ê is clearly a compact metnc space; ît has a natural antipodality making points

(a, b) and (b, a) correspond to each other One of the properties of È. which is of
spécial interest to us is-

(5) For each «-complex Jf, the set £ is homeomorphic to the set Kv by a
homeomorphism ç which préserves antipodality.

Indeed, denoting by v the apex of K+, each point of Ê is uniquely expressible in
the form (Xa+(1 - X) v, iib + (1 -/z) y), where a and & belong to disjoint «-simplices
of JT, 0<A, n^l, and max{A, /*} 1 We define

if X 1

It is trivial to check that q> has ail the desired properties.
We need one more définition. Let Jf be a topological simplicial complex and let

£= set Jf. A mapping fofK+ shall be called a K-homeomorphism provided the
restriction of/to 7s: is a homeomorphism (between Kdinâf{K)). We shall say that JT
is n-entangted (or absolutely knotted in En) if and only if

for every ^-homeomorphism fofK+ into
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If Kis homeomorphic to a subset of E""1 then Jf is clearly not w-entangled (since
in this case K+ is homeomorphic to a subset of En). Hence, if we succeed in proving
that some complex is «-entangled, then this complex is certainly not imbeddable
inE"'1.

Let now Jf be an «-complex and let/be a X-homeomorphism of K+ into E2n+i.
Then we define a mapping/of È. into E2n+1 by setting, for (a, b)eR,

f{a,b) f(a)-f(b).
Clearly,/is continuous and f(a, b) —f(b9 a).
We shall prove :

(6) If0e/(£) for every À-homeomorphism/of K+ into E2n+\ then Jf is (2« +1>
entangled (and therefore not homeomorphic to any subset of E2n).

Indeed, if Jf is not (2«+l)-entangled there exists a X-homeomorphism / of K+
into E2n+1 such that f(K)nf(K+\K) 0. From 0ef(K) it follows that for suitable

(a,b)e& we hâve 0=f(a,b)=f(a)-f(b), that is, f(â)=f (b). Since K contains at
least one of a, b, and since/is a ^-homeomorphism, it follows that a=b, contra-
dicting condition (ii) of the définition of Ê.

Combining lemma (6) with the above remark f(a, b)= —f(b, a) we obtain at

once:
(7) If for every Z-homeomorphism / of K+ into E2n+1 some pair of antipodal

points of & is mapped by/onto the same point of E2n+1, then R is (2n+ l)-entangled.
In the cases we shall discuss we shall find the following situation: £ is

homeomorphic to Kv9 and Kv is homeomorphic to 52w+1, both homeomorphisms pre-
serving antipodality. By the Borsuk-Ulam theorem (see Borsuk [1]), every mapping
of S2n+1 into E2"*1 maps some pair ofantipodal points of S2n+1 onto the same point
of E2n+1; because of the antipodality-preserving homeomorphism between R and

S2n+1 the same conclusion is valid for R. Hence, by lemma (7), the complex Jf is

(2« + l)-entangled and thus not imbeddable in E2n.

Now we are ready for

THpOREM 1. Let n>p9nl9...,np be non-negative integers such that h /71+«2 +
~\ \-np+p— 1. Then the n-complex

<£tti(2ni + 3) v Vn2(2n2 + 3) v - v Vnp(2np + 3)

is not imbeddable m E2n.

Proof. In view of the above remark and previous lemmas,. it is obviously enough

to show that
(8) For each positive integer k, the set (#*(2& + 3)) v is homeomorphic to S2k+i

under a mapping that préserves antipodes.
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Let %k(2k + 3) be représentée! by the £>skeleton JT of a (2A; + 2)-simplex r2fc+2

conv{x0,..., x2k+2}c:R2k+2 suc^ that

2k+2

I *, o, (*)
i 0

but each proper subset of the x/s is linearly independent. Then K v may be obtained

by taking 9> Jf =-3f={-F\FeJf}; hence K v is the union of ail sets of the form
conv [Ft u — Fj)), where Ft and Fj are disjoint members of Jf.

