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Infinite Symplectic Groups over Rings

GEORGE MAXWELL

§0. Introduction

Let 4 be a commutative ring, M a free A-module A, for some infinite set 7, and
R=End,(M). In a previous paper [4], we proved that normal subgroups of the group
U(R) of units of R must lie in congruence layers determined by the ideals of 4. We now
suppose that M possesses a nondegenerate alternate bilinear form (-, -) and prove a
similar result for the infinite symplectic group

Sp(R) = {ucU(R) | (u(x), u(»)) = (x,y) forall x,yeM},

at least when 4 €4 and the form (-, -) is “locally hyperbolic”. The strategy of the
proof is again the one mapped out by Bass in [2] and [3]. When A4 is a field, our results
coincide with those of Spiegel [6]. One should also note that Bak [1], Vaserstein [7]
and Vaserstein and Mihalev [8] have recently studied the orthogonal analogue of
Bass’ results in the “stable” finite case.

§1. Locally Hyperbolic forms

A submodule N of M is called hyperbolic if M=N@®N and N=N,®N,, where N,
and N, are totally isotropic and have bases {e,};., and {e’};., such that (e;, e)=1
for all jeJ. The basis {e;, e’};.; is then called a hyperbolic basis of N. The form
(+, *) is called locally hyperbolic if every finitely generated submodule of M is con-
tained in a hyperbolic submodule. When A4 is a field, this condition is automatically
satisfied. In general, it may be satisfied by assuming a priori the existence of a hyper-
bolic basis for all of M.

(1.1.) Remark. If (-, -) is locally hyperbolic, then for all unimodular x e M there
exists a unimodular y € M such that (y, x)=1. For suppose N is a hyperbolic submod-
ule of M containing x and {e;, e'};.,; is a hyperbolic basis of N. If x=} (e;a;+
+e/a’), there must exist a relation Y (b;a;+b’a’)=1 since x is unimodular. It
suffices to take y= (e;b’ —e’b).

If q is an ideal of 4, the form (-, -) induces, as usual, an alternate bilinear form
(v, *)q on the free A/q-module M ® ,A/q=(A/q)'” which, in general, need not be
nondegenerate. However, if (-, -) is locally hyperbolic, then (-, -), is clearly locally
hyperbolic and is furthermore nondegenerate. For suppose x®1 e M® 4 A/q is such
that (x®1,y®1),=0 for all ye M. Let N be a hyperbolic submodule of M containing
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x and suppose {e;, e’} ; is a hyperbolic basis of N. If x=Y (e;a;+e’a’), we have
(x,e’)=a;and (x, e;)= —a’ so that all ¢; and ¢’ must be inqi.e. x®1=0.

We have End,(M® ,A/q)=~End,((4/9)")=R/(q), where (q)={ucU(R)|
u(M)cM-q} is an ideal of R. The projection R— R/(q) induces a homomorphism
U(R)- U(R/(q)) and, if we regard M® 4, A/q as being equipped with the form (-, *),,
a homomorphism Sp(R) — Sp(R/(q)). The kernel of this homomorphism is denoted by
Sp(q) and the inverse image of the center of Sp(R/q) by Sp'(q).

§2. Preliminary Results

From now on, the form (-, -) is assumed to be locally hyperbolic. For every uni-
modular x e M and every a €A, the mapping t(a, x)(m)=m+ x-a(m, x) belongs to
Sp(R) and is called a transvection. The subgroup generated by all transvections is
denoted by ESp(R). If qis an ideal of 4 and a €q, t(a, x) is called a q-transvection: the
subgroup generated by all g-transvections is denoted by ESp(q). If o €Sp(R), the
formula

ot (a, x) o' =1(a, o (x)) 2.1

shows that ESp(q), and in particular ESp(R), is a normal subgroup of Sp(R) for all
ideals q. It is clear that ESp(q)=ESp(q') only if q=q’.

(2.2) PROPOSITION. The orbits of ESp(q) operating on the unimodular elements
of M are the congruence classes mod M -q. In particular, ESp(R) operates transitively.

Proof. Suppose x and y are unimodular elements of M congruent mod M -q. Since
(+, -) is locally hyperbolic, there exists a hyperbolic submodule N containing both x
and y. Let {e;, e’};.; be a hyperbolic basis of N. It is sufficient to show that a fixed
e; € N can be mapped into any unimodular element z=¢; mod M-q by an element
of ESp(q). For then, applying this with q=4, we first see that f(x)=e; for some
B €ESp(R). Since f(y)=e; mod M-q, the same argument shows that y(e;)=pf(y) for
some y e ESp(q). Therefore B~ 'yB(x)=y and B~ 'yB eESp(q).

