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On the Spanier Conjecture

REeNE P. HELD and DENIS SJERVE

§ 1. Introduction

In this paper we describe how various lens spaces can be built from complex
projective spaces, at least as objects in the suspension category of Spanier-Whitehead
[7]. Objects in this category are finite CW complexes and morphisms (called S-maps)
from X to Y are stable homotopy classes of “honest’> maps from some suspension
of X into some suspension of Y. We point out that the number of suspensions of X
may be different from that of Y. If the “honest”” map is a homotopy equivalence then
the S-map is said to be an S-equivalence and X, Y are said to have the same S-type.
The title of this paper refers to the following conjecture of Spanier (as communicated
to the second named author):

(1.1) Spanier Conjecture

The mapping cone of the “canonical”’ map RP?/RP"—CP*/CP’, where s=[q/2]
and #=[r/2], has the S-type of some stunted complex projective space CP*/CP", for
some u, v. For dimensional reasons

[T

To define the “‘canonical’” map in the statement of the conjecture note that the
Hopf map f:S2"*!—CP" factors to give the map RP2"*!CP", again denoted
by f and also called a Hopf map. Finally, restriction gives another Hopf map
f:RP?*"—-CP". The “canonical”” map on the stunted real projective space RP4/RP’
is then the quotient of such Hopf maps.

The validity of the Spanier conjecture is suggested by the following considerations.

The Puppe sequence of f:RP?>"*!—CP" yields a map u:C,—ZRP*"*1, If the
mapping cone C, has the same S-type as CP"*!*¢/CP? for some d>0 then there
would be an S-map A:CP"*1*4/C P4 324+t RP2"*! whose behaviour in ordinary co-
homology is identical to that of u. The point is that such a map A can always be
constructed by other means (see (5.1) of Adem-Gitler [3]) and this lends support
to the Spanier conjecture.

The importance of this conjecture lies in the fact that if (1.1) is true then there
exists an S-map CP*/CP*—CP"/CP® whose mapping cone is S-equivalent to RP?/RP",
In this sense RP?/RP" is built from complex projective spaces.

It is obvious that one can (and should) formulate (1.1) for lens spaces associated
to an arbitrary integer p>0 (not necessarily a prime). Let I***!(p) denote the orbit
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space of the usual free action of the cyclic group Z, on §?"*!. Recall that if Z, is
presented by {t|t?=1} then this action is given by - (zy, ..., Z,11)=(0zy, ..., 0z, 11),
where (zy,...,2,4+1) is a complex (n+ 1)-tuple representing a point of S*”*! and
0 =exp (27:\/ —1/p). The I*"*!(p) are known as (standard) lens spaces and they
carry cell structures so that the 2n-skeleton L*"(p) of [*"*!(p) is the mapping cone
C, of the p-fold covering n:S*""1—I?""1(p) defined by the action. Since the lens
spaces are all standard (no twisting in the action) the usual Hopf fibration f:S?"*1-
—CP" factors to give another principal S'-bundle f:I[*"*(p)—CP". By restriction
to the 2n-skeleton we get another map f:I*"(p)—CP". For convenience we drop
the letter p from the notation and use f for all such maps f: - CP*, where s =[g/2].
Then there is a corresponding conjecture in this broader context. It reads:

(1.2) Generalized Spanier Conjecture

The mapping cone of the ‘“canonical” map (quotient of two Hopf maps)
I} IL->CP*/CP*, where s=[g/2] and t=[r/2], has the same S-type as CP"/CP?,
where u, v are asin (1.1).

Our method of attack on (1.2) is to first consider the case ¢=2n+1,r=0 and
determine conditions under which the mapping cone of f:I12"*!—CP" is S-equivalent
to CP"*1*4/CP? for some integer d>0. If this is true then a cellularity argument
shows that also the mapping cone of [***! - CP¥ is S-equivalent to CP**1*4/CP* for
k<n. Also the mapping cone of I**—CP* is homotopically equivalent to that of
[**~1CP* 1 (see (3.1)). Thus it is sufficient to consider this case.

As remarked earlier the importance of (1.2) is that if it is true then there exists an
S-map CP*/CP'-»CP*/CP® whose mapping cone is S-equivalent to I!/L. It is pos-
sible however that such an S-map exists without (1.2) being true. Perhaps there is
always a (possibly “non-canonical”’) map (or maybe an S-map) I?"*1—CP" whose
mapping cone is a stunted complex projective space!

Finally we would like to thank E. H. Spanier and P. J. Hilton for their help and
encouragement during the course of this research. We are also indebted to F. Sigrist
and U. Suter for many stimulating conversations.

§ 2. Statement of Results
Let p>1 be a fixed integer.

(2.1) DEFINITION. A non-negative integer d is said to satisfy condition S (n, p)
if, and only if, the coefficients of z4, 0 < g <n, in the power series

[Iog(l + z):ld.(z +1y -1

gz pz

are integers.
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If p=1 this is the condition (C,,,) of Atiyah and Todd [5]. Then d satisfies
condition S(n, 1) if, and only if, d is a multiple of the Atiyah-Todd number M,.,.

