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Embeddings of Open Riemann Surfaces1)

Reto A. Rûedy

1. Embedded Surfaces

1.1. In the final section of his famous thesis Riemann states that in his
investigations the branched covering surfaces of the plane could be replaced by smooth
orientable surfaces embedded in Euclidean space. For the metric structure induced

by the surrounding space can be used to define a complex structure in the following
natural way: The admissible local parameters are those which préserve angles and
orientation.

1.2. We will call C°°-embedded surfaces classical surfaces if they are viewed as

Riemann surfaces in this way. The existence of the admissible local parameters is

highly non-trivial, it means solving the Beltrami differential équation. This was done
for analytic embeddings by Gauss, for differentiable embeddings by Korn-Lichten-
stein. Because of the fundamental importance of this problem in the theory of quasi-
conformal mappings, it was investigated more thoroughly in récent years. For a most
élégant treatment see [3], for an elementary one see [10].

2. The Embedding Problem

2.1. In his lectures Félix Klein emphasized the concept of viewing classical
surfaces as Riemann surfaces, i.e., domains of analytic functions and intégrais. It was
also he who asked in 1882 if every Riemann surface were conformally équivalent to
a classical surface. [F. Klein, Gesammelte mathematische Abhandlungen, Bd. 3,

(Springer 1923), p. 502 and p. 635.]

2.2. For a long time the only results in this direction were that every compact
Riemann surface of genus zéro is conformally équivalent to the sphère, every non-
compact planar (schlichtartig) surface is conformally équivalent to a subregion of the

plane, and a compact Riemann surface of genus 1 is conformally équivalent to a ring
surface provided its modulus is purely imaginary (see [16]).

2.3. The first resuit beyond thèse facts was obtained by Teichmûller in [15], where
he applied his theory of spaces of Riemann surfaces to the embedding problem. He

x) This work was supportée by the National Science Foundation under grant NSF-GP-21325.
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could show that not ail compact embedded surfaces of genus 1 are conformally
équivalent to ring surfaces. More important than this resuit was the method by which
he obtained it: He deformed an embedded surface by moving each point along the
normal line and studied the dependence of the modulus of the deformed surface on
the déformation.

2.4. Around 1960 Garsia constructed a surprisingly large class of compact
Riemann surfaces whose moduli could be determined ([5], [6]). But he succeeded in an-
swering Klein's question in the affirmative for ail compact Riemann surfaces only
when he abandoned his beautiful models and embarked on Teichmûller's road. His
proof in [7] and [8] is an ingenious combination of Teichmûller's ideas and results,
constructions inspired by Nash's isometric embeddings, and Brouwer's fixed point
theorem.

2.5. We will see in this paper that his methods are even strong enough to prove
this theorem for noncompact surfaces too. Because we will use the modifications
described in [13] we may formulate our theorem as follows:

EMBEDDING THEOREM. Every Riemann surface R is conformally équivalent

to a complète classical surface. A model can be constructed by deforming any topo-

logically équivalent complète classical surface X in the direction of the normals. (See

also 6.12.) Zis complète, if Zis a closed subset of the Euclidean space.

2.6. A nontrivial corollary (due to R. Osserman) follows, if R is the unit dise and

X=C:
For a suitable real-valued C^-functionfthe classical surface represented by

(x, y) -? (x9 y, f(x, y)), x + iyeC,

is hyperbolic.

2.7. Comparing the proofs in this paper and in [14] it is évident that every Riemann

surface is conformally équivalent to an embedded polyhedral surface.

3. Outline of the Proof

3.1. We may assume that R is noncompact because the Embedding Theorem is

known to be true otherwise ([13]).

