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Curvature and Differentiable Structure on Sphères

by Ernst A. Ruh1)

1. Introduction

An important problem in differential geometry is to characterize the global
behaviour of a manifold in terms of local invariants. A resuit in this direction is given
by the following isomorphism theorem: A simply connected, complète, riemannian
manifold whose curvature tensor is close to the curvature tensor of the sphère is

isomorphic to the sphère. Several versions of this theorem hâve been obtained in the

past. The différence between thèse versions is a resuit of the différence in the meaning
attached to the terms "close" and "isomorphic".

Traditionally, the proximity of the curvature tensors jR and Ro of the manifold M
and the sphère S respectively has been measured in terms of sectional curvature as

follows : A riemannian manifold whose sectional curvature K satisfies the condition
6<K<\ is called <5-pinched. In a séries of papers Rauch [10], Berger [1,2] and

Klingenberg [6, 7] proved that a complète, simply connected, ^-pinched riemannian
manifold is homeomorphic to a sphère. With the discovery of exotic differentiable
structures on sphères by Milnor [9], the question arose whether the homeomorphism
theorem could be sharpened to a diffeomorphism theorem. Gromoll [5] and Calabi

proved that this can be done if, at the same time, the sectional curvature is more
severely restricted. Gromoll showed that there exists a séquence ôn with lim<5n l as n

tends to infinity such that a simply connected, complète, c5n-pinched riemannian
manifold of dimension n is diffeomorphic to the standard sphère Sn.

Calabi and Gromoll's diffeomorphism theorem leaves the following question open :

Do there exist riemannian metrics on exotic sphères with curvature tensors R arbitrarily
close to the curvature tensor Ro of the standard sphère? To make this question more
précise, we introduce a différent measure for the proximity of R and Ro. For this

purpose, wethinkof the curvature tensor as a linear, selfadjoint mapiÊ: Va V-+ Va V,

where Va V dénotes the exterior product of the tangent space with itself. So, if the

eigenvalues X of the map R at every point of M satisfy the condition <5 < A< 1, then the

manifold is called strongly ô-pinched. Now, the purpose of this paper is to answer the

question left open by Calabi and Gromoll's diffeomorphism theorem : There are no
riemannian metrics on exotic sphères with curvature tensors close to the curvature
tensor of the standard sphère.

Hère we might add that Bochner and Yano [3] in their version of the isomorphism
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theorem measured the proximity of R and Ro in terms of strong <5-pinching. Bochner
and Yano obtained the foliowing resuit: A compact, orientable, strongly ^-pinched
riemannian manifold is a homology sphère.

2. The Main Resuit

In previous studies of the diffeomorphism theorem the pinching constant depended
on the dimension of the manifold. However, the introduction of strong <5-pinching has

the foliowing advantage : The constant Ô in the theorem below is independent of the
dimension of the manifold.

THEOREM. A complète, simply connected, strongly ô-pinched riemannian manifold
of dimension n with 5=0.66 is diffeomorphic to the standard sphère Sn.

The main idea of the following proof is new. However, methods similar to those

employed by Rauch [10], Berger [1, 2], Klingenberg [6, 7], Gromoll [5], and Cheeger
[4] hâve been adapted to obtain the necessary estimâtes. The pinching constant ô

enters in several of thèse estimâtes. The constant 5=0.66 could be improved some-
what, but to keep nonessential complications at a minimum, no attempt has been

made to obtain the optimal constant possible with our method.

3. Outline of Proof

We prove the theorem by constructing an explicit C°°-diffeomorphism/ :M-+Sn.
In case Mis a strictly convex hyper surface in euclidian space En+19& diffeomorphism
is provided by the Gauss map g:M-+Sn. The idea now is to pattern the construction

of/after the Gauss map g. To carry this idea out we first recall what makes the Gauss

map possible and why it is a diffeomorphism in this spécial case. The map g sending
xeM into the unit normal vector at x translated to a fixed point x0 is well defined
because parallel translation in ls=Mx 2sn+1 =t(M)®v(M), where t(M) and v(M)
dénote tangent and normal bundle respectively, is independent of the path. In addition,

g is a diffeomorphism because in the spécial case under considération the
derivative Dxn of the unit normal vector field n in any direction X^O is non zéro.

