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The </(p) Cohomology of Some k Stage Postnikov Systems

by David Kraines

In this paper we compute the cohomology of a class of k stage Postnikov systems
as a Hopf algebra over the modp Steenrod algebra %7 (p). The results generalize and
complete the mod2 computations in [K3]. The techniques are similar, although con-
siderably more care must be practiced to handle the odd prime results.

To derive the structure theorem, we introduce a few new facts about Dyer Lashof
operations. These homology operations are applied to compute differentials in an
Eilenberg Moore spectral sequence and also to obtain information about the coalgebra
structure of classifying spaces. These techniques should have wide applicability.

This Postnikov system is the universal example for certain Massey products. Our
results will be used in a later paper to prove the relation stated by Moore and Smith
(Section 5 [M3]) between certain higher order differentials in an Filenberg Moore
spectral sequence. In this paper, (Theorem C) we solve a generalization of Conjecture
29 [S2] about these operations.

In [K5]we studied a generalized Eilenberg MacLane space with a twisted H structure

K, =K (Z,,2m) x -+ x K(Z,, 2mp").

We showed that the H structure was homotopy associative. In this paper, we show
that K, has a classifying space E,, and thus this H structure is strongly homotopy
associative [S1]. Our technique will be to build up E, as a Postnikov system.

Before describing this Postnikov system, we must fix some notation. Unless explic-
itly stated to the contrary, p will denote an odd prime. The fundamental class of
HY(K(Z,, q); Z,) will be denoted by 1,. Finally 6: H1(X; Z,)—> H™! (QX; Z,) will
denote the loop suspension homomorphism. Thus o1,=1,_;.

THEOREM A. There is a k stage Postnikov system

K(Z,;2mp* + 1) 5 E,

l
E._, —> K(Z,,2mp* +2)

:

o
K(Z,2mp+1) HE, —%K(Z,,2mp*+2)

. A
K(Z,,2m +1) =5 E, =5 K(Z,,2mp +2)
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satisfying the following conditions:

L jF )} (1ips2)=—B PP™ (15 ,) where s=2mp" for r=0,..., k—1.

2. ok} (1)=0.

3. There is an H space equivalence 0:QE, — K,.

This theorem is trivial if k=0. Also E, is just the 2 stage Postnikov system with
stable k invariant f#™ 1,,,.,. Thus E, and E, are in fact infinite loop spaces. It is
probable that E, is an infinite loop space as well. The strongest result that we can
obtain at this time is the following.

THEOREM B. There is an H space E, such that Q*?~“E, =E, for each k.

Let (x>™ denote the m fold restricted Massey product [K2]. This operation is a
subset of the m fold Massey product {x,..., x). Theorem 14 of [K2] states that if
xeH*"*1(X; Z,) then (x)? is defined as a single class and equals — fZ#"x.

As in [K4] and [K6], basis elements in the Milnor basis of .27 (p) will be denoted
2 (E, R) where E= (g, &y,...), R=(ry, r3,...), =0 or 1, r,>0, and Y ¢+ r;<co.
This element is dual to t§ 3 ... &'} &'3.... Furthermore let 2((0,..., 1, 0,), (0,...))=
Q; as usual, let 2((0,...), (0,..., 7,...))=2;(r) (the basis element dual to &}), and
let Z;=2,(1).

Conjecture 29 of [S2] generalizes Theorem 14 of [K2] to p? fold Massey products
and secondary Bocksteins. Theorem C below proves this generalization for p*** fold
Massey products and (k+ 1) order Bocksteins 8, ;.

THEOREM C. Let ue H*"*'(E,; Z,) be the generator. Then the higher order
cohomology operations <ud”"', —Bisi PP™... P"u and — P11 Prs1(m)u are de-
fined as subsets of H*(E; Z,) for s=2mp**' +2. Furthermore each operation contains
Kty (15), at least modulo decomposables.

Our method in this paper is to prove Theorems A, B and C by induction on k.
Trivially E, = K(Z,, 2m) satisfies Theorems A and B. Theorem C is immediate from
P, (m)=2" [M3] and {u)?= — BP™u [K2]. The two stage system E, has been studied
in [H]. Theorems A and B are easy in this case. We will assume that E, exists and
satisfies Theorems A and B. By Theorem A part 3, QE, has the H type of K,.