The fact that we have made such a definition signals that there is a pertinent
connection between the Spanier conjecture and J(CP™).

We introduce the following notation:

(i) T(X, «)is the Thom complex of the vector bundle « over X

(i) T,(a)=T(CP", a)

(iii) w is the canonical complex line bundle over CP"

(iv) ris the realification functor from complex bundles to real ones.

Then we shall prove in §3 that the mapping cone C, of f : I?"*! — CP" is homeo-
morphic to the Thom complex T,(r(w?)). On the other hand Atiyah [4] has shown
that CP**1*9/CP“ is homeomorphic to the Thom complex T, ((d+1) r(w)). Before
stating our main theorems it is convenient to make the following definition:

(2.2) DEFINITION. The integer p is said to satisfy condition (H,) if there exists
an odd prime ¢<n such that p#0 (mod gq).
This condition is almost always satisfied! Then our main theorems are:

(2.3) THEOREM. Let f :I?"*1 - CP" be the Hopf fibration.

(@) If Jor(w?)=(d+1) Jor(w) as elements of J(CP") then d satisfies condition
S(n, p) and C; is S-equivalent to CP"***¢|CP*.

(i) If n>1, n#1 (mod 4), and d satisfies condition S(n,p) then Jor(w?)=
=(d+1) Jor(w) as elements of J(CP"), and therefore C is S-equivalent to
CP"+1+d/CPd.

(iii) If C;, is S-equivalent to CP"*'*9/CP* and n>6 then d satisfies condition
S(n—1, p). Moreover, if either n is odd or p satisfies condition (H,), then d also satis-
fies condition S (n, p).

The proof of this theorem is given in §3 and §4. As a corollary we have:

(2.4) COROLLARY. Suppose n>1, n#1 (mod 4) and p>n+1 is a prime. Then
the mapping cone of f :I2"*1 — CP" is S-equivalent to CP"*1,

Proof. Under the assumption p>n+1 is a prime it is obvious that d=0 satisfies
condition S (n, p). Now apply part (ii) of (2.3).

Some of the low dimensional cases are covered by the following theorem:

(2.5) THEOREM. (i) For n=1,2, 3 the mapping cone of f :I*"*1 - CP" is S-
equivalent to CP"*?*|CP?’~! and for n=1 it is also S-equivalent to CP?*1/CP?"1,

(i) For n=4 the mapping cone of f :L*"*' — CP" will have the same S-type as
some stunted complex projective space CP"*1*4/CP? if, and only if, p#2 (mod 4).
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If p#2 (mod 4) then a possible choice for d is given by: d=11p*—10p*—1 (resp.
d=11p*—10p>+1439) if p=0, 1,4 or 7 (mod 8) (resp. p=3 or 5 (mod 8)). (Note that
the order of Jor(w) in J(CP?) is 2880.)

Proof. We prove part (i) and leave (ii) until §6. For n=1, 2, 3 (but not for n>4)
the ring KO (CP") can be presented by one generator p=r(w—¢), where ¢ denotes
the trivial line bundle, and the relation u?=0, with the additional relation 2u=0 if
n=1. A reference for this paragraph is Adams-Walker [2]. Now there is a unique
polynomial T with integer coefficients such that 7(z—2+2z"')=z"—2+z"?. More-
over T(z)=p*z+h.o.t. and the Adams operations in KO (CP") can be computed by
the formula y? (1) =T (p) =p>*u (since u*> =0 for n<3). Then we have r (w?)=r-y?(w)
=y? r(w)=y? (u+2¢)=p*u+2e=p*r(w)+(2—2p*)e. Thus, as vector bundles over
CP" r(w?)®(2p*—2)e and pr (w) are equivalent. According to Atiyah [4] T'(X, a®e)
is homeomorphic to XT(X, «) and T,(p*r(w)) is homeomorphic to CP"*?*/CP?’ "L,
Hence we conclude that £%7°~2C, is homeomorphic to CP**?*/CPP*~1, In the ring
KO (CP") we have the relation r (w?) =pr(w)+ (2—2p)e. Then it follows that X*~2C,
is homeomorphic to CP?*1/CPP~1. (q.e.d.)

It should be mentioned that the various conditions on n and p in (2.3) arise from
the method of proof and are probably unnecessary.

§ 3. The J-Calculations

To establish the generalized Spanier conjecture (1.2) we must relate the mapping
cone of f : 1 — CP?, where s=[q/2], to some stunted complex projective space.

A first step in this direction is achieved by describing C; in terms of a Thom
complex over CP*.

(3.1) LEMMA. (i) The mapping cone of f :[*"** — CP" is homeomorphic to the
Thom complex T,(r(w?)).

(ii) The mapping cone of f:I*"— CP" is homotopically equivalent to that of
f :L2n—1 "'*CP"_I.