In order to show that À^v is homeomorphic to S2k+1 it is obviously enough to
show that for each unit vector u in E2k+29 the ray L= {ku | A^O} intersects Xv in
precisely one point, différent from the origin.

We first establish LnKvï0. Let Ak=£?*Î2 a**,, with A>0, a^O, £* a,= l.
Without loss of generality we may assume that ao<a1<---^a2fe+2- Then, using (*),
we hâve

2k + 2 2k + 2

0 # Au Am - afc+10 £ (af

where /^f<0 for O^i^k, pk+l=0, jS^O for ifc + 2<i<2fc + 2, and not ail fit are 0.

Let /*'= -X?=o ^ ^ Zi"î+2 A, and ]8=/?' +r ; then

as claimed. (If /?'=0 or /?" 0, the corresponding sum should be omitted.)
On the other hand we shall show that if yeKv for y#0, and if ÀyeKv for

then A= 1. Indeed, assuming without loss of generality that y=YI=o 2
aixn where

af^0 for O^i^k, 2k+2
a, 0 for i /c + l, Ç |af| l, (**)

and Xy=Yj=^2 Pi*h where

Y, \Pt\ 1, at most k + 1 of the /?f's are négative and at most (***^

k + 1 of the /?f's are positive.

Then
2fc + 2

^y (*) it follows that <xi—piX~1 y is a constant independent of i. In other words,
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/^=A(af —y). Therefore, if y 0, assumptions (**) and (***) would contradict each

other. Thus y 0, and then 1 =£* \Pt\=Zf \^t\ X X!» \ai\ — ^ as claimed.

Finally, 0$K* follows at once from (*).
This complètes the proof of lemma (8) and thus also the proof of Theorem 1.

3. Géométrie Imbeddings in E2n

In the présent section we shall show that every proper subcomplex of each of the

«-complexes of Theorem 1 is geometrically imbeddable in E2n.

A few lemmas are needed in the proof; the first is a spécial case of the gênerai
theorem.

(1) Let ^o(2k-\-3) be a complex obtainedfrom fé*(2fc + 3) by deleting one k-face.
Then <g%(2k+3) is geometrically imbeddable in E2k.

Proof Let 7\ and T2 be two fc-simplices in E2k such that Tx n T2 is a single point,
relatively interior to both T± and T2. Let Tk2k conv(Tl u T2), and dénote by 2Tm the

m-skeleton of Tk2k. It is well known (see, for example, Grûnbaum [7], where the terms
and facts used in the sequel may be found) that &~k contains ail the géométrie
A:-simplices determined by the 2k + 2 vertices of Tk2k, except Tt and T2, while &~k-x

contains ail the {k— l)-simplices determined by those vertices ([7, p. 98]). Taking, if
necessary, a suitable projective image of Tk2k, we may without loss of generality
assume that there exists a point VeE2k that is beyond ail facets of Tk2k except one.

Then {T1}u^^*_1(F)u^"fc is isomorphic to ^$(2Â: + 3), and the proof of (1) is

completed.
Figure 1 illustrâtes the steps of the above proof for k— 1.

We shall say that an «-complex Jf* is nicely imbedded in Em provided X is

geometrically imbedded in Em and there exists a point (say the origin 0 of Em) with the

property:
For each unit vector ueEm except one, u0, the ray L(w)={Aw | A^O} intersects

sete^T in at most one point, while L(wo)nset X consists of two points, each in the

relative interior of an «-face of JT. We call u0 the exceptional direction, and the two

«-faces L(u0) meet the exceptional faces of Jf\

Figure 1
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We need the following lemmas :

(2) tf*(2Jfc + 3) is nicely imbeddable in E2k+1.