In section 1 we review some algebraic results about H* (K; Z,) derived in [K6]. An
Eilenberg Moore spectral sequence converging to H*(E,; Z,) is introduced and par-
tially computed in section 2. By using Dyer Lashof operations, the non trivial differ-
entials in this spectral sequence are computed in section 3.

To describe H*(E,; Z,) as an ./ (p) Hopf algebra, we must study the effect of
Steenrod operations on Massey products. This is done in section 4. Our results give
information about a problem of Milgram (Problem 30 [S2]).

In section 5, we consider an exotic Hopf algebra in order to state a concise struc-
ture theorem for H* (E,; Z,). We also indicate the structure of H*(BE,; Z,). Finally
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in section 6 we complete the induction step by explicitly identifying the next k invariant.
Section 1

In [K6] a twisted H structure of K, was introduced. If we let ;e H 2™ (K, ; Z,) be
the image of 1,,,,; under the projection K, - K(Z,, 2mp*), for i=0, ..., k, then the sub
Hopf algebra 4, of H* (K,; Z,) generated by ay, ..., o, is isomorphic as an algebra to

Z,[og, ..., ] .

As a coalgebra, A, is isomorphic to

rk+1 [“O’ ssey agr’ --u],

the divided power coalgebra truncated at height p*** (see [K5] for a more complete
description of 4,).

Let H be a graded, connected, biassociative and bicommutative Hopf algebra. Then
by methods of Milnor and Moore we have an exact sequence connecting the primitives
and indecomposables of H.

PH-S5 PH -5 QH 5 oh (1.1)

where &£ (c)=c” is the Frobenius map, v is the composite PH>> H—» QH, and / is the
dual of the Frobenius map on the dual of H. Note that v is an isomorphism if

g#0(mod2p).

DEFINITION 1.2. If g£0(mod2p)and ce HY, then {c)ePH ?denotes the unique
primitive class such that {¢) —c is decomposable.

THEOREM 1.3. PH*(K; Z,) is generated as an unstable left </ (p) module by
g, Qi) and {P;a,) for i=0, j>1andr=1,..., k. The relations are generated by the
Sfollowing:

0:<Qj0) = — 0;<Q0,) (1)
P (P j“r) =%, (Z? %) ()
Q{2 =P {Quy if i>0 (3)
Qo <93jar> = «@j Qo) — <Qjar>
('gz’j)p_l <g’j“r> = <37’,-a,-1>" 4)
Y (-1) 27 PQu>=0 if s=mp (5)
Y (= 1Y &P (Pay=0 if s>mp” and s# 0(modp) (6)

where p,=1+p+---+p'~ L
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Proof. See Theorem 3.7 and 3.11 [K6].

DEFINITION 1.4. For r>0, let L, be the unstable left &/ (p) submodule of
PH*(K; Z,) generated by {Q,»,i>0. L} and L will denote the even and odd
dimensional submodules respectively. We can also write L, = L°@L! where L? and
L} are the Z, modules generated by #(R) (Q,«.> and #(E, R) {Q,x,> with E#0
respectively.

Let G, be the Z, submodule of PH*(K; Z,) generated by Z( R)a, and inductively
define G, to be the union of G,_, and the Z, submodule of PH*(K; Z,) generated by
P(R)(ZP o,y for j=1.

By Theorem 1.3 part 4, this is not a disjoint union. Thus we define M,=G,/G, _,.
Let M,~M)@® M, where M, is generated by the image of Z(pR){Za,) and M, is
generated by the image of 2 ( R){Z ;o> where p}R, i.e. the image of Z(R)Z? (2 ja,)
Thus in the Adem basis, vL) < QH*(K,; Z,) is generated by admissible monomials
popr ... P*Bq, with Y ¢;=1, that is monomials involving exactly one Bockstein.
Similarly vM? is generated by admissible monomials as above with Y ;=0 and
5;=0 (modp) for i # tand s,=1 (modp) for some ¢, that is monomials involving no
Bocksteins and exactly one </ (p) algebra generator P,

The following coalgebra structure theorem is essentially Theorem 3.12 of [K6].
The submodules L?, L!, M?, and M} do not appear explicitly in this theorem. They
will, however, be necessary later in the description of H*(E,; Z,).

