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On the Homology Theory of Central Group Extensions H.

The Exact Séquence in the General Case

by Beno Eckmann, Peter Hilton, and Urs Stammbach

Dedicated to the Memory ofTudor Ganea (1922-1971)

1. Introduction

In [2], a natural exact homology séquence

H3G^H3Q^Gab®N±>H2G^H2Q^N^Gab->Qab->0 (1.1)

was associated with those central group extensions

for which ii:N®N-> Gab®Nis the zero-map. Such extensions were called weak stem-
extensions in [2]; they include, of course, the case of stem-extensions, i.e., central
extensions (1.2) with Na\_G, G]. We write hère s (or /i) for any homomorphism
induced by e (or pi). The maps ô and /? are "boundary" homomorphisms, and % is a

"commutator map", cf. [2].
The purpose of the présent paper, which is a supplément to [2], is to replace (1.1)

by a gênerai séquence valid for ail central extensions (1.2). This gênerai séquence
differs from (1.1) only in that the term Gab®N is replaced by a certain quotient
(Gab®N)/U9 where U is in the kernel of %. In fact, the portion

Gab®N->-^Qab^0 (1.3)

of (1.1) was established in [2] for any central extension. In order to describe the sub-

group U, we apply (1.3) to the extension

jvÂjv4i

and get N®N-+ H2N-+ 0 -* N-+ JV-> 0. The map of extensions given by the commu-
tative diagram

1 4" i
N>-*G-»Q
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induces a map of séquences

&H2N-+ 0 ->N-> N -> 0 ->0
A* 4- i 4 4 4

Hence /(/* kerx)=0, and we take

U fikQrx^Gab®N. (1.4)

Of course U=0 in the case of a weak stem-extension.

Our task is then to define ô:H3Q-*(Gab®N)/U and prove the exactness of

^^^H2G, (1.5)

where, of course, x dénotes the map induced by the commutator map x of [2]. This
will be done in Section 2 by using the elementary techniques of [2]. We base our-
selves on the free présentation

N
V

R>-+F-»G

l 4= V (1.6)

N

of (1.2). Then, as in [2], a partial resolution of Z over Q is given by

FQQ/ \isi jq ;

and, similarly, a partial resolution of Z over G is given by

R2

Exploiting, as in [2], the réduction theorem, we will henceforth identify, naturally,
H3G with H±(G; Rab) and H3Q with Ht(Q; Sab). Thus we may state our resuit in the

following more technical form.

THEOREM. Given the central extension N>-+G^»Q, there exists a natural homo-



On the Homology Theory of Central Group Extensions II 173

morphism ôiH^Q; Sab)-+(Gab®N)/U such that the séquence

Hx (G; Rab) i Ht (Q; Sab) -i (Gab ® N)/U i H2G

is exact.
Section 3 contains a number of remarks on various aspects of our resuit. The most

important one concerns the relation between the above Theorem and the approach
used in a previous paper [1] by Eckmann and Hilton. In[l],acertainhomomorphism o-

<r:H4(N,2)-+Gab®N (1.9)

of the Eilenberg-MacLane group H4(N, 2) H4{K{N, 2)) into Gab®N was functori-
ally associated with the (arbitrary) central extension (1.2); its définition appears in the
Serre spectral séquence of a suitable fibering. From that spectral séquence, a natural
exact séquence

H& -> ker g -> H3G/q (H2G ® N 0 Tor (Gabi N))

-> H3Q -+ coker a ^ H2G -> H2Q -? N -> Gab -+ Qab -> 0

was obtained in [1], where q is induced by the multiplication map m:GxN->G.
Moreover, it was effectively shown in [2] that Q\Gab®N^H2G coincides with
X*Gab®N-+H2G up to sign. We show in Section 3 that

U <rH4(N,2). (1.11)

Thus the relevant portion of (1.10) provides a différent (less elementary and algebraic)

proof of our Theorem.
Another remark in Section 3 is concerned with an example in which U^O so that

the modification introduced in (1.5), when compared with (1.1), is seen to be essential

when one goes beyond weak stem-extensions.