Proof. The S'-bundle f : [?"*! —» CP" is the associated sphere bundle of some real
2-plane bundle « over CP" and therefore C, is homeomorphic to T, («). To determine
o consider the following commutative diagram of circle bundles

Sl ,.s!

S2n+1 L2n+1

AN,
! !
CP'==Cp"
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The left hand bundle is the one associated to the 2-plane bundle r (w). Now there is
a transgression homomorphism t: H'(S'; Z)— H*(CP"; Z) for each of the bundles
and if se H' (S'; Z) is a generator then 7 (s) classifies the bundle. But y is of degree p
and so, by naturality of the transgression, the cohomology class classifying « is p
times the cohomology class classifying r (w). But this is precisely the class that classi-
fies the bundle r(w?).

Now let’s verify part (ii) of (3.1). The 2n-skeleton I2" of I?"*! is the mapping cone
of the p-fold covering n:S*"~* — [*"~1, Denote the restriction f | L*"~* by f'. Hence
by the “9 Cone-Lemma’ we get the following homotopy commutative diagram:

Szn—lmszn— l—> *

(S .

L2n-1__f'>CPn—l(_—___>_CI'

RN,

L ,Ccpe—»cC,

Therefore C;,~C,.

According to Atiyah [4] T,((d+1) r(w)) is homeomorphic to CP"*!1*¢/CP?. If
h* is any (reduced) cohomology theory for which there is a Thom isomorphism for
both bundles r (w?) and (d+ 1) r(w) then the (graded) group structures of #*(C,) and
h* (CP"*1*4/CP?) agree up to a shift in dimension, and this suggests that C, and
CP"*1*4/CP? are S-equivalent for some choice of d. In §5 we shall compute co-
homology operations in these Thom complexes and then get conditions on d.

A reference for the remainder of this section is the Adams-Walker paper [2].

In that paper a characteristic class bh: KU(X) - 1+] ][> oH?** (X; Q) is described.
If ¢ is a complex line bundle with first Chern class y then

bh (&) = =

bh can then be defined on arbitrary vector bundles by the splitting principle and is easily
shown to be exponential (i.e., bh (E@®&")=bh (&) bh(£')), hence bh can be defined on
KU(X).

As a first approximation to J(X) a lower bound J'(X) is defined by J'(X)
=KU(X)/V(X), where V(X) is the set of ae KU (X) such that bh (x)=ch(1+ ) for
some BGK?J(X ). Let J': KU(X)—J’ (X) be the projection. In the following theorem
we have collected the results from Adams-Walker [2] that we need.

(3.2) THEOREM. (i) There exists an epimorphism 0':J(CP")-»J'(CP") such
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that the following diagram is commutative
KU(CP")-L5j (CP")
7 f
J'(CP")
(ii) If n>1 and n#1 (mod 4) then 0':J(CP")— J'(CP") is an isomorphism. How-
ever, if n>1 and n=1 (mod 4) the kernel of 0' is Z,, generated by Jor (w—e¢)".

Thus, to decide whether Jor(w?)=(d+1) Jor(w) is true or not for some d we first
analyse what happens on the J'-level!

(3.3) THEOREM. J'(w?)=(d+1)J'(w) as elements of J'(CP") if, and only if,
the positive integer d satisfies condition S (n, p).
Proof. According to the definition of J’ we have J' (w?)=(d+1) J' (w) as elements

of J'(CP") if, and only if, there exists an element BGKTJ(CP") such that
bh(w?—(d+1) w)=ch(1+ ). Now

Py __ 1 | —(d+1)
bh(w? — (d + 1) @) = bh (") bh ()~ @+ =° [ ] ,
py y

where y=c, (®) is the first Chern class of . On the other hand the cohomology
classes 1, ch(&),..., ch(&"), where ¢ =w —z¢, freely generate H* (CP"; Q) and so there
are unique rationals ay, ..., a, satisfying

bh(w? — (d + 1) ) = ano a,-ch(&9).

Thus there exists such a f if, and only if, all the a, are integers. Making the substi-
tution z=e”—1 we get the equation

(z+1) — l.l:log(l + z)]d "

— .
"Zaqz’
pZ z q=0

which proves (3.3). We are now in a position to prove parts (i) and (ii) of theorem (2.3).
If Jor(w?)=(d+1)Jor(w) then we also have J'(w?)=(d+1)J (w) by (3.2).
Therefore d satisfies condition S(n, p). On the other hand if d satisfies condition
S (n, p) then J'(w?)=(d+1)J'(w), and if we also assume n>1 and n#1 (mod 4)
then ' is an isomorphism and so Jor(w?)=(d+1) Jor(w). Finally, recall that if two
bundles are J-equivalent then their Thom complexes are S-equivalent.
Part (iii) of (2.3) remains to be proven and this we do in the next section.

