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The Spectra of Hyponormal Intégral Operators1)

K. F. Clancey and C. R. Putnam

1. Recall that a bounded operator T=H+iJ on a Hilbert space $ is said to be

hyponormal if
T*T __ TT* D ^ o, that is, tfJ - JH - iC, C £D ^ 0. (1.1)

It is known that such operators behave to some extent like normal operators; in
particular, sp(H) and sp(/) are just the (real) projections of sp(T) onto the real and
imaginary axes; see Putnam [5b], p. 46.

Let H hâve the spectral resolution

dEÀ9 (1.2)

and let E{A) be the projection operator associated with an open interval A, For any
bounded operator T (hyponormal or not), let TA=E(A) TE(A), regarded as an operator

on E(A) <r> and with spectrum sp (TA). Since HAJA - JAHA - iCA, it is seen that
TA is hyponormal on E{A)$[) whenever T is hyponormal on §. It was shown in
[5d] that if T is hyponormal, then

sp(Tj) csp(T). (1.3)

In case the self-commutator D of Tin (1.1) is compact, the relation (1.3) was proved
by Clancey [2a].

A refinement of (1.3) was proved in [5f] to the following

A being any open interval. In view of the projection properties mentioned above, the
real part of sp(TA) lies in the closure of A. It was noted in [5f] that, as a conséquence
of(1.4),

à

the intersection being over ail open intervais A containing s. This relation will be

used below to détermine the spectra of certain singular intégral operators.
Suppose that

a (x), b (x) e L°° (£), a (x) real, b (x) * 0 a.e. on E, (1.6)

*) This work was supported by National Science Foundation research grants.
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where E is a bounded set of positive measure on the real line. Let T0=H0+iJ0
dénote the bounded operator on L2 (E) defined by

(Hof)(x) xf(x) and (Jof) (x) - [a(x)f(x) + ^J^/W dt]>

(1.7)

where the intégral is interpreted as a Cauchy principal value. It is easily verified that

H0J0 - J0H0 - iC0, Cof n-l(f,b)b9 (1.8)

so that Co^0 and hence To is hyponormal. It is seen that the range of Co is spanned
by the vector beL2(E) and that H0=x has simple spectrum and that the vectors
{H£b}, n=0, 1, 2,.... span L2(E).

Conversely, if T=H+iJ is any hyponormal operator on H satisfying

T*T-TT* D^0 andDhasrankone (1.9)

and

D z) z and {Hnz}, n 0, 1, 2, spanH, (1.10)

then Jis unitarily équivalent to a singular intégral operator T0=H0+iJ0 defined by
(1.7). This resuit was first proved by Xa Dao-xeng [7]; a simpler proof using a resuit
in [5a] was given by Rosenblum [6], p. 326.

It may be noted that the operator To above is irreducible by virtue of the condition
that b(x)^0 a.e. on E. To see this, note that if Q^O reduces T0, then Q reduces

both Ho and Jo. If/e&,/V0 (that is,/(x)#0 a.e.) and if (/, 6)^0, then (C0/) (x)
=7T~1 (/, b) b (x) #0 a.e. on E, and hence {(H%Cof) (x)}, n =0,1,2,..., span the space

L2(E), that is, Q=L2(E). If (/, b)=0, then, since/V0, C0#£/V0 for some positive
integer iV. Otherwise, by Weierstrass' theorem,/(x) b(x)=0 a.e. and hence, f(x)=0
a.e., a contradiction. Thus, if g=H%f^Q, one can proceed as above to show that

Q=L2(E).

THEOREM 1. Let To =H0 +U0 be the hyponormal operator on L2 (E) defined by

(1.6) and (1.7). Then sp(T0) is the set ofnumbers z=s + it (s, t real) for which

meaSl {xeEnA: -a(x)~ \b(x)\2 -a<t<-a(x) + \b(x)\2 + s} > 0 (1.11)

holdsfor every e>0 andfor every open interval A containing s.

THEOREM 2. Let To be defined as in Theorem 1. Then for almost ail points
xeE, there exists some vertical segment {x + iy:axSy^bx}> where ax<bx, belonging

to the spectrum ofT0. In particular, sp(T0) cannot be totally disconnected.



The Spectra of Hyponormal Intégral Opérâtors 453

Theorem 1 generalizes results of Clancey [2a], Theorem 1 and Putnam [5c]. Its proof
will be given in section 2. In a formulation involving a "determining set" or "deter-
miningfunction", Theorem 1 is contained in Clancey [2b] and Pincus [3c]. Ail of thèse

proofs, including the one of the présent paper, use results of either Pincus [3a] or
Rosenblum [6] together with the relation (1.4) (or (1.5)) established in [5f]. It may
also be noted that in [3c], the operator D of (1.9) is assumed only to be of trace class,

rather than of rank one, and that § is the least subspace reducing T and containing
the range of D.

A hyponormal operator T is said to be completely hyponormal on £> if there is

no non-trivial subspace of £> which reduces T and on which T is normal. A set S of
the complex plane is said to hâve positive density if for every open disk N9

meas2 (S n N) > 0 whenever S nN & 0. (1.12)

It was shown in [5d] that if Tis completely hyponormal then its spectrum has positive
density. The converse question of whether every compact set S is the spectrum of
some completely hyponormal operator is unsettled, although some partial results
hâve been obtained; see [5g], also Theorem 3 below and the remarks in sectoin 4.