2. Proof of the Theorem

We follow the procédure in [2; Theorem 4.3] insofar as it is valid for arbitrary
central extensions. Thus we factorize e:H1(G; R^^H^Q; Sab) as

Hx (G; Rab) ^H, ((Q; Rab)N) £ Ht (Q; R/[S9 S]) X H± (Q; S/[S, S]), (2.1)

where ex is the change-of-rings homomorphism. As shown in [2] - it is in any case

well-known - s1 is surjective, so that it is sufficient to define ô and prove the exact-

ness of

H, (Q; RUS, U])-^Hi (Ql Sab) -S- (Gah ® N)/U4 H2G. (2.2)

Note that (Rab)N—RllS> &]'> 9" participâtes in the exact séquence induced by the
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coefficient séquence

[5, S]/[S, £] ~RI[S, R] -» RUS, S] ; (2.3)

and (pr participâtes in the exact séquence induced by the coefficient séquence

R/[S, S] ~ SUS, S] -» N. (2.4)

Note also that [S, £]/[£, K]=H2N and that g opérâtes trivially on #2JV (so also,
of course, does G). Our main diagram is the following.

[9"
(Q RllS9S])ÏHi{Q;Sab)

\[S, S]/[S, R]

^ (G; R/[S, R])«Hj (G; U/[S, S])*>H,(G; Sj^Gflft® iV-4 JR/[F, JR]

^ (fi; R/[S, R])^^ (g; RUS, S])^H±(Q; Sab)?>Qab®N&H/[F, K] [S, S].

We recall that ail arrows labelled ju(e) are induced by ti(e) in (1.2). The séquences
(<p'> à'9 #'), for G or g, are exact, being induced by (2.4) ; and the vertical séquence
(<p", <5", ju, s) is exact, being induced by (2.3). AU the maps x> X> X are "commutator
maps", in the obvious sensé [2].

LEMMA. There is a homomorphism O'.H^G; Sab) -» [S, S]/[S, R] such that

(i) liB=x*';
(ii) 0p=i6';

(iii) 9(p' ô"e.

ProofofLemma. We introduced in [2] the commutator map
0:JF®FSàt-+[F9S'\ltS9 RI given by

0(x-e®FsiS9 S]) O, s] [S, Ri. (2.6)

Using the resolution (1.12), 9 may be intrerpeted as a homomorphism 0: C1 (G; Sab) -»
->[F> SMS, RI Now L(*<-e)®F*f[£ SleZ^G; Sab) if and only if Jl-IX, *f]e
6[S, S], so that 0 restricts to

ThegroupofboundariesBt(G; 5fli,)isgenerated (see (1.8)) by éléments r—e®Fs[S9S'],
reR. Thus 0 vanishes on B1(G; Sab) and so induces a homomorphism, which we also

designate 0,

0:H1(G;S*)-+tS9S]ltS9R'].
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The commutativity relations (i), (ii), (iii) are now easy conséquences of the fact that
X, x and S" are ail given by "commutator maps"; it is only necessary to add that
H*N®QSab->H^G; Sab) - which is part of the 5-term homology séquence with
coefficients in Sab induced by (1.2) - is given by

fi(sR ®Qs [S, S]) {s - e ®Fs [S, S]}, s, s'eS.

The proof of the theorem is now formai. Given aeJET1(G; Sab), choose beN®N
with Oa=xb. Then b is determined modulo ker/. We set 5a ôfa—fib modjuker/,
so that S is a homomorphism

Now x^d=fi6a=fixb=xfib, so that S maps Ht(G; Sab) to ker^/i" ker%. We show that
S is onto kerx/n kerjj\ For if/x=0, xeGab®N, then x ô'a, aeH1(G; Sab). But then

H0a=xà'a=0, so that 0a=ô"u9 ueHt(Q; R/[S9 S]). Let u=sv9 veHx(G;
Then 0û=5//£t; V^Thus ifa=a-^'t;,then5/a==x,^=0,so that 5û=

We hâve thus established the exactness of

Ht (G; Sab) l (Gab ® N)/U $ H2G. (2.7)

Now let ceN®QSab. Then 0juc=£5'c, so that Sfic=ôffic-^ôfc=O modju ker^. Thus
5 induces

with

<5e 5,

and

#i (6 ; S«*) ^ (Gat ®N)IU±>H2G (2.8)

is exact.

It remains to prove the exactness of

H, (Q; RUS, RD^^H, (fi; Sab) -t (Go6 ® JV)/[7. (2.9)

Now ô<p'<p"e $q>'<pfr. Moreover ô'(p'(p"=O and Ocp'ç" ô"eq>" ô"q>ff8 O, so that
5<p'q>"=0. Thus ô(p'(p"e=O> so that ôç'cp"=O. Conversely, let <5etf=0, aeH^G; Sab).