§ 4. Twisting Phenomena

In this section, together with results from §5, we essentially show that there exists
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an S-equivalence between T,(r(w”)) and T,((d+1)r(w)) if, and only if, Jor(w?)
=(d+1) Jor(w). For a precise statement see (4.5).

All through this section we shall suppose that the mapping cone C, of f : [*"*1 -
CP", for some fixed n, is S-equivalent to CP"***4/CP?. Thus we are supposing the
existenceof anS-maps: 224C, » CP"*1*4/C Psuch that Z*sis a homotopy equivalence
for all sufficiently large k. Actually there is no loss of generalityin assumingthat d is cho-
sen such that there is a homotopy equivalence s: 2%C, — CP"*'*¢/CP*. The reason for
thisis thatforany S-equivalence C,— CP"*1*9/CP? there are certainly homotopy equiv-
alences Z24*2¢C, — 22¢(CP"*'*¢/CP?)for all sufficiently large e and so we may choose
e to be some multiple of the order of the J-class J(r (w)) in the finite group J(CP"). For
such a choice of e we have a homotopy equivalence between 22¢(CP"*1*9/CP?) and
Cprtitd+e/Cpite (see Atiyah [4]). Thus d is altered by a multiple of the order of the
J-class of r(w)in J(CP"). By the results of Adams and Walker [2], if N is the order
of Jor(w)in J(CP"), then N is the smallest positive integer satisfying the condition
S(n, 1). Thus, altering d by a multiple of N will not affect part (iii) of (2.3).

We propose to study the homotopy equivalence s: T, (r (w?)®2de) - T, ((d+ 1) r(w))
by studying the induced map in cohomology. The most convenient vehicle for doing
this is the Thom isomorphism theorem. In order to simplify the notation put «
=r(w?)@®2de and f=(d+ 1) r(w). Then there are Thom classes U,e H****(T,(2); Z),
Uze H****(T,(B); Z) and the Thom isomorphism theorem says that H*(T,(«); Z),
H*(T,(B); Z) are freely generated by the bases {U,, yU U,,..., y" 0 U,}, {Us, yU U,
...» ¥"U Uy} respectively, where y =c, (w). Using these canonical bases we introduce
signs &,,..., &,4, reflecting twisting properties of the homotopy equivalence s.

(4.1) DEFINITION. ¢;,, is the sign given by s* (y'v U,)=¢;,,y' v U,, 0<i<n.

In § 5 we derive conditions on the signs and on 4 from Steenrod power calculations.
The crucial point s that if there exists a homotopy equivalence s: £2¢C, — CP"*1* ¢/CP*
we can replace s by another homotopy equivalence — making some mild hypo-
theses — for which all the signs ¢; are equal. However, we feel it is better to isolate
this argument from the main theme as it is rather ad hoc.

Let Ue H*(T,(r(w")); Z) be the Thom class of the 2-plane bundle r(w?). Then
H*(C;; Z) is freely generated by the basis {U, yu U, ..., y" 0 U}, where y=c, ().
Consider the commutative diagram

SZn+1__j;>_CPn:_>CPn+1
1:1 id.“ hl
L2n+1 J CPnc €, Cf

where n is the p-fold covering and 4 is defined by coning.
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(4.2) LEMMA. The induced homomorphism h*: H*(C; Z)— H*(CP"**; Z) is
given by h*(y' "1 U)=p-y', 1<i<n+1.

Proof. Under the identification of C, with the Thom complex T,(r(w?)) the in-
clusion map e corresponds to the zero section and therefore e* (U)=c; (w?)=p"y.
From the diagram it follows that 4* (U)=py. Now U?=y(r(w?))u U=p-yu U, and
in general we get U'=p*~1:y*~"1 U Ufor 1 <i<n+ 1. Since there is no torsion in either
H*(C;; Z) or H*(CP"*'; Z) we have h* ("' 0 U)=1/p" *-h*(U)=p-y'.

For the proof of our main theorem we also need to know the image of the map
induced by 4 in unitary K-theory.

(4.3) LEMMA. The map h’:KA(’](C,)aKAl'](CP"“) is a monomorphism whose
image is freely generated by the elements ¥ (&), EYP(E),..., E"YP(E), where
& =w—-seK7J(CP"“).

Proof. From the Chern character it is obvious that 4' is a monomorphism. For
the remainder we focus our attention on the following commutative diagram:

KU(CP") = KU(C;) ——KU(CP)

bh(wP)ch ch ch
H*(CP"; Q)—a /* (C;; Q—— A* (CP™*; Q)

We emphasize that we choose our Thom isomorphisms ¢, ¢4 in accordance with
Adams [1] and therefore the deviation from commutativity with the Chern character
is bh(w?) and not as “usual” the inverse Todd genus! As 1, ¢,..., &" is a free basis
for KU(CP™) we see that the image of &' is freely generated by E¥y? (£), 0<k<n, if,
and only if, the image of the composite homomorphism /* ¢ o bh(w?)-ch is freely
generated by (e?—1)* (e?”’—1), 0<k<n.

