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Every Odd Dimensional Homotopy Sphère has a Foliaton of
Codimension One

by Itiro Tamura

It is well-known that Reeb constructed a foliation of codimension one on S3

(Reeb [4]). But, after that, nothing was known of codimension-one foliations of
higher dimensional sphères for twenty years. In the circumstances Lawson's récent
work is significant. He exhibited foliations of codimension one on each of the (2*+ 3)-
sphere for k 1, 2,... (Lawson [2]).

In this paper we shall prove the following.

THEOREM. Every odd dimensional homotopy sphère has a foliation of codimension

one.

1. Fiberings over a Circle

Let §2m+1 be a (2m+l)-dimensional homotopy sphère (m^3) and let F2m be a

compact 2m-dimensional differentiable manifold imbedded in §2m+1 which has the
homotopy type of the bouquet of r copies of m-sphere Sm:

F2m~Smv Sm v —v Sm.

Since the normal bundle of the (2m — l)-dimensional differentiable manifold dF,
the boundary of F2m, is trivial, the tubular neighborhood of dF is dFxD2. Thus
§2m+1 — (dFx IntZ>2) is a (2m + l)-dimensional differentiable manifold with boundary
dFxS1. In the following the intersection F2mn(82m+1-(dFxIntD2)) is simply
denoted as F2m, because they are naturally diffeomorphic.

Let A be the compact (2m + l)-dimensional differentiable manifold (with corner)
obtained by splitting 52m+1-(3FxIntZ)2) at F2m. Then dA=F+ uF u(5Fx/),
where F+ and F~ are copies of F2m. A has the same homotopy type as §2m+1 -F2m.
It is easy to see that A is simply connected and that, by the Alexander duality,
homology groups of A are as follows:

Z 4 0,

Z + Z +•-•+ Z q m,

0 otherwise.
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(Homology groups H*( mean homology groups with intégral coefficient group

Let al5 a2,..., a, be a System of generators of Hm(F)&Z+ZH YZ such that
each af is represented by an imbedded m-sphere ^(/=1, 2,..., r). Let a* (resp. aj~)
dénote the élément of Hm(F+) (resp. Hm(F~)) corresponding to afe/Tm(F). Let a|

dénote the élément of H2m{A) corresponding to aieH2m{F) by the Alexander duality
(/= 1, 2,..., r). Then ai, a2,..., a, form a System of generators of Hm(A).

Let z+ :F+ ->.4 and i~ :F~ ->A be the inclusion maps, and let

j j
Then a^ and af~- are expressed by linking numbers as follows.

Dénote by S* (resp. S^) a displacement of St in ^2m+1 towards the normal
direction of F+ (resp. F~). Then it is easy to see that

Furthermore it follows from

Lk(Sf, Sj) Lk(Sh SJ) (- lT+1Lk(SJ,

that

aU (- U aJi

Dénote by L(F) the following (rxr) matrix:

/Lk(SÎ,Sl)...Lk(Sl,S,)\

\Lk(S;,S1)...Lk(SÏ,Sr)/

Suppose now that L(F) is unimodular. Then the homomorphisms

ij :Hm(F+)->Hm(A),i;:Hm(F-)^Hm(A)

are isomorphisms. This shows, since F+, F~ and ^4 are simply connected, that i+ and

i~ are homotopy équivalence. Thus, according to the relative /ï-cobordism theorem

(Smale [5], Corollary 3.2), the following holds:

(A,ôFxI) (F2m,dF)xI.

This implies the following proposition which is a differential topological version of
so-called Milnor fibering. (See also Tamura [6].)

PROPOSITION 1. If the matrix L(F) is unimodular, then there exists a fibering
S2m+l-(dFxIntD2)-+S1 havingFas a fibre.
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2. Construction of Fiberings

Let X, Y dénote the following matrices

1

0

0

2 1

1 2 1

1 2 1

1 2 1

1 2 1

2 1

1 2

1

0

21 °
1 2 1

1 2 1

1 2 1

1 2 1

1 2 1

1 2 1

1 2

As is well known, X is positive definite and unimodular. The rank of (9 x 9) matrix Y
is 8 and its elementary divisor is (1, 1, 1, 1, 1, 1, 1, 1).

Let A dénote the diagonal of S2n x S2n (n ^2) and let N be a tubular neighborhood
of A in S2n x S2n. Then N has the homotopy type of S2n and the self-intersection
number of a generator of H2n(N)^Z is 2. Let JF(Z) be the parallelizable compact
oriented 4/î-dimensional differentiable manifold formed from JVi, N2,..., N8 (8 copies
of N), by plumbing Nt and JVI+1 (/=2, 3,..., 7), and Nx and JV4. Then W{X) has the

homotype types of S2nvS2nv ••• v£2n. The orientation of J^OQ is chosen so that

Fig. 1.
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thematrixof intersection numbers of H2n(W(X)) is X. Similarlyparallelizable compact
oriented 4/z-dimensional differentiable manifolds W{ — X) and W{Y) both of which
hâve the homotopy type of bouquets of 2«-spheres, are defined. The matrix of
intersection numbers of H2n(W(-X)) (resp. H2n(W(Y))) is -X(resp. 7).

Let W= W(-X)ï W(Y) be the boundary connected sum of W{-X) and W(Y).
W is a parallelizable compact oriented 4«-dimensional differentiable manifold. Let
us imbed W'mXo 54w+1 as indicated in the Fig. 1, by 17 copies of naturally imbedded
S2nxS2n which osculate consecutively, so that unnecessary linking numbers do not
occur in the matrix L(W) (cf. Tamura [6], section 2).
Then it is easy to see that the matrix L{W) of linking numbers is given by

where

~l -1
-1 -1

-1 -1
-1 -1

-1-1
-1 -1

-1-1
- 1

Thus, by Proposition 1, the following holds.