THEOREM 1.5. There is a coalgebra isomorphism

H*(K; Z)~E@ L) (@ L)®T—+1(® M,)

where T, is the divided power coalgebra truncated at height p'.
Section 2

Our induction hypothesis insures that E, exists and that H* (E,; Z, ) is a biassoci-
ative, bicommutative Hopf algebra. Thus we have a spectral sequence of Hopf
algebras with

&, X CotorHa(K; Zp) (Zp9 Zp)

which converges as algebras to H*(E; Z,). (see [K7] and [M4)]). This is the dual
spectral sequence to the homology Eilenberg Moore spectral sequences with

&’ ~ Tor™®:2) (7 7,) = H, (E; Z,).
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If Be H*(X; Z,) is a submodule of odd dimensional cohomology classes, we
define a submodule fZB of even dimensional cohomology classes to be generated by
pP°x where xe B has dimension 2s+ 1 (see [M4]).

The computation of Tor®"(Z,, Z,) is well known if H* is a bicommutative bi-
associative Hopf algebra (see for example [C]). Since Cotor is the dual functor we can
easily derive the following Hopf algebra isomorphisms.

Cotorgy(Z,, Z,) = Z,[sx]
Cotor r, ) (£, Z,) ® E(sy) ® Z, (7] (2.1)

as Hopf algebras where x is odd dimensional, y is even dimensional and

bi degsz = (1, deg z)
bi degu,y = (2, p degy).

PROPOSITION 2.2. The generator

pex € Cotor I, (y) = H*((K’Ft (y))

represents the restricted p* fold Massey product {sx)".
Proof. The element p,x is represented in the cobar construction §I',(x)
by
Z [v:] [» j] .

i+j=pt

where y; is the ith divided power of x=1y, (see [K7] and [D]}).
Since d [y;] = [¥y:]
i=1
= ¥ Dn-]
J=

in the cobar construction, we have that (y;) forms a defining system for ({x})"’cH *
x (§I,(x)). The result follows by observing that sxeCotorr,,, corresponds to

{x}eH*(&I.(x)).

Since Cotor commutes with ® for cocommutative coalgebras we can immediately
give the ¢, term of the Eilenberg Moore spectral sequence. The theorem below follows
from the above algebra and the observation in [K2], [K7] and [M4] that {(sx)?

= — fPsx.

THEOREM 2.3. As bigraded Hopf algebras

e, Z,[®sL,]QE[® sLI]® Z,[® BPsLY]
® E[® SMr] ® Zp [® Auk—r+ er] .
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When p =2, it was shown in [K3] that ¢, =¢_,. For odd primes the situation is
somewhat more complicated. To determine the differentials. we must make full use of
the algebraic structure of &,.

THEOREM 2.4. The differentials are determined algebraically by

. al,2s r+1,2s-r+1
d. g’ — ¢ .

Furthermore d, is O unless r =p?—1 and 2s=2tp% or r =2p?—1 and 2s= (21p +2)p?
for some q=1 and t > 1.

Proof. Since ¢, is a spectral sequence of Hopf algebras, d, is algebraically deter-
mined by its action on the indecomposables, which are concentrated in primary de-
grees 1 and 2. Also ¢, is primitively generated and d, maps primitives to primitives.
The only primitives of primary degree greater than 2 are the p?h powers of even
dimensional primitives, and these have bidegree (p%, (2¢+1)p?) and (2p%, 21p2*!)
by (2.1). These primitives have even total degree, and so if they are in the image of d,,
then a simple counting argument shows that » and s must be as in the theorem. See
also [C] and [M4] for similar arguments.

An element x PH' ( K,; Z p) determines an element sx= [x]ees’’. If [x] is an infinite
cycle, then [x] represents an element in the associated graded of H*'(E,; Z,). If
t#1(mod2p)thencQH'*'(E,; Z,)—»PH'(K,; Z,) is a monomorphism [C]. In this
case we will denote by [x] the unique element of QH'*'(E,; Z,) satisfying o[ x] =x.

The classifying space E, can be constructed from K, using the geometric analogue
of the bar construction [M2]. Thus, by naturality, the differentials in the associated
spectral sequence commute with Steenrod operations in the graded sense. In particular
if [x]ees’ * is an infinite cycle, so is [ (E, R)x]eey ™.

Clearly [, ]eey’ ®™ is an infinite cycle representing u. Furthermore, by Theorem
34, [{Q;a.>] and [{#,Z;a,>] are infinite cycles for dimension reasons. Thus we
have the following results.

PROPOSITION 2.5. The elements of sL,, sM,, and sM} for r =0,...,k iney * are
infinite cycles.