3.2. The first step is to find a topologically équivalent complète classical surface

Zand a topological mapping/' : R-+X. We choose oni^aregularexhaustion (see [4]),



216 RETOA.RUEDY

Le., a séquence {Rt} of relatively compact regular subregions, such that Rt
{jRt=R, and dRi consists of analytic arcs. It is easy to show that R( can be mapped
by // topologically onto a classical surface Xt such that dXt consists of circles con-
tained in dBt where Bt {{x,y, z)\x2+y2+z2^i2}9 Xtc:Bh Xi+1 n Bt=Xi and

fi+i\Rt=fi-f'=ïïmfi and ^=U^* satisfy the above conditions.

3.3. We may assume that R± is a dise. Let peRx and qedRx be distinguished
points and put p' =/'(/?)> q'=f'{q) eLndf'(Ri)=Xi. If R is simply connected, we
introduce four distinguished points.

3.4. We will deform X in successive steps such that the i-th. déformation (z>2)
takes place on X^ —X^ only, and we will dénote the resulting surface by Xf. Let
XI be the part of Xr corresponding to Xt. We will show that Rt can be mapped
conformally onto X[ by a mapping / with the additional properties / (p) =/?',

/(#)=#', i>1. The existence of/ follows by Riemann's mapping theorem, the
existence of/, j^2, will be proved by induction.

3.5. If this is accomplished, our theorem is implied by the following

LEMMA 1. Let {Rt} and {Xt} be exhaustions of the noncompact Riemann
surfaces R and X, and let p and q be fixed points in R, p1 and q' be fixed points in X. If
the mappings fi'.Ri-^Xi are conformai and iffi(p)=p',fi(q)=q\ i^i0, then R and X
are conformally équivalent.

3.6. This is a generalization of a theorem which is well-known, if R and X are

planar surfaces (see e.g. [11], p. 76). In order to reduce it to this case, we look at the

(standard) universal coverings of R and X. Their éléments are homotopy classes [y]
of arcs y whose initial points are p and p' respectively. We define

where |y| dénotes the point set corresponding to y. Xt is defined in the same way.
R and X are conformally équivalent to subregions UR and Ux of the plane, and Rt
and Xt may be viewed as subregions of UB and Ux. The fonctions/,-: Rt->Xt defined

hyfi([y]) [fioy] are conformai liftings offt and form a normal family, because the
distances between/f(p)=p' and the points /,(#) on Ux are bounded away from zçro.
Therefore a suitable subsequence converges uniformly on compact sets to a conformai
mapping/ : UR-^UX and so do their projections/;. The limit fonction/ :R-+Xis onto
because/is and it is univalent because of the uniform convergence of the/ on compact

subsets and the fact that each/ is univalent. Our lemma is proved.
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4. Teichmûller Spaces of Bordered Riemann Surfaces

4.1. In this section we recall the results about Teichmûller spaces which are neces-

sary for the construction of the deformed surfaces X[. For détails and proofs see [1],
[2] and [8].

4.2. Let S be a bordered Riemann surface with two distinguished points p and q

(four if S is simply connected) and a finite number of handles and a positive flnite
number of boundary curves. Double the surface with respect to ail boundary curves
and finally go over to the two-sheeted covering surface S* of this double with branch

points at the distinguished points and their doubles.

4.3. S* is a compact Riemann surface whose universal covering surface is the

upper halfplane H. The group G of decktransformations with respect to 5* is a sub-

group of index 2 of the group F of decktransformations with respect to the double

of S. Dénote byj:H-+H an anticonformal involution whose projection on *S* maps
each point onto its double. y-+joyoj is an automorphism of both G and F.

4.4. A quasiconformal mapping/iS-^ can be extended in an obvious way to a

mapping/*: S*->£*!* and lifted to H in such a way that the lifting/:#-?//satisfies

and such that

Joy yfOf (2)

defines isomorphisms Of(y)=yf of G onto G1 and F onto rt.

4.5. For the complex dilatation \i =/*//* the above équations imply that

h
and

(4)

In particular \i is a Beltrami differential with respect to G (i.e., on S*).

