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Parabolicity and existence of bounded biharmonic functions!

by Leo SARIO and CECILIA WANG

The existence of bounded biharmonic functions has exhibited interesting depen-
dence on the dimension of the base manifold. Typically, such functions exist on the
punctured Euclidean N-space EV:0<|x| < oo for N=2 and for N=3, but not for any
N >4 (Sario-Wang [17]). In the present paper we are interested in the problem: Is
there any relation between the parabolicity of a manifold and the existence of bounded
biharmonic functions, and does the dimension of the manifold have any bearing on
the question.

Denote by H?B the class of bounded biharmonic functions. In contrast with the
case of bounded harmonic functions, which are known not to exist on any parabolic
manifold (see e.g. Sario-Nakai [14]), it is possible to endow even the Euclidean plane
with a metric which allows H?*B-functions (Nakai-Sario [8]). The process relies on
the fact that harmonicity on a Riemann surface, and hence parabolicity, are not affect-
ed by a conformal metric ,which thus can be freely chosen to bring in H2B-functions.
For manifolds of dimension N >3 this process is no longer possible. We shall show
that, nevertheless, there exist parabolic manifolds of any dimension which carry H?B-
functions.

That there exist hyperbolic manifolds with H2B-functions is trivial in view of the
Euclidean N-ball. We shall prove that there also exist hyperbolic manifolds of any
dimension which do not possess H?*B-functions.

Our study is completed by giving parabolic manifolds of any dimension which do
not tolerate H?B-functions. Thus the totality of Riemannian manifolds for any N is
decomposed into four disjoint nonempty classes,

N AN AN AN AN N N N
OGmOHZB, OGﬁonB, OGHOHzB, OGmoHZB,

where OY is the class of parabolic N-manifolds, O}y the class of N-manifolds which
do not carry nonharmonic H?B-functions, and O stands for the complement of a given
class O.

1. Consider the punctured N-space

MY={0<r<ow}, r=[x|, x=(x,..., Xy),

1) The work was sponsored by the U.S. Army Research Office - Durham, Grant DA-ARO-D-31-
124-71-G181, University of California, Los Angeles.



342 LEO SARIO AND CECILIA WANG

with the metric
N-1
ds® = r*dr?® 4+ r**2do} + Zz @;(0) do?,

a a constant. Here we have utilized the global polar coordinates (7, 6;,..., Oy_,) of
the punctured N-space, and ¢,(0),..., py_.(0) are positive (periodic) functions of
0,,..., Oy_, only.

LEMMA 1. MY eOZ for every a.
Proof. Set ¢o=1I1_, ¢, The metric tensor (g;;) is diagonal, with g"=r"%, g%% =
r~*~2, and \/g=r""'¢}. For f(r)e C?, the Laplace-Beltrami operator 4 =d0 +5d gives

(ra+ lq)gr—afr) ,

1 0 —ue1 -3 0
45 =22 (fagrry =gt
gor r

which vanishes if and only if d(rf ")/dr=0. Thus every radial harmonic function on
MY has the form f(r)=alog r+5b. For b=0, and a suitable a, f (r) is the harmonic
measure wy of the region bounded by r=1 and r= R, say. As R—» o or R—0, wz—0,
and MYeO}.

LEMMA 2. For every a, cos(a+2)0, e H2B(M)).
Proof. Since the ¢,’s are independent of 0,,

0 d
Acos(o+2)0, =—r* lo;?* 5. I:r““qo%r”“‘z 7. cos (& + 2) 91]

=(a+2)*r " 2?cos(a+2)0,,
and

o[ o
4% cos(a +2) 0; = — (a + 2)? {r'“"l = [r P (r~* % cos(x + 2) 91)]
r

6,0, .
+6—0:|:r Zgaz(r 2cos(a+2)91):|}

=—(@+2)[(@+2)r > *cos(a+2)0;, —(a+2)>r 2%
x cos(x+2)0,]=0.
We have proved:

THEOREM 1. For every N, OXn0%.5 #0.

2. Consider the space discussed in [13]

E§={0<r<w}’ r=|x|, x=(x1,...,xN),
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with the metric ds=r®dx]|, aeR.

LEMMA 3. E) €O} if and only if a=—1.
Proof. The metric tensor is given by

ds® = r*dr® + r***2¢p, (0) dO} + -+ r*** 2y _, (0) dO%:_,,

where 0=(0,,..., O0y_,) and ¢,..., py_, are trigonometric functions of 6. Set @, =
IIY " '¢,. Then \/g=r""1*N2p¥(0), g™ =r~2% and for f(r)eC?,

TP e —2)a 4 ot
Af (ry=—r~N*1 ”¢o*5;(r” THN=Depd £1)

=—r 2 {f"+[N=1+(N-=2)a]r ' f}.

This vanishes if and only if

r

f(r)=a f pNHL-WN=2)ag. o

1

The rest of the proof is as for Lemma 1.

3. To show that there exist hyperbolic N-manifolds without H2B-functions, it
will be convenient to choose a= —2 in No. 2. Then the equation 4 f(r)=0 has a
solution

logr for N=2,
o(r)= P W=DI4 for N#£2,

and the general solution is aoc+b. Let S,,(8) be the surface spherical harmonics,
n=1,2,..., and m=1,..., m,, where m, is determined by

(1+4%)(1=x)""*1= n_zjo ",

We have 4S8, =n(n+N—2)r %S, and the equation A(f (r)S,,(0)) =0 has the gener-
al solution f (r)=ar?"+br®, where

P dn =3[~ (N = 2)/4 £ /(N = 2)%/16 + 4n(n + N = 2)].

For a fixed r, any harmonic function %(r,0) on EY,, is C* on the (Euclidean)
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unit sphere, with an eigenfunction expansion

h(r, 0)= fo(r) + ni f; Fon () o (0).