Thus it remains to compute the differentials on sM? for r=1,..., k. This we will
do in the next section.

Section 3

It turns out that d,_, is nontrivial on sM; ce,’*. We can determine this differ-
ential and simultaneously determine A:QH(E; Z,)~»QHY?(E; Z,) see (1.1) by
looking at Dyer Lashof operations.

Recall the following facts about these operations ([M1], [N])
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THEOREM 3.1. If X is an n fold loop space, then there are natural homology
operations

B:H,(X;Z,)>H,_(X;Z,)
and

Qj:Hs(X; Z,) = Hyyzjp-1y(X5 Z,,)
for 2j(p — 1) <n+2sp satisfying

7xQ’ = Qlo, (1)
where ,: H,_, (QX)—H,(X) is the loop homomorphism.

Q'x =x? if dimx=2j. (2)
ij =0 if dimx>2j. 3)
Piv 1'Qj+pi = ng’i* - gi*Qj |

Qi+1:Q""" = Q0 — 0.Q/ 4)

Proof. The first three properties can be found in [M1]. The last one can be derived
from the Nishida relations [N]. A full exposition of these relations will be given in a
later paper.

PROPOSITION 3.2. For i=0 and r=0,

AQi+ 194+ 1] = [Qix]

in QH*(E; Z,).
Proof. With s=mp"+ p‘, the composite g,

PH,,- (K; Zp) — QH,,— (K; Zp) — PH,,(E; Zp)

is an isomorphism. Let ye PH,,(E; Z,) and x= (¢,v)~! y. The following chain of
equalities uses the adjointness properties of homology and cohomology, Theorem 3.1,
and the facts that {x, ¥) = 0 if u is decomposable and Q°x is primitive if x is.

0 AQis 1%+ 1 1D = O [Qis 1% 41D
=<0,Q%, [Qi+ 1% 411D
= Q%, Qi+ 1% +1))
={Q°%, Qi 41%+1)
=<Q" " Qux, &y 1)
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= <Qi*xa lar-#- 1>
= (x, Q>
= <ys [Qiar]>'

The theorem follows immediately by the duality between PH, and QH*.
THEOREM 3.3. In the spectral sequence ¢,

dp_.1 [gai-{- 1% + 1] = [Qiarl 2 IQiar] J

Proof. Let xePH,,_,(K; Z,) where s=mp"+p'. By [K1]—-pQx=(x)? in
Hy,,—2(K; Z,), where {x)? is the restricted Massey product defined with the Pontrja-
gin product in H, (K; Z,). By [K7], the differentials in the homology spectral sequence

g2 = Tor™® 20 (Z ,Z,)=> H,(E; Z,)

are determined by Massey products. In particular

d"™ x| % x] = [<x>'].

Using the previous theorem and the equations 4%;,,=0 and
BPir1=2iiB — Qisy

we have

BQ%, iy 10,11 = Q% (Zi418 — Qis1) tri 1)
=Y i1 By 1] — [Qiv 1% 41D
= = [Qe
=X, — Q).

The theorem now follows from the duality between the spectral sequences ¢" and ¢,.
Remark 3.4. This theorem could also have been proven directly, that is without
reference to Dyer Lashof operations, using the techniques of [K7].
Note that in the Serre spectral sequence of the fibration

K(Z, 2mp+1) > E, — K(Z,,2m + 1)

we have tiy,,41=pP 13,41 and 1.4’j+112,,,p+1=(Qj12m+1)" by naturality of the
transgression T and Adem relations.

Recall that if xe H*"(X;Z,) satisfies x"=0, then the n fold transpotence
¢.(x)c H*™"~2(QX; Z,) is defined. By [D], the following is immediate.
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COROLLARY 3.5. (Z;,10,,17€0,([Q0,])c H*(K; Z,).

By Theorems 2.5 and 3.3 the ¢, term of the spectral sequence is obtained from &,
by dividing out by E(sM;) for r=1,..., k and Z,[(sL?)?] for r=0,..., k—1. For
dimension reasons, we have already checked that no other differentials are possible.

Let Z{"[x]=2Z,[x]/(x?). Then we have proved the following structure theorem.

THEOREM 3.6. As an algebra

H*(E; Z,)~ Z,[® sL,] ® Z,[sL3]
®ZP[@ sLY] ® E[@® sL]

r<k

®Z,[® BPSLI]Q E(® sM,)
® E[sMo] ® Z,[® w-r+1M,].