Proof. Let Ek be the «-dimensional affine subspace of E2k+1 defined by

J7k — JYy V \c F21i+ 1 I V _ — Y _ H Y£1 ~ UX1> •••' x2k+l)Erj I x*+l — •••— X2k — U, X:

and let

?2fc+l I _ _v_nv — 1\

l/v2/c

Let Tk be a regular simplex of edge-length 1 in Ek9 /=1, 2 having its centroid at
jc1 .--=x2fc 0, and x2k+i l/(2k + 3) respectively x2k+1 \. Let &k(2k + 3) have as

vertices the 2k+2 vertices of Tk and Tk, and the point 7= -1, 0,..., 0, - 2). Then a
trivial computation shows that this #*(2A; + 3) is nicely imbedded in E2k+1, with
mo (0,...,0, 1) as the only exceptional direction. (See Figure 2 for an illustration
of the case k= 1.) This complètes the proof of (2).

El

Figure 2

(3) Let Jf*1 and JT&2 be complexes nicely imbedded in spaces E2ki + 1 and
E2k2+1, and let k kl+k2 + l. Then JéT Jfki v/2 is a k-complex nicely imbeddable
inE2k+1.

Proof. Let us imbed E2kl + 1 in E2k+1 by

We dénote by v the vector v (0, 0,..., 0, l)eE2k+1, and we consider the copy 2fkl
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of Cfki imbedded in E2kl + i + v, and the copy 3tk2 of $Tkl imbedded in E2k2+1 + 2v.

Defining now Jf=jf lvX*2, we shall show that X is nicely imbedded in E2k+1.

Clearly, X is a géométrie complex in E2k+1.

Let ueE2k+1 be a unit vector such that for some X, fi with 0<X<fi we have
Aweset Jf and fiuesetsf. That is,

Xu ocy, +(l-cc)zi+(2-ot)v 1

U

where 0<a, 0< 1, yl9 j>2eset Jffel, and zl5 z2eset Jfk\
Eliminating u from (*) and equating points in E2kl + 1, E2k2 + 1, and multiples of

v, we obtain

(**)

Clearly yt —y2 or zt =z2 would imply 2=//, contradicting the assumption. Hence

tnus (**) expresses the fact that

where ut and u2 are the exceptional directions of Jfkl and Jf*2, while y yi/y2<l
and ô ôl/ô2>\ are well-determined constants. Inserting those values into (**) we

obtain

<5- 1 <5- 1

a 2 ~- and fi 2y

Substituting into (*) we see that u, X and // are uniquely determined. Hence the complex

Jf is nicely imbedded in E2k+1 and the proof of (3) is completed.
The last lemma we shall need is

(4) Let Jfkl and Cfkl be complexes nicely imbedded in E2kl + 1
respectively E21i2+

let Fki be the exceptional face ofJfkï nearer to 0, and let Fkl be the exceptional face

of Cfkl further from 0. Then (jfklv3fkl)\(FkivFk2) is a k-complex, k kt + k2 + l,
which is geometrically imbeddable in E2k.

Proof Let Ct be the complex constructed in the proof of Lemma (3). Since C/£

is nicely imbedded in E2k+\ the radial projection of Jf\{(v+Fki)v(2v+Fk2)} into
the (2/î)-dimensional affine subspace {xeE2k+1 | <jc, v} 3} is clearly a géométrie

imbedding. This complètes the proof of (4).
Now we are ready for our main resuit:
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THEOREM 2. Let n,p,nu...,npbe non-negative integers such that n nï-{ h

-f np +p — 1. Then every proper subcomplex of the n-complex

JT(nl9..., np) Vni (2/ii + 3) v v V»(2np + 3)

is geometrically imbeddahle in E2n.

Proof. It is clearly sufficient to prove the theorem for each complex Jf0 (nu..., np)
obtained from Jf(nl9...9 np) by deleting one «-face Fo. Each such 3fo(nl9..., np) is

obtained by singling out an «rface F? of #""(2^ + 3) and setting Fq^FS* v ••• vFop.
We distinguish two cases :

(i) p=l. Then the assertion of Theorem 2 reduces to that of lemma (1) above.

(ii) p > 1. Using lemmas (2) and (3) we find a nice imbedding of JTt %ni (2nt + 3)
in E2ni + \ and a nice imbedding of Jf2 <T2(2>i2 + 3)v .-• vtfnp(2np + 3) in E2m+\
where m n2-\ \-np-\-p — 2, such that Fq1 is the exceptional face of Jf\ nearer 0

while Fq2 v • • • v Fqp is the exceptional face of Jf2 further from 0. An application of
lemma (4) to the complexes JTX and Jf2 complètes the proof of Theorem 2.