4.6. Conversely if / is a global solution of the Beltrami differential équation

W; =fiwz mapping H onto itself and if \i satisfies (3) and (4), then / satisfies (1) and
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(2) for suitable groups Gx and Fx and induces a quasiconformal mapping / [fi] of S
onto a bordered Riemann surface St.

4.7. DEFINITION. The Teichmùller space T(S) is the set of équivalence classes

[f] of quasiconformal orientation-preserving mappings f: S->f (S) with respect to the

following équivalence relation: fx~f2 if and only iffi^f*1 is homotopic to a
conformai mapping g* off? (S*) onto f* (S*).

Remark, g* automatically induces a conformai mapping g:ft (S)-+f2 (S) which is

homotopic to/2 ofîx and maps/i (p) onto/2 (p) and/i (q) onto/2 (q).

4.8. T(S) is a metric space with respect to the Teichmiiller distance d defined by

and at the same time it is a manifold. Local parameters may be defined using the

spaces of Beltrami differentials B(S) and holomorphic quadratic differentials Q(S).
But in order to do so, some préparations are necessary.

4.9. We introduce the following notations where cp represents holomorphic and \i
measurable and essentially bounded functions in H:

l O VcpeQ(S*)}.

H/G

The éléments of N(S*) are called trivial Beltrami differentials. Analoguously we
define

<2 (s) {<p !(<?><

B(S) {n | (fio

N(S) B(S)n

y).

JVl

4.10. The mapping

A*:B(S*)IN(S*0-

• (/) =<p

7/7' ^
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defined by

6

H

is an R-linear isomorphism, its inverse is given by

— q>'(Imz)2.

4.11. LEMMA 2. A* induces an isomorphism

A:B(S)IN(S)->Q(S).

4.12. Proof. lî fieB(S) and cp= A* (ja), then

6 (Çjï(z)dzAdz 6

jj
because / is an anticonformal mapping of H onto itself. Applying the identity

(y(Sl)-y(*2))2 (Zl-Z2)2/(Zl)?'(Z2)

to the Mobius transformation y —j, we obtain

ç(y(z))y'(z)2 <p

is proved by similar compilations.

4.13. If (peQ(S)sindii=A*-i((p), then

M;(z)) - 9O'(^)

and

by a similar computation, and Lemma 2 is an immédiate conséquence.

4.14. Now we are ready to define local parameters in T(S). Let /il9...9 nN be a

basis of B(S)/N(S). The mapping defined by
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maps a bail in RN topologically onto a neighborhood of [/0=id] in T(S), and
(tl9..., tN) shall be our local parameters (see [2], pp. 137-145).

4.15. LEMMA 3. If ixeB{S) and <peQ(S) then (ju, (p)= I ficp dx dy is real.

Proof

(Y, dz a dz ÇÇ dz a dz ÇÇ dz a dj

H/G J(H)/G H/G

(fi, cp) q.e.d.

H/G

4.16. Let £/ be any parametric dise in S with/?$£/, q$f), and dénote by U* the

corresponding open set in S* which consists of four dises. Using Lemma 3 and the
définition of N(S), we obtain easily the following

COROLLARY. There is a basis {fit} ofB(S)/N(S)f where the fi( are C^-functions
whose support is contained in U*.

4.17. Proof. We hâve to find a basis {(pi) of Q(S) and {fit} as above such that
(jjih (Pj)=ôij for i^j, which can easily be done by induction. The construction of a

similar basis was described more closely by T. Klotz in [9].

4.18. Good estimâtes for the distance of two points in T(S) will be crucial. The

following lemma which serves thèse purposes is due to Garsia. In order to formulate
it, we hâve to fix in H a fundamental domain Ds for the group generated by F and y*.

Dénote the restriction of the projection to Ds by ns. Assume that {tu..., tN)=t are
local parameters for a neighborhood of [id] in T(S) provided

Let Br be the set of éléments in T(S) corresponding to ||f || <r and write q> [/]=/, if
[/] corresponds to t.