P
i 1

11
11

11
11

11

PROPOSITION 2. There exists afibering S4n+i-(dWxlntD2)-*S1 having W
as a fibre (n^.

Let 2 dénote the diagonal of S2""1 x 52""1(«^2) and let ff be a tubular neighbor-
hood of A in S2*"1 x S2"-1. Let us imbed ff into S*"'1 by imbedding S2""1 x S2"'1
into S*"'1 naturally. Then the matrix L(fî) of linking numbers is given by L(ft)= (1).

Thus, by Proposition 1, the following holds.

PROPOSITION 3. There exists afibering S4"'1 -(dftxlntD2)-»S1 having ft
as a fibre (n^2).

This fibering corresponds to the Milnor fibering of z\+z\ H h z\n _ t=0.

3. Boundary of the Fibre W

Let M dénote the boundary of the fibre Win Proposition 2. Then AT is an orientable

closed (4/2-l)-dimensional differentiable manifold. It follows by the Poincaré-
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Lefschetz duality that

and that the natural homomorphism

H2n (W) -> H2n (W, M) s Hom(H2n(W), Z)

is determined by I j, the matrix of intersection numbers of H2n W). Thus the

following is a direct conséquence of the homology exact séquence of (W, M):

q=0,2n-l, 2n, An - 1,

otherwise.

Obviously Wis obtained from W(-X)ï W(X) by attaching a handle D2n x D2n:

W (W(- X) W W{X)) (J (D2n x D2n),
g

where ^:5D2nxZ)2lI-^5(iPF(--Ar)tî W(X)) is an attaching map. The boundary
d(W(-X)ï W(X)) is the natural (4«-l)-sphere (Kervaire-Milnor [1]), and the
following décomposition holds:

W W (- X) \ W (X) ï (D4n |J (D2n x D2n)).
g

According to the Â-cobordism theorem (Smale [5]), B=DAn{Jg(D2n x D2n) is the total
space of a 2«-disk bundle £ over S2n, and its differentiable structure is compatible
with the bundle structure. Thus M=dW=dB is the total space of an S2n"^bundle
over S2n associated with {. Let aen2n_1(SO(2n)) be the characteristic map of £.

Since B is parallelizable, ^ is stably trivial and, thus, a belongs to the kernel of
71m-î (SO(2n))-+n2n-.1(SO(2n+i)). Let us consider the diagram

n(S2n)^n2n-1(SO(2n))-+n2n_1(SO(2n + !))->..•

consisting of the homotopy exact séquence of the fibering SO(2n+ï)^>SO(2n+l)l
SO (2n) S2n and the homomorphism induced by the projection/? : SO (2«) -> SO (2n)/
5O(2«-l)=5'2/l~1.Letz2n,i2n_1begeneratorsof7r2n(52lI),7r2n_1(52lï~1)respectively.
Since aed(n2n(S2n))9 a d(ci2n) for an integer c. If c^O, p*d(a2n)= ±2cz2m_1#0
and, thus, the Euler class of £ is not zéro. This implies, by using the Thom-Gysin
exact séquence, that H2n-t (M)=H2n_1 (dB)qkZ, which is a contradiction. Thus c=0
and { is a trivial bundle. This yields the following.
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LEMMA 1. The boundary of W is S2n~x x S2n.

4. Proof of Theorem

Let E be a compact connectée! (2m + l)-dimensional differentiable manifold such

that Eisa total space of a fibering over Sx and dE is connected. Then it is well known
that there exists a foliation of codimension one on E having dE as the only compact
leaf (cf. Lawson [2]).

LEMMA 2. Suppose that S2n+1 has a foliation of codimension one(n^.2), then

thefollowing holds:

(i) Any (4n + l)-dimensional homotopy sphère §4n+1 has a foliation of codimension

one.

(ii) Any (4« — 1)-dimensional homotopy sphère S*"'1 has afoliation ofcodimension

one.

Proof. Let y be a closed smooth curve in S2n+1 which is transversal to the leaves.

The existence of such y is a classical fact. The tubular neighborhood of y is S1 x D2n.

The foliation on S2n+1 can be modified so that its restriction on S2n+1 - (S1 x IntD2n)
S2n~1 x D2 is a foliation having the boundary as a compact leaf.

Now, by Proposition 2, S4n+1 — (ôWxIntD2) has a foliation of codimension one
such that ôWxS1 is the only compact leaf. On the other hand, since ôW=S2n~1
xS2n by Lemma 1, ôWxD2 has a foliation of codimension one which is induced

by the projection dWxD2-+S2n~1 xD2 from the foliation of S2n~1xD2. This
complètes the proof of (i).
Making use of Proposition 3 and the projection dft x D2 -? 2 x D2 S2n~1 x D2, the

proof of (ii) is completely analogous to that of (i).

Remark. Lemma 2, (ii) is (a slightly generalized form of) a resuit of Lawson [2].

Let S2m+1 be a (2m+l)-dimensional homotopy sphère. In case m=l,2, the
existence of a foliation of codimension one is proved by Novikov [3] and Lawson [2]

respectively. Suppose that, for 2^m<q, §2m+1 has a foliation of codimension one.

Then, if q is even (resp. odd), the existence of a foliation of codimension one of §2q+i
is assured by Lemma 2 (i) (resp. (ii)). This complètes the proof of the theorem by
induction.
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