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Analytic First Intégrais of Ordinary Differential Equations

by Wilfred Kaplan (University of Michigan)

1. Introduction

In a previous paper [3], the author considered complex analytic differential
équations

dzk
-jj=fk(t>Zl>->Zn)> fc=l, ...,H. (1)

Hère the fk are analytic functions of the w+1 complex variables t, zu...,zn in a

domain D of the (n+ l)-dimensional complex space Kn+1. It was asked whether such

a System has first intégrais in the large: that is, whether there exist functions (p(t, zi9
zn), analytic in D, which are not identically constant but are constant on each

solution of (1). It is known from basic theory that such first intégrais exist locally.
It was shown by examples that, in gênerai, existence in the large of such first intégrais
was excluded unless one allowed multiple-valued functions and exceptional sets of
measure zéro. It was shown that for n=\ with D K2 (/x entire), such a multiple-
valued first intégral in the large does always exist. It was shown by an example that
the proof for the case n 1 could not be generalized directly to the case of larger n.

In the présent paper, the resuit is extended to gênerai n, and it is shown that for
D==Ktt+1 there always exist n functionally independent first intégrais cpk(t, zl9..., zn),

in the sensé described.
The question can also be phrased in terms of partial differential équations. The

intégrais çk sought are solutions of the first order équation

One seeks a complète set of solutions of this équation in the large. The resuit of the

présent paper provides such a set, in the sensé described, for D=Kn+1.
When the fk are independent of t and are analytic in Kn (autonomous case), it is

shown that one can find n—1 functionally independent first intégrais in the large
<pt(zl9...9 Zj) (/=1,..., n — 1), provided the equilibrium points (the common zéros of
the fk) are countable. The équations (pl(zl,...,zt) cl, /=l,...,w —1, then define

(almost ail) the "trajectories" of (1).
When thé/* are meromorphic in Kn+1, the complète set q>k(t9 zu...9 zw) is again

found, under certain restrictions on the zéros and pôles of the/fc.
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As pointed out in the previous paper, thèse questions are of interest in mechanics,
the first intégrais being related to such quantities as energy and momentum.

It will be convenient to write (1) in vector form:

- /(',*), (3)

where z=(zl9..., zn),/ (fl9 ...,/„). We use the norm \z\ £|zfe| in Kn.
As in the previous paper, we make use of the following conséquence of Fubini's

theorem:
Let X and Y be measure spaces, each of which is a countable union of sets of finite

measure. Let g(x, y) be a measurable function onlxF such that, for almost ail x,
g(*> y) 1 f°r almost ail y. Then for almost ail y, g(x9 y) — \ for almost ail x.

We shall refer to this principle by simply writing "by Fubini's theorem."

2. A Preliminary Resuit for the Meromorphic Case

The following theorem will play an essential rôle in the proof of the main resuit
(Theorem 2 below):

THEOREM 1. In (3), letfbe meromorphic in Kn+1 and suppose that for almost ail
(t°9 z°) (3) has a solution with initial point (t°9 z°) which can be continued analytically
for almost ail t. Then there exist nfunctions (pk(t, z) which are {multiple-valued) analytic
in Kn+1, can be continued analytically to almost ail of Kn+1, remain constant on
solutions of(3) and hâve nonvanishing functional déterminant d(cp1,..., <pw)/d(zl5..., zw).

This is proved in the same way as Theorem 4 of [3]. One applies the Fubini
theorem to show that for almost ail t° the trajectories through initial points (t°, z°)
sweep out almost ail of Kn+1. We then choose a nonexceptional t°. Then for almost
ail (t, z) the solution through (t, z) can be continued analytically to t°9 yielding a value
z° at t°. One defines the vector cp(t,z) to be this value z°, and thereby obtains n

(multiple-valued) analytic functions çk(t9 z), constant on solutions. Since the de-

pendence of solutions on initial values is locally a one-to-one analytic mapping, the
functional déterminant cannot vanish.

3. The Autonomous Case

We now consider Equation (3) in the autonomous case, in which / is independent
of t9 and assume fis an entire function of z. We seek n—\ functionally independent
first intégrais <pt{z) (/= 1,..., n—1) independent of /. The equilibrium points cause a

certain complication, but this is minor. It will be seen that the resuit for the autonomous

case leads easily to that for the nonautonomous case.
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THEOREM 2. Let thefollowing differential équation be given:

^ /(z)* (4)

wherefis analytic in Kn. Let the zéros offform a countable set. Then there exist n—l
multiple-valued analytic functions q>t (z),..., (pn-i (z), which can be continuedanalytically
to almost ail of Kn, such that each (pt(z) is constant on each solution 0/(4):

S A(z)t— 0> / l,...,n — l (5)
fc=l 0Zk

and such that the matrix

.4)
hasrankn—l.

Proof Each solution of (4) is of form

where ij/(t) is analytic. The solution is first defined in a neighborhood in the f-plane,
but may then be continuée analytically on certain paths in the finite f-plane to yield
a complète solution, not capable of further continuation; in gênerai, this complète
solution is a multiple-valued vector function in the f-plane. Among the solutions are
the equilibrium solutions: \l/(t) const. By assumption, there are only countably

many such solutions.