Writing
e’ —1
& -1 k[ ] = ?(k) j
( ) py .i;
we get

[h*°¢3°bh (wp) Ch] (ék) = h*o([)H I:(ey — 1)" {epyp;. 1}:|
= h* {Z ¥y o U}
=p Z },(k) it (by (4.2))

JZk

= (& — 1) (e” — 1).
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Thus, the image of hA*opzobh(wP)-ch is freely generated by the elements
(e?—1)* (e??—1), 0<k<n, and this proves (4.3).

(4.4) THEOREM. Suppose s:2%'C,— CP"*1*4|CP? is a homotopy equivalence
such that s*(y' 0 Ug)=ey' U, for k<i<n, where ¢ is a fixed sign. Then d satisfies
condition S (n—k, p).

For example, if ¢, =&, =-+ =¢,, then d satisfies condition S (n, p).

Proof. The theorem will be proved by chasing from KN(IJ(CP”““/CP") to
H*(2?*CP"*') in the commutative diagram

KU(EZ"bCP"“) KU(ZZ"Cf)e—————IxU(CP"“”/CP")
T 1=

KU (CP™*Y) <———-————-KU(C,) ch
lﬂ-dch laz"ch

H* (EZdCPn+1) H* (22dcf) H* (CPn+1+d/CPd)

where b is the Bott isomorphism and ¢ is the suspension isomorphism. If Vj is the
KU Thom class of f=(d+1) r(w) then the Thom isomorphism theorem implies that

K?](CP"*”"/CP") is freely generated by the elements &'UV,, 0<i<n, where
¢=w—e¢. Then

ch(& U V) =bh((d + 1) ®) ch (&) U; = {f—}m} ’ ‘(& = 1) v U,

where U, is the Thom class in ordinary cohomology. Recall that Ue H?*(T, (r(w?); Z))
is the Thom class of r(w”) and that U,e H***?(T, (r(w”)®2de); Z) is the Thom class
of a=r(w?)®2dz. Then the bases {U, yu U,...,y"uv U} and {U,, yuU,,...,y"uU,}
of H*(C;; Z)and H*(2*'C,; Z) resp. correspond under the suspension isomorphism
o2, If i > k then we have

(Z4h)Ps"eh (¢ Vy) = (Eh)'s* {["y}—}—]ﬁ L@ -1)0 )

— £ (Z2h)* {[ey; 1]d+1-(ey —1)u U,,}
= ea?'h* {[i;—l-}m-(ey —1)u U}

2d & — 17! i
=PpEOC {y[ ) ] (e”—l)} b)’(42)

On the other hand (4.3) guarantees the existence of integers Ag-i) such that

(EZdh)!S! (fiU Vﬂ) — bd ii )“.(ii) éjll/p (é)
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The following calculation shows that the sum starts at i and that A” =¢ for i>k:
[6*?cchob™ 0o (2%h)'s'] (£ U V;) =a*och Y AD EyP (&)
j=i
= 0% > A9 (& —1) (™ —1).
j=i
Hence in H*(CP"*1; Q) we have the equations

P A .
psy[ : ] (@ -1 = 3 AP (@—1) (& —1)

J=1

for k<i<n.
Making the substitution z=e”—1 gives

pz z ‘ n (i)l j-i n+1-i
(z+ 1) —1 [log(1 + 2) =8jz=illj = (mod z )
But both

pz 4 z ¢

@rip-1 * [1og(1 ¥ z>]
may be inverted without losing integrality. Putting i=k then implies that d satisfies
condition S(n—k, p).

The statement (2.3) part (iii) is the following corollary of (4.4).

(4.5) COROLLARY. Suppose C is S-equivalent to CP"*1*9/CP* and n>6. Then
d satisfies condition S(n—1, p). Moreover, if either n is odd or p satisfies condition
(H,), then d also satisfies condition S (n, p).

Proof. As observed in the introduction of this section we may assume there is a
homotopy equivalence s: Z%¢C, — CP"*1*4/C P4 where dis possibly altered by adding
on a multiple of the order of Jor(w) in J(CP"). But this order is the Atiyah-Todd
number M, ,, and M, ., satisfies the condition S(n, 1). Therefore the conclusion of
(4.5) is not altered by adding a multiple of M, ., to d. Then (5.1) together with (4.4)
now proves most of (4.5). If n is odd and »>3 then the inclusion CP"~!<= CP" induces
an isomorphism J’'(CP")xJ’'(CP""1); (see Adams-Walker [2]). From (3.3) it now
follows that d satisfies condition S (n, p) if, and only if, d satisfies condition S (n— 1, p).

§5. Characteristic Class Computations

In this section we resume the analysis of the twisting phenomenon of a homotopy
equivalence s: T,(r(w?)®2de) > T,((d+1) r(w)) and derive congruences on d from
characteristic class computations.