In the gênerai case the normal bundle is not available; however, we replace it by a

trivial line bundle e(M) and define a flat connection V on E=x(M)®e(M). At this
point, the map/:M-+Sn is defined analogous to the Gauss map by replacing the
normal vector field by a cross section e of length onein s(M); i.e., the image

f(x)eSnaEn + 1 is defined by parallel translation of e(x) to the fibre En+1 over a
fixed point x0. Again,/:M-> Sn is a local; and since M is simply connected, a global
diffeomorphism as long as V^e^O. Therefore, the proof consists of defining a flat
connection V on x(M)®e(M) and checking V^e^O.
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The first step in the construction of V is to define a connection V" in E with small
curvature as follows :

-c<X,ei>e

where V dénotes the riemannian connection in the tangent bundle t(M); and eh i
1,2,..., n dénotes a moving orthonormal frame in t(M); while e is a section of length
one in s (M); and c is a constant close to one to be determined later. The curvature of
V" will be estimated in section 4. We might add that the idea for the définition of V"
originates from the following observation: In case Mis the standard sphère embedded
in En+1, the covariant derivative defined above is nothing but the ordinary derivative
inEH+1.

In the next step, V" is used to construct a cross section u' in the principal bundle of
(n 4- l)-frames with structure group 0(n +1 associated to E. The results necessary for
this construction are compiled in the first four chapters of [5]. The proofs in [5] are
based on the Alexandrov-Rauch-Toponogov comparison theorem and the Morse
critical point theory. In particular, we use the following properties : Let q0 and qt be a

pair of points with maximal distance Q(q0, qx) on Af, where g dénotes the distance

function induced by the riemannian metric. Set % (p)=q(ço,p) — q(çi,p) and define

C=x~* (0),Mo =x "~1 ((- °°> 0]), Mx =^"1 ([0, oo)). The exponential maps exp0 and

expx with centers at q0 and ql respectively are bijective maps if restricted to a bail of
radius %. Finally, C is diffeomorphic to S""1 and takes the place of the equator
while Mo and Mx take the place of upper and lower hémisphère respectively.

At this point we are in a position to indicate the définition of the section «'. First,
we define a section u0 on Mo by moving an (« + l)-frame uo(qo) chosen over the

center q0 of Mo by parallel translation with respect to V" along géodésie rays to
points in Mo. Second, we define Wi(^i) by parallel translation of uo(qo) along a

shortest géodésie to ql9 the center of Ml9 Now ux is defined analogous to u0. On

C=MonM1 the cross sections u0 and ux may not coincide, but the distance in the

fibre can be estimated in terms of the pinching constant ô. Therefore, for ô close

enough to 1, the sections u0 and ut can be modified to yield a differentiable cross
section u' on M. Finally, let V dénote the flat covariant derivative in E= % {M)®& (M)
that corresponds to the section u' in the associated principal bundle.

It remains to be shown that V^^O. The resuit follows because for ô close to 1,

the différence of V and V" is small; and ||V^|| =c||*|| ~||*||. The détails, as well as

the estimate 5=0.66 will be furnished in the subséquent sections.

4. The Connection V"

The purpose of this section is first, to give an estimate for the curvature of V",
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second, to use this estimate to obtain an upper bound for the effect of parallel translation

along null homotopic closed paths. We recall the définition of V" introduced in
the outline:

VJe, Vxet -c<X,ei>e

Instead of dealing with the connection V", we prefer to make the compilations in
terms of its connection form co". In order to give a formula for co", let (Atj) dénote the
standard basis of the Lie algebra o (n +1 of the orthogonal group 0 (n +1 ; and let co

dénote the connection form of the given riemannian connection on M. In terms of a
frame field (ei9...9 en, e), where el9...9 en form an orthonormal basis in the tangent
space t(M), and e is a section of length one in s(M), co" can be expressed as follows:

co" co + c £ e* ® Ain+ x co + ca,

where ef dénotes the dual of et and a is defined by the above équation. To simplify the

computation of the curvature, we assume further that el9..., en arises from a canonical
coordinate System around a point peM. In addition, the connection form co", as well
as the curvature form Q"9 will be considered as forms on M, rather than on the

principal bundle P; i.e., we will deal with the pullback via the section (el9...9 en, e).
At this point, we compute the curvature form Q" aipeM. Because of the choise of

a canonical coordinate System at/? we hâve dco" —dco. Therefore, the Cartan identity
yields the following équation:

dco" - co" a co" + Q" - co a co + Q dco.

Again, because of the choice of the section (el9..., en), co is zéro at peM; therefore,
the above équation yields :

Q" Q + c2a a a.

Now, both Q" and Q may be considered maps from VaV into o (n +1 since o (n) is a

a subspace of o(« + l). Note that in the case where M Sn, and c l, the map
Q":VAV-+o(n + l) is identically zéro. This explains why the pinching condition
implies that Q" is close to zéro.