Given O<r; <r, <o, choose constants a,,, b,,, @, b, such that for i=1, 2,
anmrgn + bnmr‘il" = f;lm (7',-), a a(ri) + b = fO (ri) .

Then A has the expansion

h=3 S (@ur™ + byn™) S + ac (r) + b

n=1m=1

on r=r, and r=r,, hence by the harmonicity on r;, <r <r,. The uniqueness is veri-
fied by choosing O0<r{ <r,<r,<r, <oo, which gives on r; <r <r, an expansion that
on r; <r <r, must coincide with the above.

4. By a straightforward computation of 4 we find that the equation 4 f (r)=1 has
a solution s(r)= —(8/N)r'/?, the general solution being s+ ao + b. Similarly, the equa-
tion 4 f(r)=o(r) has a solution

s(r)(logr—4) for N=2,
—2logr for N =4,
8
N-—4

t(r) =
pm N4 for N#£2,4,

and the general solution is t+ao+b. Set P,=N/8+p,, Q,=N/8+4,. The equation
Adu=rS,, is satisfied by

1 rpn'*"i‘S

Upm = — nm>s

n

and the equation dv=r?S,, by

1
nt
=— — pintig

Unm
Qn

Given a biharmonic function u on EY; 4, let

Q=5 % (@™ + bynt™) Som + ac (r) + b,

n=1m=1
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and set

[e o}

ug= Y, zn Aty + DO + at (r) + bs (7).

n=1m=1

Then u=uy+k, where k is a harmonic function

k=Y Zn (Com?™ + dpr™) S, + ca (r) + d.

n=1m=1

In fact, the compact convergence of u, is entailed by that of 4u, and the statement
follows by Nos. 3-4.

5. We are ready to state:

LEMMA 4. EY ,e0}:; for every N.

Proof. Letue H*B(EY,,,). Clearly |(u, ¢)| <sup|u|(1, |¢|) for all peL', in partic-
ular for the family of functions ¢,=0,(r)S,,., where g, is a fixed function €C, g, >0,
suppg, =(1, 2), and ¢,(r)=9,(r+1—1t) for ¢t > 1. By the orthogonality of {S,,},

t+1
(u, qot) = f (Clanmrpn+i- + Czbnmrqn+% + Cscnmrp" + C4d,,mr"") o, (r) I‘N/4—1dr.
t

Here and later the C’s are constants, not always the same. Clearly j;* 1 o(r)dr is con-

stant as ¢— oo. If some a,,, #0, then
(u, @) ~ CtP»*N4=% - \whereas (1, o) =0 (N*71).

A fortiori, we have a contradiction for n such that p,+ N/4—1> N/4—1, that is,
p.> —1. Since p,>0 for all n, we obtain a,, =0 for all n, m.
If some c,, #0, we infer by g,+%<p, for all n, N that

(1, 9) ~ CHPe 41

as t—o00. Every n such that p,>0 is ruled out, and we conclude again that ¢,,,=0 for
all n, m.

Now choose g,(r)=0,(r/t), with ¢, as before, and 0<7 <1. Then suppg,=(¢, 2t)
and [?* o,(r)dr= Ct. If some d,,,#0, then

(u, @) ~ Ct*"*¥4 and (1, ]¢,l) ~ O (%)

as t— 0. Inequality g, + N/4<N/4 gives a contradiction, and by g, <0 we deduce that
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for all n, m. In the same manner we see that b,,=0 if g,+1 <0, that is, for all n, m.
Thus the function u reduces to at(r)+bs(r)+ co (r)+d. Since 1, s, o are linearly
independent and unbounded, we have a=b=c¢=0, and u is a constant.
We combine Lemmas 3 and 4 to conclude:

THEOREM 2. For every N, OXnO%N.5 #0.

6. The existence of hyperbolic N-manifolds with H?2B-functions is given by the
Euclidean N-ball. It remains to find a parabolic N-manifold without H?B-functions.

LEMMA 5. EN, €0}y for every N.
Proof. The proof arrangement is the same as in Nos. 3-5, and we only point out

the changes. We now have o (r)=logr for every N, p,= —q,= \/ n(n+ N—2), and the
expansion of a harmonic function 4 is as before. As to biharmonic functions, s(r)=
—3(logr)?, ©(r)= —i(logr)>, both for every N, and

1
Upy=— — 17" 1087 Sy, U= —1 "logr:S,,.
2p, 2p,
With this notation, there is again no change in the expansion of a biharmonic func-

tion u.
If some a,, #0, we have for ¢,=0,(r)S,m 0:(r)=0,(r+1—1),

t+1

(u, ) ~C f rPrlogr-r o, (r) dr ~Ct™ logt, (1,]|p])=0("1)

t

as t—»oo. Therefore a,,=0 for p,—1> —1, that is, for all n, m. That c,,,=0for alln, m
is concluded in the same manner.
Now choose ¢,(r)=0,(r/t), t—0. If some b,,, #0, then

(u, ¢,) ~Ct™ P logt, and (1,]e,|)=0(1).

Thus all » with —p, <0 are ruled out, and we have b,,,=0 for all n, m. Similarly all
dp=0.

The function u again reduces to the radial terms of its expansion, and as before we
infer that u is a constant.

We have established:

THEOREM 3. For every N, OXn 025 #0.
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7. We may combine our results in the following form:

THEOREM 4. The totality {R"} of Riemannian N-manifolds decomposes, for every
N, into the four disjoint nonempty classes

{RN} = OZH OIIVIZB + Ogﬂ 0~ng + 6gﬂ 0%23 + 5gﬁ 5223.

We append a bibliography of recent work in the field.
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