By enlarging N if necessary, we may assume that for a certain index k eJ(k #1i),
both ¢, and e* occur with coefficient zero in z. Suppose

z=e;(1+q)+eqd + Y (eq; +€q’).
j#Fi
Since z is unimodular, there exists a relation

a;(L+q;) +a'q + ) (a;9;+a'q’)=1.
jFi
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Let
a;=t(—q;—q' —q;9, €)1 (— ¢, &)1 (¢’, & + &) 1(q;, € + ¢;)
B=1(—dné —e+e—ea)t(g e —e)t(a:(1+4) ¢ —e)i(d,¢)
v, =1(qa;, ¢ + €)1 (—qaj, &)t(— qa’, e; + &) 1(q:d’, ¢;)

o~ (1) (1)

Then d(e;) =z since] [ ;. ,;adds ) ;. (e;q;+e’q’) to e;, B adds e,q; + €'q at the expense
of subtracting e*q; and [Liec? ; removes the éq.. ”

(2.3) COROLLARY. The natural homomorphism ESp(R)— ESp(R/(q)) is surjec-
tive.

Proof. Let t(d, X) be a transvection in ESp(R/(q)): X is unimodular in M® , A/q,
but x need not be unimodular in M. Suppose N is a hyperbolic submodule of M con-
taining x with a hyperbolic basis {e;, e’} ;. ;. Applying (2.2) to M® 4 A/q, we see that
x%=20(e;) for some i eJ and ¢ constructed as above; hence (4, X)=351(a, €,)6 . How-
ever, each of the unimodular elements of M® ,A/q occurring in the transvections
composing § clearly comes from a unimodular element of M. |

(2.4) PROPOSITION.

ESp(q) = [ESp(R), ESp(q)]-

Proof. In view of (2.2) and (2.1), it is sufficient to prove that all g-transvections
1(a, x) for some particular unimodular x € M arein [ ESp(R), ESp(q) ]. Choose a hyper-
bolic submodule N with a hyperbolic basis {e;, €'}, <;<3. The easily verified identity

T(—a,e;+e,+e3)7t(a,eq+ey)t(a, e +e3)t(a, e, +e3)t(—a,e).

T(— a, e2) T(— a, €3) =1
can be written in the form

1(a,e)=[B,t(—a, e, + e3) 1(a, e3)] [, t(a, e,)],

where f=1(—1, €*) 7(1, e*+¢,) and y=1(—1, €*) t(1, e*+e¢,) are in ESp(R) and
have the effect, respectively, of sending e; to e;+e; and e, toe, +e;. ||

(2.5) PROPOSITION.

[ESp(R), Sp’(q)] = ESp(q).
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Proof. We first show that [ ESp(R), Sp(q)] =ESp(q). If t(a, x) is any transvection
and ¢eSp(q), then by (2.2) o(x)=p(x) for some feESp(q). Hence [1(a, x), o]
=1(a, x) ©(—a, o(x))=[1(a, x), ] €ESp(q). Reducing modgq, we see that [ESp(R),
Sp’(q)] =Sp(q); therefore [ESp(R), [ESp(R), Sp’(q)]] =ESp(q). The ““3-subgroups”
lemma [5, p. 59] now implies that [[ESp(R), ESp(R)], Sp'(q)] =ESp(q). However,
[ESp(R), ESp(R)]=ESp(R) by (2.4) so that [ESp(R), Sp’(q)] =ESp(q); the opposite
inclusion follows from (2.4). |

§3. The Main Theorem

From now on, we assume that € 4. In the following propositions, G is a subgroup
of Sp(R) normalised by ESp(R).

(3.1) PROPOSITION. If (x, 6(x))=0 for all 6 €G and all unimodular x € M, then
G is contained in the center of Sp(R).

Proof. Linearising the identity (x, o(x))=0, we conclude that if x, y and x+y are
all unimodular, then (x, o(»))+((», 6(x))=0. Since every x € M can be written in the
form Y e,a; for some basis (e;);.; of M, we conclude that (x, o(x))=> (e;, a(e;))ai +
Y s (e o(e;))+(e;, o(e;))aa;=0forall xe M.

Therefore, for all x, y e M, we have (x, o(»))=—(y, 6(x))=(c(x), »)=(x, 71()).
Since (-, -)is nondegenerate, we conclude that 6=¢"" for all 6 €G, i. e. G is an abelian
group consisting of involutions.

If 6 €G and x € M is unimodular, [a, (1, x)]=1(1, 6(x)) ©1(—1, x) €G and is there-
fore an involution. Moreover, 1(1, 6(x)) commutes with t(—1, x) since (x, a(x))=0.
We conclude that 7(2, o(x))=1(2, x) i. e. 2(y, o(x)) 6(x)=2(y, x) x for all ye M. In
view of (1.1), we can choose y such that (y, o(x))=1; since 1e4, it follows that
o(x)=xa, for some a,cA. If (e;);y is a basis of M and o(e;)=e;a;, then o(e; +e;)
=(e;+e;)a;;=ea;+eja;, so that a;=a;;=a; for i#j. Hence a, is independent of x and
o is in the center. ||

(3.2) PROPOSITION. If G is not contained in the center of Sp (R), then G contains
a transvection T#1.