Section 4

The submodule p,_, , ; M, of e5* consists entirely of infinite cycles by Theorem 2.4.
These elements correspond to p*~"*1 fold restricted Massey products on the odd
dimensional classes [#Z(R)Za,] in H*(E,; Z,) by Proposition 2.2 and the results of
[K7]. In fact E, is clearly the universal example for <ud?"".

THEOREM 4.1. Let veH*™*'(X; Z,). Then {v)?""" is defined if and only if there
is a map

f: X—E,
such that f*u=v and f*ud?" < {wH?"',

Proof. If f exists, then (v)?*"" is defined by naturality. Conversely if (v>**"" is
defined, then (v)?" is defined and contains 0. By induction, on k and Theorem A
there is a map f':X—E,_; such that f'*k*(1)=0. Thus f’ lifts to f:X—-E,.

Note that this shows that (v>?**" is defined if and only if (v)?* is defined and con-
tains 0. This situation is in sharp contrast to the definition of general higher order
cohomology operations. Also the indeterminacy of (u)”*"' is more controllable.

PROPOSITION 4.2. Let ve H2"*!(X; Z?) and suppose that {vY*"" is defined for
some t=1. Then the indeterminacy of Y™ contains (wHP= — BP"'w for all
weH*""'*1(X; Z,).

Proof. Let (a;) be a defining system for {v)”*'and let b a cocycle representa-
tive for w. Using the techniques of Theorem 14 and Lemma 16 of [K2], we can con-
struct a defining system (da’;) with a;=aq; for i <p®, a,. =a, +b, and such that the
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difference in the related cocycles is cohomologous to a defining system for {w)?. The
proposition follows.

By Theorem B, H*(E,, Z,) is a bicommutative, biassociative Hopf algebra. This
extra structure is useful in getting a better hold on the Massey products.

DEFINITION 4.3. Let xePH*"*!(E,; Z,) and assume that (x)" is defined and
non zero in QH?""*2(E,; Z,). Let u,(ox) denote the set of all we PH(E,; Z,) such
that vwe (x)?".

It is probably true that u,oxc{x)?, although we have no proof of this as yet.
We may consider p, to be a higher order operation from PH?*"(QX;Z,) to
PH?™P'*2(X; Z,) whenever X is an H space. The results of [D] and [K7] show that
K, is dual to the transpotence.

Let F=K(Z,, 2mp*+1) and j:F—E, be the fiber inclusion of Theorem A. We
will show that j* detects Massey products.

THEOREM 4.4. If r=0 or p YR, then

J* -1 <P (R) &) = — B2 Z(p*"'R) 1.

Thus j* restricted to u,_,. M, is a monomorphism.
Proof. First assume that r =0 and R=0.
Thus the equation reduces to

J 100 = — ﬂgmpk’ in PH*(F; Z,)

or
T =) in QH*(F; Z,).

The map j and its loop suspension induce a map of spectral sequences
J* e, (Ky) = &, (F).

It is easy to check that
#( % Dol rad) = ¥ [hut
i+j=pkt1 m+n=p

in e,xCotoryegy 2, (Z,, Z,) ® H*(FH*(QOF; Z,)). (see [K7]). The equation fol-
lows by Proposition 2.2.
In the general situation, Theorem 4.1 implies that there is a map

f:Ek =k El,c-r
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where QE,_,xK;_,=K(Z,,2t ) x--x K (Z,, 2tp*~")with the twisted H structure,
2t =dim#?(R)a, and f*u'=[2(R)a,]. The proposition now follows by naturality
and the observation that y«-:Z (R)o,=2?(p*~"R)a,.

These results enable us to get our hands on the generators and relations of
H*(E,; Z,).

THEOREM 4.5. If xePH*""'*2(E,; Z,) satisfies 6x=0 and j*x= j*u,y, then

XEUY-
Proof. Theorem 3.6, the only primitive generators which are in Kero are of the

form p#z and py. The theorem follows from Proposition 4.2 and Theorem 4.4.
To make results on the <7 ( p) structure of H*(E,; Z,) easier to state, we need to
introduce some abbreviations. Recall that

ALQi+1%+1] = [Q,]
by Proposition 3.2. Also for dimension reasons [f«,] is in Ker A for r =0 or
0= yi‘@ja g’in, Qin, or Q.