LEMMA. Let a path y be defined in the t-plane by a continuous function t t(u),
0< u< 1. Let a solution (7) be defined at t(0) and continuable along y. Let \f/ [t(u)] hâve

afinite limit z° as u -> 1 —.

(a) If also t(u) has a finite limit tx as w-> 1 —, then i//(t) can be continued along

y u {t±} up to tif so that \jf has no singularity at t±.

(b) If t(u) does not hâve afinite limit asu-^l—, then z° is a zéro off
Proof. Assertion (a) follows from a classical theorem of Painlevé (see [1, p. 11]).

For (b) we remark that if z° is not a zéro of/, then at least one component of/, say
fn, has no zéro in some neighborhood of z°. In this neighborhood zn can then be used

as parameter on the solutions and, in a sufficiently small neighborhood, the basic

existence theorem shows that one can express ail solutions by single-valued analytic
functions

zk zk(ztt)9 fc=l,...,n-l; t t(zn); \zH-z°n\<8. (8)

It follows that our solution \j/(t) must be so expressible, for t=t(u), and u sufficiently
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close to 1. But then, by the uniqueness of solutions, the condition \l/(t(u))->z° can
hold only if the corresponding solution goes through z°: that is, zk(z°n) z°k for
&=1,..., Ti — l. Since t(zn) is also analytic at z°n, we conclude that t(u) must hâve a
finite limit as u-+ 1. This contradicts our assumption. Accordingly, z° is a zéro of/.

We now consider a complète solution (7). As remarked above, \j/ is in gênerai
multiple-valued and hence there is an associated Riemann surface R over the finite
/-plane. We form the universal covering surface R* of R, and represent R* as a dise
ICI <Q, £ 1 or oo, in the Ç-plane. Our many-valued function \j/ is then replaced by a

pair of single-valued analytic functions t x(O> z *A*(O in |(|<£. If £ oo, then
\j/* (0 is entire and hence either xj/ is identically constant (equilibrium solution) or else

at least one component i^*(C) ta^es on ail complex values except perhaps one, by the
Picard theorem.

We now consider the case q 1 in more détail. We claim that at least one of the
functions ^*(() must be of unbounded type in the unit circle. For if not, then ail
$*(q) are of bounded type and hence hâve finite radial limits almost everywhere on
ICI 1. Since the zéros of/ form a countable set, it follows from the theorem of F.
and M. Riesz that i^*(Ç) has a finite radial limit z°, not a zéro of/, for almost ail
ei<? on |C| 1. For such a choice of ei(p, a, radius Ç uei<p corresponds to a path t t(u),
0^w< 1 in the f-plane and the assertion that xj/ has a finite limit is équivalent to the
statement that xl/(t(u)) has a finite limit on the path as in the Lemma above. If t{u)
also has a finite limit as u -» 1 —, then by (a) there is no singularity as u -? 1 — and the
continuation leads to an interior point of the Riemann surface, hence an interior
point of R* ; this contradicts the fact that £ « ei9> approaches the boundary of R* as

w-*l —. Hence t(u) has no finite limit. Therefore, by (b), z° must be a zéro of/,
contrary to our choice of ei<p on |£| 1. Accordingly, we hâve a contradiction and at
least one of xj/*(Ç), • •-, *A*(0 is of unbounded type.

We now consider complex scalars cl9...9cn and form the vector space V of ail
linear combinations Ya^KO* ICI<1- The functions of bounded type form a sub-

space of F(see [4, p. 162, p. 179]). We hâve just seen that at least one of the functions
*A*(0 is of unbounded type. It follows that those vectors c=(c1,..., cn) for which

X^*(0 is ofbounded type form a subspace of F of dimension less than n; therefore
for almost ail c in Kn (with référence to 2n-dimensional Lebesgue measure), X<^*(0
is of unbounded type; that is, for almost ail vectors c, the projection of ij/*(0 on the
one-dimensional subspace of Kn generated by c is a function w=ij/*c(Ç) of unbounded

type. Therefore w takes on almost ail complex values (in fact, ail except a set of
capacity 0 see [4, p. 202]).

A similar conclusion obtains in the case q oo, with bounded type and unbounded

type replaced by constant and nonconstant entire function. If \j/(t) is not identically
constant, then for almost ail c9 w=\l/*c(Q takes on almost ail complex values.

Now let o"(z°, c9 w)=l if the solution xj/ of (4) through z° for f=0 is such that



Analytic First Intégrais 209

ij/*c(O can be continuée! to take on the value w; let <t(z°, c, w) 0 otherwise. Then a
is measurable and we hâve just shown that, except for the countable set of zéros of/,
for each z°, for almost ail c, <r(z°, c, w) 1 for almost ail w. It now follows from the
Fubini theorem that, for almost ail c, for almost ail z°, cr(z°, c, w)= 1 for almost ail

w. We choose one such value c. Without loss of generality, we can assume that
c (0, 0, 1); that is, that zn ^*(0 attains almost ail complex values, for almost

every initial point z°.