We arrive at an estimate of Q" by letting \\Q"\\ dénote the maximum of ||O"(/?)||
where p ranges over the unit sphère in VaV. In addition, we identify VaV with
o(n) by means of the map eiAe^Ai^9 where Aij9 i<j^n dénotes the standard basis

of o(n). Under this identification, a a a corresponds to the identity map id: Va V-+
-+ Va V as indicated in the following:

a a a (ei9 es) [Ain+19 Ajn+ J AtJ,
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where [ ] dénotes the Lie bracket m o(n + l), and AtJ for i<j<n + 1 dénotes the
standard basis of o(« + l), while AtJ for j<i stands for -AJt Note that, under the
above identification of Va V with o(n), the curvature form Q of the nemannian
connection coïncides with — R, the négative of the curvature transformation
R Va V-» Va V Therefore, the eigenvalues k" of the map Q"=Q + c2a a a can be
estimated as follows

where ô îs the pinchmg constant The best estimate of max|A"| \\Q"\\ îs obtained by
settingc2=4(l+<5) The resuit îs ||fi"Ki(l-<5)

In the second half of this section, we apply this resuit to obtain an estimate for
the effect of parallel translation along null homotopic, piecewise differentiable,
closed paths Let if/x/-»Mbea piecewise differentiable homotopy of the closed

path y defined by s -> H (s, 0) into the constant path s-+H (s, 1 Parallel translation
along y transforms the frame u into the frame ua, where ua îs the image under
right multiplication of the frame u by the élément aeO (n +1 We achieve an estimate
for the distance q (e, a) of the élément a e 0 (n +1 from the identlty élément e e 0 (n 4-1

in terms of the homotopy H with the following lemma

LEMMA q (e, a) ^ max||O"||;4 < \ (1 — Ô) A, where the maximum is taken overpoints
in H (Ixl)cz M, and A dénotes the area ofH(IxI)

Of course, the distance g {e, a) dépends on the metnc in 0 (n +1 However, this
metnc has been normahzed such that the space 0(n+l)/0(n) is îsometnc to the unit
sphère

The proof is straightforward The idea is the same as in the proof of the factonza-
tion lemma [8, p 285] Namely, we subdivide /x/ into m2 squares stJ of equal size,
and write parallel translation along y m terms of parallel translation along the bounda-

nes ytJ =dH (stJ) of the images H (s^) of the squares stJ Now let au be the orthogonal
map defined by parallel translation along ytJ Neglecting terms of higher order in
AlJ=arca of H(slJ), we obtain the estimate o(e, ai;)< \\Q"\\ AtJ for the distance

o(e, atJ) of atJ from the identlty Therefore, the factonzation lemma yields q(e, a)^
<max||£"|M The correction terms of higher order in AlJ can be neglected if the

number of subdivisions of /x / is increased to achieve AtJ -»0 Finally, the estimate

IIû"II <i(l ~<5) complètes the proof

5. A Preliminary Estimate

In section 3, the mamfoldsM0 andMx were introduced and compared to the upper
and lower hémisphères respectively of the standard sphère In this section, the metnc

aspects of this companson will be studied The estimate obtained hère is based on
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results compiled in the first four chapters of [5]. This estimate is necessary for the
construction of V, which will be carried out in the next section.

In case M=Sn,wc hâve the following isometry between the tangent spaces at the
north and south pôles; Source and image are related by lying on the same géodésie

joining north and south pôles. In case M is (5-pinched with ô>%, Gromoll [5] proved
the existence of a diffeomorphism h similar to the above map. To define h, let So and

Si dénote unit sphères in the tangent space of the points q0 and qx that were in-
troduced in section 3. The map h'.So-tSi is now defined by requiring expota and

expj th(x) to coincide for some t t(x) satisfying n/2<t (x)<n/(2s/ô). Note that the

point of intersection lies on the "equator" C defined in section 3.

At this point, we prove that the map h is close to an isometry; i.e., we give an
estimate for the ratio \\h*Y\\ : || Y\\ for Yer(S0)9 the tangent bundle of the unit sphère
So in the tangent space at qoeMo. Hère we recall that the définition of the map h

implies ||exp0HcJ (x) 7|| \\expU:t (x)h*Y\\, where expOsK is the differential of the

exponential map exp0 evaluated at a point t(x) x for some xeS0. Now, the above

équation, together with the Rauch comparison theorem, yields the following estimate :

We arrive at the estimate when we observe that the extrême ratio would occur if the
sectional curvatures ofMo and Mx would be equal to ô and 1 respectively. Therefore,
a comparison of the exponential maps exp0 and expx to exponential maps on sphères

of radius l/y/ô and 1 respectively, yields the estimate.