4.19. DEFORMATION LEMMA. // [f]eBr and if there is a quasiconformal

mapping



Embeddings of Open Riemann Surfaces 221

whose dilatation Dx satisfies

X

2) Dx^ 1 +<5 except on Aczf(S),
3) \n^of-i(A)\^ri

(|...| dénotes the arealmeasure), then

where b(K0, ô, n)->0 if Ko is bounded while (ô, rç)-K0, 0). The proof is given in [8],

pp. 100-102.

5. The Existence of the Functions/f

5.1. Let {R^ be the exhaustion of jR, {Xt} the corresponding exhaustion of X,
mentioned in the outline, and let us assume that Xi_1 is deformed into a surface

X[_ x such that a conformai mapping/f _ t : Rt _ t -^X[. x with/f _ t (p) =pf and/f _ x (q)
^' exists. We are going to construct X[ and/f.

5.2. Fix global uniformizing parameters for Rt and X? (Xi — Xi_l) u X(-t as

in the déformation lemma. We extend/i-! to Rt such that the extended mapping

g.R^X'î is X-quasiconformal for a suitable j£5 C00 except perhaps on dR^i and
such that

gzlgz -

on a dise É/in Ri-Ri-i. Such an extension is certainly possible (see [11], p. 89).

5.3. We identify X" and Rt (as topological surfaces) by g, in order to use the

same parameter zeDRi. We may also define on X'{ the conformai structure for which

z is admissible. While the natural structure of X- is induced by the metric (dX?)2

\dg\2=A2\dz+fidz\2 the second structure may be viewed as induced by the metric
dsl =À2 \dz\2. Therefore we dénote X[f together with the second structure by X?{dsl).

5.4. It is clear that g'-R^X'-(dsl) is conformai. On the other hand, for the

natural structure we hâve

|/i|<——-, fi 0 on R^l9 fi - on U.
J\. + 1 Z

Hère of course, we identified DRi and Rt.

5.5. As in the corollary, we choose a basis {fik}k=i of B(Ri)/N(Rt)9 where \ik is
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C00 and jUfc=O outside U* for ail k. Finally we détermine a bail B2r<=^RN such that

is a topological mapping of Blr into T(Rt). Hère

and id, represents the identity projection.

5.6. In the next section we will construct real-valued C°°-functions ht with support
in Xt — Xt _ i such that the deformed surfaces Xt described by

zeDRi9

where N(z) is the positive unit normal vector of X'î at g(z), satisfy the following
conditions: If we view Xt=Xt(z) as a mapping defined on Rh then

a) f -? (p [Xj is continuous in Br,

b)

In addition, the functions ht will be so small, that ail the surfaces Xt are embedded
surfaces.

5.7. Brouwer's fixed point theorem applied to the mapping t-*t — q>[Xt]

q>[idtog] — <p[Xt] implies that there exists a point toeBr such that to to — (p[XtQ],
i.e., (p[Xto]=0, which means that the embedded surface X(=Xt0 can be mapped
conformally onto Rt by a mapping ft which is homotopic to g and satisfies the
conditions/; (p)=p\ /i(^) q' (see the Remark in 4.7.).

6. The Construction of the Family Xt

6.1. Garsia's Déformation Lemma implies that the family Xt satisfies condition
a), if the coefficients of (dXt)2 dépend continuously on (z,t)eRtx Br. That this
condition is satisfied can be seen by direct inspection, as soon as we hâve written down
an explicit formula for the functions hv

6.2. In order to check condition b), we will again apply the Déformation Lemma
4.19 putting x=idrogoXj~1. Its dilatation Dt satisfies

dX2 dX2
D2 sup —4-/inf —4- (sup and inf taken over ail directions).

dsf dsf
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6.3. We hâve

dX2 (dXn2 + (dht)2 + 0{\ht\-\dz\2)

223

dz\2 + ((^ h^J dz + (~ h] dz\ + 0 (\ht\ • \dz\2),

and

fitdz\2 dz + dz ', teBr.

