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On Factorization into Prime Ideals

Robert Gilmer1)

Let r be a regular élément of the commutative ring R. It is well known that if r
can be written as a finite product of prime éléments of R, then this représentation is

unique. We consider hère the corresponding question for ideals :

If A is a regular idéal of R such that A can be représentée as a finite product of
prime ideals of Rf is this représentation unique?

We begin by listing some observations concerning this question.
(1) Without the assumption that A is regular, the answer to the question is négative,

even if R is Noetherian with identity. For example, (0) is prime in R for any
intégral domain R, and yet (0) [(0)]w for each positive integer n. If R is the direct
sum of two fields Ft and F2, then P=F1©(0) is maximal in R, and P—Pn for each

positive integer n.

(2) Even with the assumption that A is regular, the answer to the question is

négative, even if R is an intégral domain with identity. For instance, Px =PtP2 for
any prime ideals Pl9 P2 of a valuation ring R with P1czP2; more generally the equality
Px =PiP2 holds for any prime ideals Pl9 P2 of a Prûfer domain with P1c:P2 [1, Theo-

rem 19.3].

(3) The following resuit appears as Theorem 30.13 of [1]:

Let A be a nonzero idéal ofa Noetherian domain D such that A can be expressedas
a finite product ofprime ideals of D. Then this représentation is unique ifD contains no

identity, and is unique to within factors of D ifD contains an identity.

(4) By examining the proof ofTheorem 30.13, we can see that the following resuit,
which we label as (*), is valid.

(*) Let A be a regular idéal of a commutative ring R such that A can be expressed

as a finite product of finitely gênerated prime ideals of R. Then this représentation is

unique ifR contains no identity, and is unique to within factors of R of R contains an

identity.

In this paper we exted (*) to the case where A is finitely generated, but the prime
factors of A need not be finitely generated (Theorems 1 and 2). In Proposition 1, we

prove that our results are stronger than (*) by proving that for any positive integers

x) During the writing of this paper, the author received partial support from National Science
Foundation Grant GP-19406.



On Factorization into Prime Ideals 71

k and «, there is an intégral domain Dk with identity containing prime ideals Pl9..., Pn

such that Pll Pi2... Pnn is finitely generated if and only if e± -\ \-en^k. Our proofs
of Theorems 1 and 2 are independent of (*) and the resuit cited in (3). Moreover, our
proofs are more elementary than the proof of (30.13) in [1]; thèse proofs rest on the

following facts.

OBSERVATION 1. If{A^\ is a finite family of ideals of the commutative ring R,
then AlA2...An is regular if and only ifeach Ai is regular.

OBSERVATION 2. IfA is a regular idéal of the commutative ring R and ifN is a

multiplicative System in R, then the extension of A to the ring ofquotients RN is regular
in RN.

RESULT 1. [1, Corollary 5.2] IfA and B are ideals ofthe commutative ring R such

that AB=B, where B is finitely generated, then there is an élément x of A such that

xb=bfor each b in B: ifB is regular, then R has an identity élément and A=R.

LEMMA 1. Assume that A and B are ideals of the commutative ring R, where B
is proper, finitely generated, and regular. Moreover, assume that {Pl5...,Pm} and

{Ôi>--> Qn} are two families of proper prime ideals of R such that B=AP[l ...P%"

AQfl... (?«n> where each st and each tt is positive. Then each minimal élément ofthe set

{Pl5..., Pm9 Ql9..., Qn} occurs both as a Pt and as a Qjf and the corresponding exponents

st and tj are equal.

Proof We assume that the labeling is such that Px is a minimal élément of
{PJTU {QjYi- If '^' dénotes extension of ideals with respect to the quotient ring RPl,
then

where w=0 if P1^{Qj}1, while w =1 and P\=Qj otherwise. The assumption w=0
would lead to the équation

Be Be(Pel)sl,

where Be is finitely generated, regular, and proper, and (Pf)si is proper in RPl, in
contradiction to Resuit 1. Hence w l and

Again, if tj>sx ,we obtain a contradiction, as above, from the équation

Be Be(PeJJ~Sl.

Therefore s± =tj9 and our proof is complète.
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THEOREM 1. Let B be aproper,finitely generated regular idéal ofthe commutative
ring R such that B is a product ofproper prime ideals of R. Then the représentation of
B as afinite product ofproper prime ideals is unique.

Proof. Let

B=P? ...Psmm and B Q[1...Qtnn

be two représentations of B as a finite product of proper prime ideals. From the proof
of Lemma 1, it follows that the set S of primes Pf such that Pi Qj for somey, and

Si tp is nonempty. We assume that S {Pl9...9 Pr}, where r^m and where Pi Qi
for 1 < i < r. Setting A Pf1 ...PrSr, we hâve

and the assumption r<m or r<n would lead to a contradiction of Lemma 1. Hence

r=m~n, and this complètes the proof of Theorem 1.