6. The Connection V

The purpose of this section is to construct a flat connection V on the bundle

E=t(M)®s(M) with the property V^e#0, where e dénotes a section of length one
in s (M); and X dénotes a non zéro tangent vector. As stated in the outline, V is

obtained by constructing a cross section uf\M-+P in the principal bundle P asso-
ciated to E. Again, we foliow the outline and define u0 :M0-+P and u± :MX -*P as in
section 3. The point now is to modify u0 and ux to obtain a smooth section u':M-+P.

The sections u0 and ul9 restricted toM0 nMx in gênerai do not coincide. The idea
is to replace u0 and ux by their average. Since the average is defined only if q (u0, u^) < n
we estimate the distance between u0 (p) and ut (p) for peC. We recall that the frame

ui (p) is obtained form u0 (p) by parallel translation with respect to V" of u0 (p)
along the closed path y consisting of the shortest géodésie segments (p, q0), (q09 qx),
and (qi,p). In order to obtain an estimate for the distance q(u0, u±) by means of the
lemma of section 4, it is necessary to define a homotopy of the broken géodésie
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(<lo>P> tfi) mto the shortest géodésie (q0, qx) that was used in the définition of uu In
addition, we need an estimate fo the area of this homotopy.

Instead of defining the homotopy on M0 and Mx directly, we define a homotopy
in their inverse images, To and Tls under exp0 and çxpt respectively. In To we define
the homotopy by rotating the line corresponding to the géodésie (q0, p) into the line
corresponding to the géodésie (q0, q^. On Tu we define the homotopy again in terms
of a family of lines originating from OeTl5 The choice of the family is determined
since we require the images of the homotopies under exp0 and expx respectively to
match on C=MonMl. We estimate the area swept out by the homotopy onM0 by
means of the Rauch comparison theorem. For an estimate of the corresponding area

on Mx we need, in addition, the estimate on \\h*Y\\ : || Y\\ which has been obtained in
the preceeding section.

Thèse considérations lead to the following estimate of the area A of the above

homotopy:

1 sm
2V5

With this upper bound for A, the lemma of section 4 provides an estimate for the

distance q(u09 wx) of u0 and ut =uoa, where aeO(n + l); and the distance is measured

in the fibre over points in C=M0 nM1. The resuit is:

l-ô r n Y
Q (wo> «i) Q(e,a)^n —— 11 + V<5 sin —j-£0 \ \ 2\j 6/

If we choose à close enough to 1 to make sure that q(e9 a)<n9 then there is a

unique shortest géodésie joining e and a in 0(« + l). Consequently, the average of w0

and ux exists. In the next paragraph, we illustrate how this average leads to an approximation

m* : M ->P of the section u'\M-*P.
We begin with the définition of w* restricted to C=MonMl9 by sending a point

qeC into the midpoint of the shortest géodésie joining uo(q) and ux(q) in the fibre

over q. Subsequently, we extend the définition of u* to M. One might attempt to

extend the définition of m* to Mo and Mx by parallel translation of m* (q), qeC9 with

respect to V" along géodésie rays originating from q0 and qt respectively. However,

this extension of u* results in singularises at the points q0 and qx. To avoid this

difficulty, we modify parallel translation as follows: Instead of parallel translation of

u*(q) along geodesics exp0^, we translate u*expd*(p)B along the same géodésie

to the pointp=expod(q) x9 where d(p) is the distance from q0 to p9 while B=B(q)e
o(n + l) is defined by the équation uo(q) cxpd(q) B=u*(q); and d* :M0-»R is ob-
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tained by smoothing d at q0 while keeping d*(qo)=0. The above complètes the
définition of «* w* '-Mo ->P. Now, to extend w* to a cross section u\ =w* :Ml ->P we
utilize the same method. The section u*:M-+P, as constructed satisfi.es ail but one of
the requirements of the section u' listed in the outline, Le., w* is not differentiable on C.

In the next paragraph, we smooth w* to obtain a section u'\M-*P.
In order to define u' we first extend the définitions of m* and w*, so far defined on

Mo and Mi respectively, to a tubular neighborhood N8(C) of C=MonM1. Subse-

quently, the following symbolic formula indicates the définition of u' on Ne(C):

u' (l-t)u% + tyï,

where the function t: ATfi(C)-»R will be defined later. Hère we define u' as the point
on the géodésie joining u* and w* whose respective distances from w* and u* we
détermine by the ratio t:(l-t). Outside N8(C), the sections w* and u' are identical.
For the proper choice of the function t, the section u' is differentiable. It remains to be

shown that the connection V associated to u satisfies the property Vxe^0 discussed

in the outline.