One of the main theorems we shall prove is the following “‘untwisting’’ theorem:

(5.1) THEOREM. Suppose n>6 and s:2**C,—CP"*1*%CP? is a homotopy
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equivalence. Then there exists a sign ¢ and a homotopy equivalence t:2>C;—
CP"*1*4ICP? such that t*(y' 0 U,)=ey' U U, for 1 <i<n. Moreover t*(U)=eU, if
p satisfies condition (H,).

It is probable that such a homotopy equivalence always exists but our method of
proof does not show this.

The proof of (5.1) is preceded by a sequence of lemmas.

(5.2) LEMMA. If q is an odd prime then we have the following congruences

-1 -1 i1 d+i
. [( J )+pq 1<j_1)]Esi+j(q—1)( j ) (mod q)

for all i, j=1 such that i+j(g—1)<n+1.

Proof. We establish this lemma by computing the Steenrod power 27 in both
H*(T,(x); Z,) and H*(T,(B); Z,) and then applying the induced map s*. To com-
pute #/ in H*(T(X, {); Z,) we use the Cartan formula and a result of Wu (see
Milnor [6]) saying that 2#/(U)=Q;({)u U, where the total characteristic class
Q(8)=14+0,({)+--- corresponds to the power series 1+z'/2(4~1), For example, if
{ is the real 2-plane bundle underlying a complex bundle & then Q ({)=1+ P, ({)“~ 172
=1+c¢,(¢)?" 1, where P, ({) is the first Pontrjagin class and ¢, (¢) is the first Chern
class. Since Q is exponential (i.e., Q (({®L)=0({) v Q({")) we get Q(2) =Q(r(w?)®
@2de)=1+p?~ )17, where y=c;(w). Likewise Q(B)={1+y?"'}**1. Thus &/
evaluated on the Thom classes gives

P (Uy) = (d “]L 1) ya Y ou, forall j>0,

and U, for j=0

P(U)=1p7 Yy o, for j=1
0 for j>1
By the Cartan formula we derive

PO =# G THYu U+ (Y u (U,

_ [(l - 1) +pq_1(l: — 1)] ymtrie=n Gy
and J j—1

PEIOU) = > PP,
k+m=j

I d+1\ -
O

k+m=j

_ (d;i' i) yi—1+j(q—1)u Uj.
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The result now follows from P/s* (1 U Uy) =s*P! (y'~1 L Up).

In passing one should note that no information on the signs &; comes from co-
homology with coefficients Z,. However the mod 2 Steenrod algebra gives con-
ditions on d.

(5.3) LEMMA. Suppose s:X**C,—CP"*'*4CP? is an S-equivalence. Then
d+1=p (mod 2) and <d_: 1>_=_O (mod 2) for 2<i<n.

Proof. If the Thom complexes T,(r(w?)), T,((d+1) r(w)) have the same S-type
then we have equality of total Stiefel-Whitney classes w(r(w?))=w(r(w))'*!, since
the total Steenrod square Sq is the same for both spaces (the group Z, has a unique
automorphism). But w(r(w?))=1+pjy and w(r(w))**'=(1+7)"*', where  is the

mod 2 reduction of y =c¢, (w). Thus (d+1) y=p-y and (d-: 1) 7=0if i>2.

(5.4) COROLLARY. Suppose s:2*'C;— CP"*'*4|CP? is an S-equivalence. If
p=0(mod 2) (resp. p£0 (mod 2)), then d+1 (resp.d)=0 (mod 2") where2">n>2""".

Proof. If p is even then (d_: 1) =0 (mod 2) for 1 <i<n. Writing d+1=2*+h.o.t.,

where u>1, we have (d+ 1) =1 (mod 2) and therefore 2*>n. Now suppose p is odd.

2”
Then d is even and we write d+1=142"+h.o.t., where u>1, and proceed as before,
thus completing the proof.
For the next lemma suppose that ¢, €,,..., £,4, is a sequence of signs chosen to
satisfy the congruences of (5.2).

(5.5) LEMMA (i) If p=0 (mod g) (resp. p#0 (mod q)), where q is an odd prime such
thatq<n+1(resp.q<n), then d+1 (resp. d) =0 (mod q*), where ¢*> (n/q—1)=q""".

(ii) If n>6 then g, =&, ., for 1 <k <n. Moreover, if p satisfies condition (H,) then
ex =84 for 1<k<n.