For any set S, let S~ dénote its closure and int (S) its interior. There will be proved
the following

THEOREM 3. If S is any compact set for which

S (int (S))" (1.13)

(so that, in particular, S has positive density), then there exists a singular intégral
operator To =H0+iJ0 definedby (1.6) and(1.7) for which

sp(T0) S. (1.14)

2. Proof of Theorem 1. It follows from Pincus [3a], p. 375, that /esp(J0), where

Jo is defined by (1.7), if and only if

meas^jceJE: -a(x)~ \b(x)\2 -e<t < -a(x) + \b(x)\2 + s}>0

for every e>0. (In this connection, see also Rosenblum [6], p. 323; also the remarks
in Pincus and Rovnyak [4], p. 620.) If the multiplication operator H=H0=x of (1.7)
has the spectral resolution (1.2) then for any open interval A (for which En A #0),
E{A) J0E(A) is simply the intégral operator Jo restricted to En A. It follows that the
condition tesp(E(A) J0E(A)) reduces to (1.11), and Theorem 1 now follows from
(1.5).
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Proof of Theorem 2. Since b(x)^O a.e. on E, then

oo

E \J EH9 a.e., where En {xe£: \b(x)\2 > ljn) forn 1, 2,
l

Hence, ElczE2^" and meas^ls —!?„)-> 0 as h->oo. Choose TV so large that
measi(En)>0 for n^N. Thus, at almost ail ^e£n, where n^N9 En has metric den-

sity 1. For such an jc, let L=ess lim supa(f where t-* x and f is restricted to En.

Then, in every open interval containing x and for every s>0, there exists a subset of
E of positive measure for which \a(x)-L\<e and \b(x)\2>l/N. It follows from the

criterion of (1.11) that the segment x+iy, where L— ijN^y^L + ljN, belongs to the

spectrum of To.

3. Proof of Theorem 3. For any Borel set a of the Une, let S (a) dénote the set

S (a) S n {z : Re (z) e ce}. For k 1, 2,..., let IJk dénote a grid of squares in the complex
plane with sides parallel to the axes and of length 2~\ We assume that the squares
contain their lower and left sides and that z=0 is a lower îeft corner of some square
in each grid. Since S is compact then the projection on the x-axis of S is contained
in some interval [c, d]. Now choose a disjoint family {Kp}, p 1, 2,..., of Cantor sets

of positive measure in [c, d~\ so that

measj \J Kp ]->d — c as q-+co. (3.1)
\p=i /

Dénote by Rl9...9 Rni the éléments of n1 satisfying

Rjc:mt(S) Qu J=l9...,nl9 (3.2)

and let R[,...9 R'ni be respective smaller concentric closed squares of side 2"2. Then

for j 1,..., nu let KPJ be the first Kp satisfying

meas2 (S (Kp) n Rj) > 0 and pj > pj-1. (3.3)

Set Aj=S(Kp)nRj and let Dj be the projection on the x-axis of Aj. Clearly, the set

Q2 =QX — IJjl1! Aj is open. Dénote by Rj9 for j=nl + \9...9n1 +n2, the squares in 272

satisfying

Rj c= 02, j nt + 1, «! + n2. (3.4)

Again, form concentric squares 1?^ +19...9 R'ni+n2 of side 2"3 and, for j=n1 + l,...,
nt +n2, let KPJ be the first Kp satisfying (3.3). Repeat the process of forming Aj and

Dj for j=n1 + 1,..., wt +«2 and set O3 =02- (J?=+in2 ^i- If t^s process is continued
for each q and grid IIq one obtains a family of closed sets {^47},7 1, 2,..., satisfying

closuref U ^ S. (3.5)
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Now define functions a(x) and b(x) on \J Dj by setting

— a (x) (valueofy-coordinateof thecenter ofRj) onDj, *)

b (x) (one-half the length of the side ofR))1'2 on Dj. J
(3<6)

Then if To is the singular intégral operator given by (1.7) and (3.6) acting on L2 (IJ Dj)
it follows from Theorem 1 that relation (1.14) holds.

4. Remarks. It was shown in [5g] that there exist irreducible hyponormal operators

satisfying (1.9) and having totally disconnected spectra. (An example was also

given in [5e].) In view of the last part of Theorem 1, such an operator T=H+iJ
cannot be of the type TQ=H0+U0 defined by (1.6) and (1.7). That is, by the resuit
of Xa Dao-xeng, since Tsatisfies (1.9), then relation (1.10) fails to hold.

It was shown in Theorem 3 that any compact set equal to the closure of its interior
is the spectrum of some singular intégral operator T0=H0+iJ0 defined by (1.6) and
(1.7). Of course, the spectrum of a gênerai such operator need not be of this type;
indeed, if a(x)=0 and if b{x) is the characteristic function of a Cantor set E of
positive measure, then (cf. Theorem 1) the spectrum of To is the set Ex [— 1, 1].

It is interesting to note that although the spectrum of To cannot be totally
disconnected, nevertheless, it may be a Mergelyan Swiss cheese. (Recall that this is a
set X=D— {Jn=i Dn where D is the closed unit disk and the Dn are open disjoint disks
in D with radii rn satisfying £ rn< oo, and for which Xis nowhere dense; see Zalcman
[8], p. 69.) The proof of this assertion dépends upon a resuit of W. K. Allard (see

Brennan [1], p. 13) that almost every cross-section of a Swiss cheese is the union of
a finite number of disjoint closed intervais; for détails, see Clancey [2b].
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