Compare the following with (1.2) and (2.6).
Notation 4.6. Let [0oa,]=<[{0a,>]> in PH*(E,; Z,) if 0 is as above. Also let
[Qa,] denote the divided power

)’p‘[QOar-i] if i
?p"(Qi-—ru) lf i

in H*(E,; Z,).

\V //\

r
r.

THEOREM 4.7. Let p;=1+---+p'~ L.
Then the following relations hold in PH*(E,; Z,).

2 (= 1)’ prEh [Q:“k]eﬂkﬂao (1)
0e Qi+ 1% 2
[Q;“k] €Zj+1Mk+1% (3)
PP li1% € et PP ag if t>k

c u{ P s> if 0<t<k. ()

Proof. By Proposition 3.10 of [K6] we have

Z ("’ l)igar—in = pF°.
By [K4], excfP*=2s+1. Equation 1 now follows directly from Theorems 4.4 and
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4.5. To verify equation 2, use the above and the formula exc Q,%#°=2s+ 2. Equation
3 is derived from the relation

PiBPlys41 = (Qj12s+ 1)’ of [M3] and [K4],
while equation 4 follows from
PPBPx = PP PP 'x  for

an odd dimensional class x.
By naturality, these relations will generate all others involving u_,,M,. For
completeness we record some of them.

COROLLARY 4.8. If r=0or pXR, then

Z = 1)i g’(Pk—'R) g B [Qo]epmi—r+1 (<P (R)a,). (D
0eQmy—r+1 (Z (R) o) (2)
[ng’ (Pk-'R) ak]peg’ﬁ 1M-r+1 2 (R) 3

THEOREM 4.9. PH*(E,; Z,) is generated as an unstable left s/ ( p) module by

u, [2:2 ], [Qox.], Z:[Q ;0] and Q,[ Q0. ]. for i, j=1 and r=1,..., k.
The relations are generated by

Qi[Qjar] == Qj [Qiar] (1)

2, [2:2] = P[22 %] (2)

0:[72] = 2P [Qe,] if i>0 (3
Z2;[Qox] = Z;[Qi] + Z,[Q,] + Qo[22 ]

(@Y 2 [Pia] =[P P, ] @

Z (= 1) 277 [Q0,] = ts1% if s=mp" (5)

=0 if s> mp"
Y(=1yHFTH[2a]=0 if s> mp" (6)
PP 0e,] = [Qe]" =0 if r<k. ()

Proof. The sequence (1.1) and our observations on the action of ¢ imply that the
set of generators is correct. That equations 1 through 6 are relations is immediate
from Theorems 1.3, 4.3 and 4.4. Equation 7 follows from Theorem 3.3. The fact that
equations 1 through 7 generate all relations also follows from Theorems 1.3 and 4.3
using the techniques of Section 3 [K6].

Note that the description of the generators and the relations of PH* (Ey; Z,) is
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considerably simpler when p is an odd prime than when p=2 (compare Theorem 12
[K3]). This is partly because the kernel of A is larger in the odd prime case.

Section 5

All the information necessary for describing the Hopf algebra structure of
H*(E,; Z,) has now been developed. As in [K3] a Hopf algebra which starts off
looking like a divided power Hopf algebra and ends up looking like a polynomial
algebra is needed. This Hopf algebra was considered by W. Browder [B].

DEFINITION 5.1. Let x be an even dimensional class in a Z, module. For
0< 1< o0, let M,(x) be the Hopf algebra, which as an algebra is generated by x,
PpXse.os PeX With relations (yp,x)P=0 for r<r. That is as algebras M,(x)
=ZP[x]® - ®Z P [y,-1x]®Z,[y,x]. As a coalgebra, y,-x is the p"th divided
power of x and (y,x)” is primitive. That is as coalgebras M,(x)=~I,(x)®
Iy ((y+x)"). As Hopf algebras M,y(x)~Z,[x], and M, (x)~I[x]. If B is an
even dimensional Z, module with basis {x;}, then M,(B)~ ® M,[x,].

Let C be a graded Z, module with C* and C~ the even and odd dimensional
submodules. Then recall that S (C) is the free commutative Hopf algebra on C. That
is S (C)~Z,[CT]®E[C™] as Hopf algebras.

To get the Hopf algebra structure theorem for H*(E,; Z,), it simply remains to
fix notation for various submodules of the primitives.