Proof. We first verify (i). There are two cases to consider: p=0 (mod ¢) and
p#0 (mod g). If p=0 (mod gq) then (5.2) becomes é; (l; 1) =84 jg-1) (dj,-l)(mod q)
for all i,j>1 satisfying i+j(g—1)<n+1. Putting i=j=1 gives d+1=0 (mod g).
Writing d+1=a,g"*+h.o.t., where p>1 and 0>a,>q, we now argue as in the proof
of (5.4). ; dti
If p#0 (mod g), then (5.2) becomes g; (J,)Esi”(q_l)( j ) (mod ¢) for all

i, j=1 such that i+j(g—1)<n+1. Putting i=j=1 gives d+1=1 or —1 (mod ¢q) and
puttingi=2, j=1 (here is there we need g<n) gives d+2=2 or —2 (mod g). Together
these congruences imply d=0 (mod ¢). Now proceed as in the first case.
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To prove (ii)) we use induction on n. Given a sequence of signs &,,..., &,+, satis-
fying (5.2) let P, be the statement that ¢, =¢, . , for 1 <k <n. Then one checks directly
that P,, P;, P, and Ps are false, whereas Pg is true. Assume that we have proved P,
is true for 6<n<N. To prove that Py is true we need only find an integer i such that
1<i<N+1, i=N+1 (mod 2), and &y, =¢;. Putting j=1 into (5.2) gives ¢&[i—1+
+p? ™ V]=¢;4,-1(d+i) (mod g), where 1 <i<N+2—g. Thus weneed only find an odd
prime g< N such that i—1+p? '=d+i#0 (mod g), where i=N+2—gq. But part (i)
of this lemma implies that d+1=p?~! (mod g) for all odd primes g<N and so we
need only find an odd prime g< N so that N+1+p?~1#£0 (mod ¢). Using Bertrand’s
postulate it is now a simple matter to show that such an odd prime always exists if
N=5. This completes the induction.

The only possible way to get information on ¢; from (5.2) is to pick i=1, j=1, in
which case we get p?~le;=(d+1)e, (mod g) for all odd primes g<n+1. Since
p? 1=d+1 (mod g) for all odd primes g<n we get &, =¢, if p is relatively prime to g.
Thus we get g, =g, , for 1<k <n if p satisfies condition (Hy).

(5.6) Remark. If we pick n=>5 then the above argument yields ¢, =g, =¢4 (for
all p) and ¢, =¢; =¢5 (for p#0 (mod 5)). Similar statements hold for n=2, 3, 4.

Proof of (5.1). Either s* already satisfies the stated condition or there is a sign ¢
such that s*(y'u Uy) =(—1)"8y' U U, for 1 <i<n. Moreover, this equation holds for
i=0 as well if p satisfies condition (H,). By altering s by a self equivalence of
CP"*1*4/C P4 we can change every second sign. This proves (5.1).

§ 6. Special Results and Closing Remarks

In this section we prove part (ii) of (2.5) together with a few isolated results. To
facilitate the computations we work with the characteristic class sh rather than bh.
The characteristic class sh: KO (X)—1+ [[;>0H*(X; Q) is the one associated to
the power series (e!/2” —e™1/2%)/y. It is multiplicative and if £ is a complex line bundle
over X then sh(r(£))=(e'/??—e~1/2)[y, where y =c, (£), (see [2]). In Adams-Walker
[2] a lower bound Jg(X) of J(X) is defined by Jg(X)=KO(X)/Va(X), where V°
is the set of ae KO (X) such that sh(a)=chec(l1+p) for some ﬂeKA(”)(X). Here ¢
denotes the complexification ringhomomorphism ¢:KO (X)— KU(X). The advan-
tage of sh over bh is that (e!/2”—e~1/2?)/y is a power series in y*> whereas (e”—1)/y
is a power series in y only. Let Jg: KO (X)— Jz(X) denote the projection and let o,
t>1, be defined by

i e —1] z'
Og z pn— a,a.




88 RENE P, HELD AND DENIS SJERVE

In the following theorem we collect the pertinent facts from Adams-Walker [2] that
we shall need.

(6.1) THEOREM. (i) logsh({)=% 2,5, as,ch,s0c({), where ch,, denotes the
component of the Chern character in dimension 4s.

(ii) there exists an epimorphism Og:J(CP")— Jg (CP") making the following dia-
gram commutative

KO (CP")—L»J (CP")

J'R 0'r
J (CP)

(iii) Og is an isomorphism if n>1 and n#1 (mod 4).

It should be remarked that if n>1 then J'(CP")~ Jz(CP") and under this iso-
morphism 0’ and 6 correspond.

(6.2) THEOREM. There exists an integer d>0 such that Jor (w?)=(d+1) Jor(w)
as elements of J(CP*) if, and only if, p#2 (mod 4).

If p=0, 1,4 or 7 (mod 8) (resp. p=3 or 5 (mod 8)) then a possible choice for d+ 1
is d+1=11p*—10p? (resp. 11p* — 10p* + 1440).

Proof. By (6.1) we know that Jor(w?)=(d+1) Jor(w) as elements of J(CP*) if
and only if, Jgor(w?)=(d+1) Jgor(w). According to the definition of Jg this happens
if, and only if, there exists an element fe KO (CP*) such that sh(r(w?)—(d+1) r(w))
=choc(1+f). Now KO(CP*) can be presented by one generator y=r(w—e) and
one relation p*=0 (see [2]). Writing B=a,u+a,u* for some integers a;, a, and
carrying out the calculation we get

+ 12a, — 6a3
log {choc(l + ﬁ)} = 01y2 i {(11 a al}'y“.