7. Some Estimâtes Concerning V

The purpose of this section is to prove that Vxe^0, where e is a section of length
one in s (M); and X is any non zéro vector in the tangent bundle t(M). Since

||V£e||~||Jr|| for à close to 1, it suffices to show that the différence of V" and V is

small, provided that ô is close enough to 1.

In order to simplify the computations involved in the estimate of the différence
between V" and V in a neighborhood U of a point peM, we identify the bundle P
restricted to U with Ux 0(n +1). We accomplish this by identifying Ux {e} with the

following section s" adapted to V" : The section s" is defined by parallel translation
with respect to V" along géodésie rays of an (w + l)-frame over peM. Subsequently,

we identify the cross section u' that defines V with the corresponding map u':U-*
0(n + 1). Because s" is adapted to V", the following estimate for the différence between

V" and V at peM holds: ||V^-V^|| < \\Du'X\\, where Du' dénotes the differential
of the map u\

Instead of dealing with the estimate of Du' directly, we begin by showing that
|| Z)tt*Jif || and HDw'XH satisfy the same inequality and subsequently estimate ||Z>w*ll.
To compare Du' and Du*, we differentiate the symbolic formula u' =(1 — t) u% +tu\
by means of the product rule as if it would be an actual formula. Since we are only
interested in the first derivative this is acceptable because it is possible to give the

above formula a précise meaning by replacing the orthogonal group by its tangent

space o (n +1 at e eO (n +1 This being understood, we gain the following expression



Curvature and Differentiable Structure on Sphères 135

for the derivative Du' of u' :

Du' Dt (ut - ut) + (1 - t) Dut +
and therefore

To complète the argument, it suffices to show that \\DtX\\ q(uq, w*)is arbitrarily small
if we choose the function f: JVe(C)->R as follows: We begin by identifying Ne(C)
with [ — £, e] x C and we define t to be constant on {z} x C. On the z-axis we define t
to be the intégral of the function A (z), where A (z) is basically the function A/\z\ but
modified such that A (z) is differentiable on [e, e] ; A (z) is tangent to the z-axis at -s
and s, and satisfies the property f_£ A (z) dz 1. Since we choose the constant A small,
and since q (w*> u*) on {z} x {q} with qeC is bounded by c \z\ for some constant c, the
quantity ||Z)f-JT|| q(u%9 u*) is négligeable.

Given the preceding remark, we reduced the problem of estimating ||VJe-V^||
to estimating ||Dw*X||, where u*\M-+P in a neighborhood U of a point peM is
identified with w* : £/-> 0 (n +1 be means of the section s" as previously defined. Now,
in order to estimate ||Dm*A1 we estimate the larger quantity HDt?*^!!, where v* is the

map i?*=(exp)"1 w*:M->o(« + l);i.e., the composition of u* with the inverse of the
exponential map exp:tf(/7 + l)->O(7z + l). Of course, since exp decreases distances,
\\Du*X\\ is smaller than \\Dv*X\\.

Now we are prepared to estimate ||£t;*if || in terms of a canonical coordinate System
with center qoeMo. The foliowing estimate holds for points in Mo only; however, the
method works forMx as well. We begin with an estimate for HZ^AX where X points
in radial direction. Subsequently, we estimate || jDi^X|| for vectors X pointing in
angular direction by a similar method. To simplify the computations, we now sub-
stitute (5=0.66. This is not the best possible value for ô, but the will observe later
that ô =0.66 cannot be improved by much.

With the substitution of ô =0.66 in the estimate for q (e, a) of section 6, we obtain
the following numerical value : q (e, a) < 0.60n. Keeping in mind that the distance of C
from q0 is at least n/2, and that m* was defined on C by taking the average of u0 and

ul9 we conclude that \\Dv*X\\<0.60\\X\\ if X points in radial direction. A similar
estimate shows that ||£>tf*Al <0.67 \\X\\ for X in angular direction. We obtain the
above numerical value by estimating the derivative of the composition v* exp:ro->
-> o (n +1 where To dénotes the tangent space of MaXq0. Of course, we hâve to take
into account that exp0 decreases distances. However, the decrease is bounded from
below by the factor (2yfS/n) sin(72^)- Now we combine the above two inequalities
and obtain: ||/)î;*Ar|| <0.90 \\X\\ for arbitrary direction of X.

Hère, we recall that the above estimate of Dv* yields ||V^-V^|| <0.90 ||*ï|. On
the other hand, we obtain from the définition of V that ||V>|| -0.91 ||*||. Finally,
the triangle inequality implies ||V^|| #0 for non zéro vectors X.
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