DEFINITION 5.2. Let B, PH*(E,; Zp) be the Z, module generated by
P(R)Qu if r=0 and #(R)[Qor,] and Z(R)Z#;[Qu,] if r=1,. k. Let
C,c PH*(E,; Z,) be the Z, module generated by Z( R)uif r =0and #(R)[2,Z ]
if r=1,..., k. Finally let D, be generated by #(E, R)[Q,,] for r=0,..., k, where
E #0.

THEOREM 5.3. As a Hopf algebra

H* (Ek9 Zp) ~ @ Mk—r(Br)®S(EB Cr(_BDr)
H*(E,;Z,)~®I'(B)®S(® C,®D,).

Roughly speaking H*(E,; Z,) is a divided power coalgebra on elements in-
volving one Bockstein tensor a free commutative algebra on elements involving 0 or
more than one Bockstein.

It is possible to compute H*(BE,; Z,) as a Hopf algebra over & ( p) using very
similar techniques. In fact it can be shown that
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A [[Qi+ 1Qj+ 1%4+1]] = [[Qin“r]]

where

o’ [[g.0 j“r]] =<Q:0;%.) .

Moreover in the spectral sequence
& R~ COtOI‘H‘(E; Zp) (ZP’ Zp) = H* (BE; Zp)
we have

dp—l [[Z:+ 19+ 1%+ Jl = [[Qina,] X [Qin“r]] g

Thus H*(BE; Z,) will be roughly a divided power coalgebra on elements in-
volving two Bocksteins tensor with a free commutative algebra on elements involving
0 or more than two Bocksteins. In a later paper, the author plans to describe the
cohomology of the iterated classifying spaces of K as well as the complete structure
of H*(K; Z,) over the Dyer Lashof algebra.

Section 6

We now complete the induction hypothesis by identifying the k invariant of
E,.;. By the induction hypothesis, there is an H space E; such that Q*?~*E,=E,.

THEOREM 6.1. The iterated suspension homomorphism
a?P= 4 PHM T Y20 2(Ry 0 7 N> QHP™ T 2K, ; Z,) is an isomorphism.

Proof. The map v:PH?—QH?is an isomorphism if g#£0(mod2p ) by (1.1). The
map ¢:QH?->PH? ! is an isomorphism unless g=2 or —1(mod2p ) by [C]. Just
compose these isomorphisms.

Proof of Theorem B. Consider a class neu)” "' c QH?™"*"'*2(E,; Z,).

By the previous theorem n=02?"*y’ for n'ePH* (E;). Let
K':Ey—K(Z, 2mp**'+2p —2) be an H map representing ' and let E;,, be the
fiber space over E; induced by «’. Then since #’ is primitive, E,,, is an H space.
Define E,,, =Q*?"*E,,, and x:E,—»K (Z,, 2mp +2) to be 2**"*k’. Then clearly
E, ., is the fiber space induced by x which proves Theorem B.

Proof of Theorem A. Part 1 follows from Proposition 4.2 and Part 2 follows since
au)?*" =0 [K2]. This implies immediately that QE, ., splits topologically into the
product QE, x K (Z,, 2mp**!) since the k invariant is null homotopic. We must
show that there is an H map which induces the equivalence, where inductively
QE,x K (Z,, 2mp***) xK,,,.

This follows easily from [H] where k=0. The result can now be checked by
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naturality in the diagram

E, —E..,

! !
K(Z,2mp*+1)—>E, —K(Z,2mp**!+2).

Finally we must identify the k invariants in terms of p*th order Bocksteins.
LEMMA 6.2. If ueH*™*'(X; Z,), then P, (m)u=P"™... P™u.
Proof. For k=1, this is well known. By Milnor’s multiplication table [M3],

PP P (m) =Y P(ip*m,0,...,i,m —i,0,...).
i

The excess of the ith term is 2 (ip*m+m) by [K4]. Thus only the term i =0 contributes
when applied to u. The lemma now follows by induction.

Proof of Theorem C. By construction x* ( z)e(u)""“. This class is represented in
the spectral sequence by

me [v:| v/]e §H* (K; Z,) ~ e 27"

i+j=
[K7]. (see Proposition 2.2). Furthermore the element
[agk-u] € Ei’ 2mpk+1

represents #,(m)u in H*(E,;; Z,).
Let Z, be the rationals with denominators prime to p. Then it suffices to show
that

‘/’“gk“ e Pk Z 7 ®7; (mOdeH)
in
SH* (K; Z,).

This is immediate from Theorem 11 [K5].
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