Proof. By (3.1), (x, 6 (x))=a+#0 for some 6€G and some unimodular xe M. Then
o, =[o, (1, x)]=1(1, 6 (x)). 7(—1, x)eG. Let N be a hyperbolic submodule of M
containing both x and ¢ (x); suppose {e;, e’} is a hyperbolic basis of N. Enlarging
N if necessary, we may assume that for some keJ, both e, and e occur with zero
coefficient in x and ¢(x). Then G contains g,=[t(—1, ¢(x)) t(1, e, +0(x)), 0y ]
=1(1,a(x))t(=1, x+ea) t(1,x) (-1, 6(x)) and hence o;=0] 0,0, =1(1, x)
1(—1, x+e.a).

The construction of (1.1) produces an element ye N such that (y, x)=1 and both
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e;ande® occur with zero coefficient in y. Thus G contains [1(1, y) t(—1, e, +»), 03]
=t(l, x+e) t(—1, x+(a+1)e) 1 (1, x+ae) 1(—1, x)=1(—2a, €). |

(3.3) PROPOSITION If G contains a transvectiont+ 1, then G ESp(q) for some
q#0.

Proof. Suppose 1(a, x)eG for some a#0 and some unimodular xe M. In view of
(2.1), (2.2) implies that 7(a, x)e G for all unimodular xe M. To prove that ESp(a4) =G,
it is therefore sufficient to show that 7 (ab, x)e G for a particular unimodular xe M and
all beA.

Let N be a hyperbolic submodule of M with a hyperbolic basis {e;, e’}; < j<3. Asin
the proof of (2.4), the identity

1(—a,e; +e3 + bey)t(a, e, + bey)t(a,es + bey)t(a, e, +e3)(—a,e).
t(—a,e;)t(—ab? e) =1

can be written as

r(abz, e))=[B,1(—a,e; +e3)1(a,e;3)] [1,7(a, e;)]

where f=1(—b, ¢*)t(b, e*+e,) and y=1(—b, €*) t(b, e*+e¢,) are in ESp(R) and

t(—a, e;+e3)=1(a, e,+e3)" %, 1(a, e;)and 7(a, e,) belong to G in view of the initial

remarks. Hence t(ab?, e;) t(ac?, e;) ' =1(a(b*—c?), e,)eG for all a, beA. Since

3€4, any element in 4 can be written in the form b*> —¢?, proving the assertion. ||
We now come to our principal result.

(3.4) THEOREM. Suppose 4€A and the form (-,-) is locally hyperbolic. The
Sfollowing assertions are equivalent:

(i) G is a subgroup of Sp (R) normalised by ESp (R).

(ii) There exists a unique ideal q in A such that ESp(q)=G<=Sp’(q).

Proof. Choose q maximal w.r.t. the property ESp(q)<=G. Suppose G4Sp’(q);
then the image G of G in Sp(R/(q)) will not be in the center. Since the homomorphism
ESp (R)— ESp(R/(q)) is surjective by (2.3), we may apply (3.2) and (3.3) to G and
conclude that GoESp(q’/q) for some ideal q';q; lifting to 4, we have ESp(q’)<=
=Sp(q)'G. Now by (2.4) and (2.5), ESp(q')=[ESp(R), ESp(q')]<[ESp(R),
Sp(q): G] =G, contradicting the maximality of q. Therefore G<=Sp’(q).

IfESp(q)=G<=Sp’(q)thenby (2.4)and (2.5) wehave ESp(q) =[ ESp(R), ESp(q)] =
<[ESp(R), G]<[ESp(R), Sp’(4)] =ESp(q) = G. This shows that q is unique and that

(i)= (). |

(3.5) COROLLARY. The following are equivalent:
(i) G is a normal subgroup of ESp(R).
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(ii) There exists a unique ideal q such that
ESp(q) = G = ESp(R) n Sp(q).

The groups 8(q)=ESp(R)nSp(q)/ESp(q) are all abelian.

Proof. Suppose G is normal in ESp(R); (3.4) provides a unique ideal q such that
ESp(q)=G<ESp(R)nSp’(q). To show (i)=>(ii), it suffices to prove that ESp(R)n
nSp’ (q)=ESp(R)Sp(q). However, it is easy to see that the center of Sp(R/(q))
consists of homotheties, of which only 1 can lie in ESp(R/(q)).

Both (ii)= (i) and the commutativity of 8(q) are implied by (2.5). |

(3.6) COROLLARY. If q is a maximal ideal of A, the group ESp(R)/ESp(R)n
N Sp(q) is simple. ||
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