IteasilyfollowsthatthereexistsèeJ/V®iVwith5'ûf=ju6,6a=xb. Setè 5'c, ceN®QSab.
Then ô'a=tiô'c=ô'nc and 6a=x^c=9fic. Now set â=a-fic. Then

ea e<ï, <5'£ 0, 0a 0. (2.10)

From (2.10) we infer that a=<p'x, xeHt(G; R/[S, S]). Then, again from (2.10),



176 BENO ECKMANN, PETER HILTON AND URS STAMMBACH

O 0(p'x=ô"ex, so that ex=q>"y, yeH^Q; R/[S, £]). Thus

sa eâ ecp'x cp'sx <p 'q>"y,

and the theorem is completely proved.

3. Remarks

(i) It is implicit in the proof of the Theorem that, given xeHl(Q; Sab) H3Q,
there exists aeH1(G; Sab) with ea=x, 0a= 0, so that ôx=ô'a modju ker#.

(ii) For weak stem-extensions (1.2), i.e., for the case when ii:N<g)N-+Gab®N is
the zero-map, ô is the homomorphism ^(Q; Sab)-+Gab®N defined in [2], For we
hâve, in that case, S ô\ whence ô s~1ô' as in [2]. On the other hand, we show by an
example that there certainly are examples of central extensions N>^>G-»Q which
hâve U^O, so that the modification introduced in (1.5), compared with (1.1), is, in
gênerai, necessary. Of course if £/#0 the central extension cannot be weak stem.

Let/? be a fixed prime, let r^s be positive integers and let G G(pr, ps) be the

group

G {a, b | apr bpS a^b^ab).
Then (see [2]) a is of order pr+s9 and the center of G is generated by aP\ For any t
with s^t^r + s, let Nt be the (central) subgroup generated by apt and let Nt>->G^»Qt
be the associated central extension. Then, as pointed out in [2], this extension is stem

and weak stem iff t^\(r+s).
Suppose then that i(r+s). One then finds that

U

so that

For such a group G one has H2G=0, so that the important part of (1.5) reads

h3g -» zpt e zpS e zpS -^ zpt ® zpS -> o.

In fact, one may calculate H3G from the (non-central) extension N0*+G-»Q0 with
No {a}, and one finds

p,, p odd

Z2,+1©Z2,, p 2, r>2,
Ze, /» 2, r=l.
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(iii) It is, of course, always true that the homomorphisms e:HnG-+ HnQ, induced

by a group homomorphism e:G-> g, embed in an exact séquence in a natural way,
since they are defined by means of a chain map C(G)-+C(Q). Thus the exact

séquence we hâve established in this note may be interpreted as providing a calcula-

tion of the "relative ff3" for this chain map. We may also give a topological interprétation

in which (Gab®N)/U then appears as the third homology group of the Thom
complex of the fibration K(G, l)^K(Q, 1).

(iv) The naturality of the séquence (1.8) follows easily from the fact that,
given a commutative diagram

l ï ï
jy'>_»G'-»Ô'

we may associated with (2.12) a map of the présentation (1.10) of 7W-»G-»<2 to the

corresponding présentation of N'>-+G'-»Q'. The détails may be left to the reader.

(v) The relation between a and \i ker# (see introduction). The homomorphism g
associated in [1] with the extension (1.2) factorizes, by naturality, as o \iâ,

The map of extensions given by

N>-+N-»l
II i i
jV>-»G-»g

induces a map of the séquences (portions of 1.10)

0 -» N ®NlâH4(N,2)ï>H2N-+0

Gab ® N/ctH4 (AT, 2) i H2G - H2Q.

Thus

<x#4(iV,2) kerx, (3.1)

so that

U. (3.2)

Therefore (1.10) contains a proof of our Theorem (by entirely différent methods). On
the other hand, the proof given in this paper contains an explicit description of the

natural map ô:H3Q~* (Gab®N)/U which was not available from the spectral séquence

argument.
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(vi) In (1.10) we saw that we may factor Q((H2G®N)®Tot(Gab, N)) out of the

first term of (1.5). This, too, is clear on elementary grounds. Now q is induced by the

multiplication m:GxN-*G. Let p:GxN-^G be the projection. Then sm ep:Gx
xN-+Q, so that the kernel of e*:H3G-+H3Q contains the g-image of anything in
H3(Gx N) killed by p*. Now the kernel ofp*:H3(GxN)-+ H3G is

H3JV0 (H2G ®N)® {H,G ® H2N) ® Tor {Gab9 N), (3.3)

so that the £-image of ail of (3.3) is certainly in the kernel of s: H3G-+ H3Q.
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