4. Remarks

(i) The method used in the proof of Theorem 1 is an élaboration of Flores' [6]
proof, extending the similar proofs in Rosen [11] and Grûnbaum [7, p. 210]. By
avoiding the more powerful - but also more unmanageable - "imbedding classes"
of Wu [16, p. 114], it is possible to give a quite elementary proof of the non-imbed-
dability of the complexes of Theorem 1. By standard manipulations (van Kampen [8],
Chrislock [3]) it is easy to extend Theorem 1 to the following

THEOREM 3. Let ni9 mhp be non-negative integers such that
for /=1,...,/?. Then the (/^H \-np+p—l)-complex

is not imbeddable in the Euclidean (mt H \-mp—p — !L)-spaçe, but it is even geometrically

imbeddable in Euclidean (m1 -\ \-mp—p— \)-space.
Theorem 3 may easily be modified to allow the inclusion of complexes ^(^+1)

or <^ni{ni + 2). (For some spécial cases see Wu [16, p. 118].)
The significant différence between Theorems 1 and 3 is the observation that if

fni<2ni-j-3 then the complex is not minimal with respect to the property of being
non-imbeddable in the appropriate space. For example (p l, nx 2, mi 6) the 2-

complex ^2(6) is by Theorem 3 not imbeddable in E3; however, even the complex
obtained from #2 (6) by deleting the ten 2-faces incident with one vertex is not
imbeddable in E3. Hence there is no hope that the complexes of Theorem 3 satisfy an
analogue of Theorem 2.
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(ii) Zaks [17] has established Theorem 2 if either p=l (i.e., in the case covered

by Lemma (1) of Section 3), or else if ail «f's with at most one exception are equal
to 0. His method does not seem to extend to the gênerai case. On the other hand,
Zaks proved: If ail the proper subcomplexes of the arbitrary simplicial complex Kt
are piecewise linearly imbeddable in Ek\ z=l, 2, then each proper subcomplex of
KxvK2 is piecewise linearly imbeddable in Eki+k2+2.

(iii) It is well known that a A>complex imbeddable in En is not necessarily geo-
metrically imbeddable in En, if n<2k (Cairns [2], van Kampen [9], Grûnbaum [7,

p. 202]). However, the published examples deal only with the case « 3; it would be

of some interest to find analogous examples for ail k and n with k^n^lk— 1.

Probably more interesting is the

Conjecture. Each simplicial triangulated) manifold imbeddable in a Euclidean

space is even geometrically imbeddable in the same space.
This conjecture is open even for triangulations of the torus (in E3), as well as for

triangulations of Sk for k^3. For triangulations of S2 an affirmative answer results

from a more gênerai theorem of Steinitz concerning convex 3-polytopes (see Steinitz-
Rademacher [12, p. 192], Grûnbaum [7, p. 235]).

(iv) Considering simplicial complexes imbedded in the «-sphère Sn one may dis-

tinguish (as in the case of complexes imbedded in En) between topological and geo-
metric imbeddings. While it is easy to show that a simplicial complex geometrically
imbeddable in En is also geometrically imbeddable in S", the following converse

seems to be still unsettled:
Conjecture. If ^ is a simplicial complex geometrically imbeddable in Sn and if

set^VS"1, then <g is geometrically imbeddable in En.

(v) For n=l, the two 1-complexes (=graphs) given by Theorem 1 characterize

graphs not imbeddable in the plaiie as follows (Kuratowski [10]): A graph ^ is not
imbeddable in E2 if and only if ^ contains a subgraph homeomorphic to one of the

graphs of Theorem 1. However, the analogous statement is false for n ^ 2. As shown

by Zaks [18], for every n^2 there exist infinitely many «-complexes, none
homeomorphic to a subcomplex of another, with the property of not being imbeddable in
E2n9 though each proper subcomplex is piecewise-linearly imbeddable in E2n.
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