6A. Assume that r is taken so small that \ftt\ <$ if teBr. Then there is also a positive

number g* < 1 such that

sup
\Xt-
1 -^/

Finally put jKT0 =4(1 — ^*)~3 and choose ôo>O and rjo>O such that in the
Déformation Lemma b(K0, ô0, rjo)^r.

6.5. For the définition of ht we hâve to solve the équation

\dz + \xt dz\2 ct (\dz + fi dz\2 + (at dz + ~ât dz)2).

The explicit solutions are

at

^(l-llA, lï\\

where

The following regularity properties and estimâtes will be essential: at and ct are
continuous in Br x DR, ct is C00 in DR for ail fe5r and at is C00 in DR for ail teBr at

leastif|i=i/2, Imaf<0 if/i=i/2, |af|<4(l-^*)-1, (l~^*)4<|cr|<16(l-^*2)-2.
In addition, we hâve jw*=0 outside U and c( l and at=0 in JR£_t.

6.6. In t/ we may multiply the diiferential œ=âtdz+ât dz by a positive function
£<1 which is continuous in UxBr and C00 in U for ail /e5r (see [13], pp. 435-436)
such that Q'co is exact. Then Qco=dk(z91), where k is again continuous in Ux Br and
C00 in £/.
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6.7. Triangulate the bordered surface Rt — Rt-i — U in such a way that in each

triangle Aj

\at(zi)-at(z2)\^e if zl9z2eAj9 teBr,

where e>0 is to be determined later. Choose in each Aj a point zj9 put L {J dAj9
and dénote by vn a non-negative C°°-function which vanishes in a neighborhood of
L u R^i and is equal to 1 on Ri — Ri^l — Al9 where \At\<riol2.

6.8. We extend the functions k and q defined on U in the following way

f2Re[za,(z,)] if zeJ,
[0 if zelu^i

g 1 in Ri- U.

6.9. Finally dénote by s^ a saw-shaped C°°-function defined on R with the follow-
ing properties:

n n dx

6.10. Now we define ht by

h, (z, M) X (z) v, (z) -i-j i s, (M* (z, 0),

where M is a natural number. For each M, /zr is continuous in Rt x Br and is C00 in
jRf, and we hâve

ldhtf X2vl -= iw2 (Mk)'(dkf + 0 f - |

Except on a small part A± u >42 of DRt, this reduces to

(dfc,)2 >? fa <** + * df)2 + O iï8 + ^j \dz\2^j.

We hâve \A2\<rj0/2 and therefore l^j u A2\<rj0, if >| is sufficiently small and M
sufficiently large (see [13] p. 437 for détails).

6.11. Now it is easy to check that the dilatations Dt satisfy ail the conditions in
the assumption of the Déformation Lemma, as soon as we hâve chosen e sufficiently
small and then M sufficiently large. Therefore we can conclude that the family Xt



Embeddings of Open Riemann Surfaces 225

satisfies conditions a) and b) which complètes the proof of the Embedding Theorem.

6.12. Incidentally we proved a resuit which is somewhat stronger than what is

actually needed for the Embedding Theorem. Therefore we will state it as a corollary.
Let So be a classical properly embedded surface, X0:S0-+R3 an embedding func-

tion (C00) and NQ(p) the positive unit normal vector of So atpeS0. If h:S0-+R is a

sufïiciently small differentiable function, then nh defined by

maps *S0 onto an embedded surface. Dénote by Sh the corresponding classical surface.

COROLLARY. To any positive continuous function e:S0-*R and any topological
orientation-preserving mappingfof So onto a Riemann surface S, there is a différend-
able function h:S0-^R, \h\ <e, such that nhof~x is homotopic to a conformai mapping

of S onto Sh.
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