THEOREM 2. Suppose that R is a commutative ring without identity and that B
is afinitely generated regular idéal ofR that is representable as afinite product ofprime
ideals of R. Then this représentation is unique,

Proof We consider first the case when B=Rn is a power of R. It is clear that R is

the only prime factor of B. Hence we need only prove in this case that Rn=Rm implies
that m—n. Since R is a ring without identity, this follows immediately from Resuit 1.

If B is not a power of R, then we write

where {PJT and {ôjï are sets of m and n proper prime ideals of R, where st and tj
are positive, and s and t are nonnegative (R°U, for U an idéal of R, is defined to be

U). If N=R-[(\j™ P,)u(uî g,)], and if V dénotes extension of ideals of R to the

quotient ring RN, then

in RN. By Theorem 1, m=n and, by proper labeling, Pf QÏ and J, rf for
It follows that Pj g| for 1 <i<w, and we hâve

B l^Pf ...P£m R'P? P*m.

As before, the assumption £> r would lead to the équation Rs~t B=B, and to a
contradiction of the assumption that R does not contain an identity.

It is clear that Theorems 1 and 2 imply (*). It is conceivable, however, that Theo-

rems 1 and 2 are not actually stronger than (*). That is, if the following statement (**)
were true, then (*) would imply Theorems 1 and 2.
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(**) If {Pi}™ te afinite family ofregular prime ideals of the commutative ring R,
and ifeu..., em are positive integers such that Pl...P^m is finitely gênerated, then each

Pt is finitely gênerated.

We proceed to show that a very strong négation of (**) is, in fact, true.

PROPOSITION 1. Let k andn bepositive integers, where k^l. There is an intégral
domain with identity containing prime ideals Pl9 P29.-., Pn such that the product
Pi1 Pe22... Penn is finitely generated if and only if YJ= te&k.

Proof. Let D be a non-Noetherian domain with identity containing distinct ideals

Al9 A2,...9 An such that Ait+Ai2 H H^4^ is not finitely generated for any nonempty
subset {/l5 i29---9 ir} of {1, 2,..., n}2). Let t be an indeterminate over D, and let Ek be

the subring D[f*+1, tk+2,..., f2fc+1] of/>[*]; Ek is a graded ring with gradation D,
Dtk+1,Dtk+2,.... Weset

A (**+1, tk+\ t2k+1), B (tk+\ tk+2).

It is straightforward to verify that

for any positive integer n,

An=Bn forn^fc, and

(5 ^ j for < fc

We set C^B+Ai tk+3 for l</^«. Each Cf is a homogeneous idéal of Ek9 and
Ba Ct a A for each /. Hence

if ^ + • • • + en ï* k, and Cf1 C|2... Cnen is finitely generated.

If e=^1 H \-en<k, then C^1 Cp...C*n is a homogeneous idéal of Ek, and its
homogeneous component in £>fc

where {il9 i2,..., ir] is the set of integers 7 such that tf/^O. Because Ek is a graded ring
and ^4fl+^4/2H bAir is not finitely generated as an idéal of D9 it foliows that

Cf Cl2... Cnen is not finitely generated as an idéal of Ek.

The ideals C^ of Ek are not prime in Ek. To obtain our desired example, we let
Dk be the subring of E=Ek[Xl9..., X^\ consisting of ail polynomials/such that the

2) Take, for example, D Z[{*i}Vil. and for 1 ^ / < «, take Ai ({^ | JeSt})9 where 5i,.. .,Sn
are distinct infinité subsets of N, the set of positive integers.
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coefficient of X\l Xe22...Xenn in/is in A\l Ae22...Aenn for each el9e2,...9en>0. Again Dk
is a graded ring with gradation

£V A Y V Aei Al-eiyeiyl-ei

in fact, Dk is a graded subring of is, where E has the usual gradation by degree. The
idéal Xt Er\Dk=Pt is a homogeneous prime idéal of Z)k: in fact,

Hence

is the set of polynomials/in Dk such that the coefficient of X}1 X22 ...Xjf in /is zéro
if ij<ej for some 7, and is in A\ Al2...Al£ otherwise. Hence ?\l P22...P*n is finitely
generated if and only if ex H Ven^k.

We remark that the prime ideals Pt of Proposition 1 extend to maximal ideals of
the quotient ring (Dk)s, where S=Dk — (u^ Pt). But (Dk)s is a quotient ring of
L[Z1?..., Xn], where L is the quotient field of Ek9 and hence (Dk)s is Noetherian.

We hâve no counterexample to (**) in the case where the ideals Pt are maximal in
R. In particular, we know of no example of a regular maximal idéal M of a commuta-
tive ring S with identity such that M is not finitely generated, but some power of M
is finitely generated. If such M and S exist, then they also exist with M maximal in a

quasi-local ring 5.
The author acknowledges several discussions with Tom Parker concerning facto-

rization into prime ideals. Thèse discussions were helpful in the préparation of this

paper.
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