12
Using part (i) of (6.1) and «,

1 — 1

log{sh(r(w")—(m Dr(@)f = 34 (7 = d=1) 5 = i 0t = d = D).

Thus Jor(w?)=(d+1) Jor(w) as elements of J(CP*) if, and only if, there are in-
tegers a;,a, such that (*) p?—1—d=24a,, p*—d—1=240(6a} —a, —12a,). Thus
a necessary condition is that p? —p*=0 (mod 24) and this happens if, and only if,
p#2 (mod 4). Now assume p? —p*=24q for some integer ¢g. Then g is even (resp.
odd) if, and only if, p=0, 1, 4 or 7 (mod 8) (resp. p=3, 5 (mod 8). Then it is a simple
matter to show that (*) is satisfied for the values of d given in (6.2). Hence the “nu-
merical”’ theorem (6.2) is established. Therefore also part of (2.5) (ii) is verified.
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Now let us complete the proof of (2.5) (ii)! For that assume that there exists a
homotopy equivalence s:2**C;— CP"*1*9/CP? for some positive integer d.

We shall show that such a homotopy equivalence does not exist in case p=2
(mod 4) and n>4. This result is obtained by comparing the Adams operations under
the induced map s' in complex K-theory.

Recall that a=r(w?)®2de and B=(d+1)r(w). Then the spaces X?°C,,
CP"*1*9/CP*%are the respective Thom complexes T,(«), T,(B). If V,, V, are the KU
Thom classes then the Thom isomorphism theorem implies that K7]( T, (), KE(T,, 3)
are freely generated by the bases {V,, EUV,,..., E"UV,}, {Vp, EU V..., E"U V) re-

spectively, where €=w—seK’Z](CP”). In §4 we introduced the Thom classes U,, U
for integral cohomology and then defined a sequence of signs &1, ..., €, by s* (y* L Uj)
=g;41¥' VU, 0<i<n, where y=c¢, (w).

Now

e —1

by

ch(&uV,)=ch(&)ubh(w?)uU, = (e —1) { }u U,=yuU, +hot.

Likewise

ch (£ V,) = (¢’ — 1) {e

y

d+1 )
} v U=y uU;+ ho.t.
y

Thus s': KA(J](T,, B)~- KNU(T () satisfies

s'(EuV) =Y xXPE VY, 0<i<gn,
Jjzi
where the x{) are integers and x{" =¢,. .

The Adams operations y* are computed by means of the cannibalistic charac-
teristic classes o. If { is a complex bundle with KU Thom class ¥, then y*(xu V)=
0" (0)-¥*(x) UV, for any xe KU(X), (see Adams [1]). o* is exponential, ¢*(g) =k, and
() =14+ +---+{"* "V if { is a complex line bundle.

Thus we have
w P

PER) =@ e i) @ - 1Yot =k (25 ) @ - 1Yo,

and

YEEUV,) =g (d + D) @) (0" — 1) U,

Cl)—k—'l d+1 ;
=< -1 1) ‘(Q)k—l)UVﬂ.

a) —

Now we are in a position to deduce the result we are looking for. By equating
the coefficients of £ UV, and &% U V, respectively in the equation y2s' (V) =s'y*(V})
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one gets
d+1 p
x(1°)=—( 2 )82‘}‘581
and

2! {x‘o") (—ZP ) +2x0 (—p+1)+ 8x(2°)} =
2@ 29 d + 1) xP 4+ 2472 (d + 1) (d + 4) xP

Furthermore, by equating the coefficients of E2UV, in y2s' (EU V,)=s'Y2(EUV})
we get

d p—1
x(21)=—-—2—83+< ) )82.

Combining these three equations we end up with the following congruence

2p%e; — 6p (e, + ;) + 6¢, + dey + 6de, (1 — p) + 3d%e; + Tde; =0 (mod 24)

Let p be even, n>4 and hence by (5.4) d+1=0 (mod 8). Then it is easy to see that
all p=2 (mod 4) do not satisfy this congruence relation, which is the required result.

In conclusion we mention that we have made number theoretic calculations to
decide when there exists an integer d satisfying condition S (n, p) for a fixed » and p.
For example we have

(6.3) Remark. If n>32 and p=4 (mod 8) satisfies condition (H,), then there is
no integer d satisfying condition S(n, p). The same is true for n>64 and p=9, 21, 33.
In all these cases it then follows that the mapping cone of f :[*"*1(p)— CP" does
not have the S-type of a stunted complex projective space. We understand that F.
Sigrist has also done similar calculations.

In a subsequent paper we intend to study the problem of finding number theoretic
conditions on z and p that guarantee the existence of an integer d satisfying S (n, p)
and then determine the congruence class of d modulo the Atiyah-Todd number
M, . ;. We suspect that solving these number theory problems will remove the hypo-
thesis n# 1 (mod 4) from (2.3).
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