We now use zn as new independent variable, and consider our trajectories in Kn

as solutions of the meromorphic differential équations

dz,_ft(zu...,zn)
dzn fn(zu...,zn)

Each such solution is given by (multiple-valued) functions

*i *(*„), Z=l,...,»-1, (10)

obtained by eliminating t from zl ij/l(t),..., zn i//n(t) by solving the last équation
for /; from the properties given above, it follows that, for almost every initial point
z°, the corresponding solution (10) can be continued analytically to reach almost ail
values zn. Therefore Theorem 1 can be applied, with n replaced by w— 1 and zn by /,
and there must exist n — \ functions (pk(zu..., zn), k=l,...9n—l with the properties
(5) and (6). Thus Theorem 2 is proved.

4. Extensions

We first consider the non-autonomous case.

THEOREM 3. Let the differential équation

be given, where z=(z1,..., zn), f= fx ,...,/„) andf is analytic in ail ofKn+1. Then there

exist n (multiple-valued) analytic functions #fc(z, t), k=l,...,n, which can be

continued to almost ail of Kn+1, which are constant along each solution of (11) and
whose functional matrix

has rank n.

Proof If we set zn+l t, then (11) becomes an autonomous System

dZl - f \ dZ" - f d

dt atdt at dt
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with no equilibrium points. If we apply Theorem 2 to this System, we obtain the n
intégrais $k(zi9...9zn+1) satisfying the conditions stated

THEOREM 4. Let the differential équations

(12)
dt g(2)'

be given, where fk(z)=fk(zu..., zn) and g(z)=g(zu...,zn) are analytic in Kn and

g(z)^0. Let /(z) (/1(z),...,/n(z)) have only a countable set of zéros. Then first
intégrais cpx(z),..., (pn-t (z) exist as in Theorem 2.

For wecanchoose <pl9... for the corresponding équation (4), as in Theorem 2.

Then (5) holds, so that also

k«i g(z) 5zfc

and hence cpt is constant on each solution of (12). In fact, the solutions of (12) have

the same trajectories as (4), with a new "time" parameter x=J g(z) dt.
For a gênerai autonomous meromorphic System

dzk fk(z)
dt gk(z)

(13)

one can always write the équations in form (12) by reducing the fractions to a common
denominator. If, after this réduction, the numerators have only countably many
common zéros, then Theorem 4 is applicable. For a nonautonomous System analogous
to(12):

dzk fk(z9t)
dt g(z,O' fc=l,...,n, (14)

one can introduce t as (n +1)—st dépendent variable, as in the proof of Theorem 3,

and obtain the équivalent autonomous System

^T fi(z,t),..., ~ Mz>t), ^- g(z,t) (15)
ax ax ax

and hence, if the fonctions J^ ...,/„, g have only countably many common zéros, we
obtain n independent first intégrais $t (z, t),..., #rt(z, t).

5. Examples

In the paper [3] various examples are given. In particular, it is pointed out that
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for the first order équation z'=P(z), where P is a polynomial of degree 4, in gênerai
the first intégral has logarithmic branch points and the typical solution is a curve
dense in fz-space. By raising the degree of P or replacing P(z) by sinz2, for example,
the complexity can be increased.

The following example is also instructive. (Its relevance to the problem at hand

was pointed out to the author by T. Kimura.) It is well known that each "linear-
polymorphic" function satisfies a differential équation of the form

Hc K(O- (16)

where [z\ is the Schwarzian derivative and R(Q is rational (see [2], p. 444). Since

(16) is of third order, it can be written in the form (1) with k 3 and the/* rational.
The gênerai solution of (16) is given by

ah(Q + b
z (r, ,> (17)

ch (Ç) + d

where h(Q is one particular solution. For proper choice of R(Ç), A(Ç) is the inverse

of the elliptic modular function and is hence continuable everywhere except for
logarithmic branch points over three points of the Ç-plane. Each solution (17) has

then a similar character, and hence Theorem 1 is applicable. One can in fact obtain
a complète set of three first intégrais cpu <p2 <Pz from (17) by differentiating twice and

solving for a, b, c, with d set equal to 1. The resulting functions q>k are many-valued
and can be continued to almost ail of K4. In particular, the solutions with rf=0 have
been lost; their graphs fill a set of measure 0.

By taking £ as dépendent variable and z as independent variable, (16) can be

rewritten as an algebraic differential équation of third order for £(z). For appropriate
choice of R(Q, as above, the solutions are given by

(18)

where \j/ is the elliptic modular function. The third order differential équation can
again be replaced by a System of first order équations (hère, autonomous). Because

of the nature of the elliptic modular function, the solutions of this System are single-
valued but each is defined only in a half-plane or a circle. Thus the hypothèses of
Theorem 1 are not satisfied. However, the function \j/ is of unbounded type ([4], p. 201)
and hence one has the situation encountered in the proof of Theorem 2. Thus the
existence of first intégrais is assured. Thèse can be obtained explicitly as above by
inverting (18), differentiating twice and solving for a, b9 c, with d set equal to 1. The
fact that C is préférable to z as independent variable, so that one may be able to apply
Theorem 1, is indicated by the proof of Theorem 2.
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