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The œ?(p) Cohomology of Some k Stage Postnikov Systems

by David Kraines

In this paper we compute the cohomology of a class of k stage Postnikov Systems
as a Hopf algebra over the mod/? Steenrod algebra stf{p). The results generalize and

complète the mod2 computations in [K3]. The techniques are similar, although con-
siderably more care must be practiced to handle the odd prime results.

To dérive the structure theorem, we introduce a few new facts about Dyer Lashof
opérations. Thèse homology opérations are applied to compute differentials in an

Eilenberg Moore spectral séquence and also to obtain information about the coalgebra
structure of classifying spaces. Thèse techniques should hâve wide applicability.

This Postnikov System is the universal example for certain Massey products. Our
results will be used in a later paper to prove the relation stated by Moore and Smith
(Section 5 [M3]) between certain higher order differentials in an Eilenberg Moore
spectral séquence. In this paper, (Theorem C) we solve a generalization of Conjecture
29 [S2] about thèse opérations.

In [K5] we studied a generalized Eilenberg MacLane spacewith a twisted H structure

Kk K (Zp, 2m) x • • • x K (Zp, 2mpk).

We showed that the H structure was homotopy associative. In this paper, we show

that Kk has a classifying space Efc, and thus this H structure is strongly homotopy
associative [SI]. Our technique will be to build up TLk as a Postnikov System.

Before describing this Postnikov System, we must fix some notation. Unless explic-
itly stated to the contrary, p will dénote an odd prime. The fundamental class of
Hq(K(Zp, q); Zp) will be denoted by ir Finally a:Hq(X; Zp)-+Hq-1 (QX; Zp) will
dénote the loop suspension homomorphism. Thus <Jiq= iq-\-

THEOREM A. There is a k stage Postnikov System

K (Zp9 2mp + 1) ^ Et ^+K (Zp, 2mp2 + 2)

K (Zp9 2m + 1) ^ Eo — K(Zp, 2mp + 2)
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satisfying the following conditions

brr O, ,k-\
3 There is an H space équivalence 9 QEk -» Kk
This theorem is trivial if k 0 Also Ej is just the 2 stage Postmkov System with

stable k invariant f$&m i2m+1 Thus Eo and Et are in fact infinité loop spaces It is

probable that Ek is an infinité loop space as well The strongest resuit that we can
obtain at this time is the following

THEOREM B There is an H space Ek such that Q2p~AE'k=Ekfor each k
Let <x>m dénote the m fold restncted Massey product [K2] This opération is a

subset of the m fold Massey product <x, x> Theorem 14 of [K2] states that if
xeH2m + i (X, Zp) then <x>p is defined as a single class and equals —/?^mx

As in [K4] and [K6], basis éléments in the Milnor basis of ^(p) will be denoted

0>(E9R) where E=(eo,eu R (rur2, et 0 or 1, r,^0, and X8» + Zri<0°-
This élément is dual to Tq1 t*1 £7 <f| Furthermore let ^((0, 1,0,), (0,

Qt as usual, let ^((0, (0, r, 0>s(r) (the basis élément dual to £'), and

Conjecture 29 of [S2] generahzes Theorem 14 of [K2] to p2 fold Massey products
and secondary Bockstems Theorem C below proves this generalization for pk+i fold
Massey products and (k+1) order Bockstems pk+1

THEOREM C Let ueH2m+1(Ek, Zp) be the generator. Then the higher order

cohomology opérations <«>pk+1, — jftfe+1 éPpkm £Pm u and —fik+\ ^k + i{m) u are
defined as subsets of Hs (Ek, Zp) for s 2mpk+i + 2 Furthermore each opération contains

Kk+i 0s)> at least modulo decomposables
Our method m this paper is to prove Theorems A, B and C by induction on k

Tnvially E0 K(Zp, 2m) satisfies Theorems A and B Theorem C is immédiate from

^i (m) 0>m [M3] and <u)p= -fi0>mu [K2] The two stage System Ex has been studied

in [H] Theorems A and B are easy in this case We will assume that Efc exists and

satisfies Theorems A and B By Theorem A part 3, QEk has the H type of Kfc

In section 1 we review some algebraic results about H* (K, Zp) denved in [K6] An
Eilenberg Moore spectral séquence converging to H*(Ek, Zp) is mtroduced and par-
tially computed in section 2 By usmg Dyer Lashof opérations, the non trivial differ-
entials in this spectral séquence are computed in section 3

To descnbe H*(Ek9 Zp) as an ^(p) Hopf algebra, we must study the effect of
Steenrod opérations on Massey products This is done in section 4 Our results give
information about a problem of Milgram (Problem 30 [S2])

In section 5, we consider an exotic Hopf algebra in order to state a concise structure

theorem for H* (Ek, Zp) We also indicate the structure of H* (BEk, Zp) Fmally
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in section 6 we complète the induction step by explicitly identifying the next k invariant.

Section 1

In [K6] a twisted H structure of Kk was introduced. Ifwe let v.£Hlmpi (Kk ; Zp) be

the image of i2mpi under the projection Kk -» K (Zp, 2m/?1), for /=0,..., k, then the sub

Hopf algebra Ak of H* (Kk ; Zp) generated by a0,..., <xk is isomorphic as an algebra to

As a coalgebra, Ak is isomorphic to

the divided power coalgebra truncated at height pk+1 (see [K5] for a more complète
description of Ak).

Let H be a graded, connected, biassociative and bicommutative Hopfalgebra. Then
by methods of Milnor and Moore we hâve an exact séquence Connecting the primitives
and indécomposables of H.

PH-^PH-^QH^Qh (1.1)

where £(c) cp is the Frobenius map, v is the composite PH>-+H-»QH, and X is the
dual of the Frobenius map on the dual of H. Note that v is an isomorphism if

DEFINITION 1.2. If#9é0(mod2/?) and ceHq, then <c>eP#* dénotes the unique
primitive class such that <c> — c is decomposable.

THEOREM 1.3. PH*(K; Zp) is generated as an unstable left s/(p) module by

a0, < QtOLry and <^/xr> for i^0, y> 1 and r=l,...9k. The relations are generated by the

following;

Qt<Q/O — QjiQfiù (1)

P^Pflà &!<?&> (2)

if i>0 (3)

r> 0 if ^m/ (5)

r> 0 if ¦s>wPr and j^O(modp) (6)

1 +p+
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Proof. See Theorem 3.7 and 3.11 [K6].

DEFINITION 1.4. For r^O, let Lr be the unstable left j/(/?) submodule of
PH*(K; Zp) generated by <Ôfar>, z>0. L% and L~ will dénote the even and odd
dimensional submodules respectively. We can also write L~—L°r@Ll where L° and

L\ are the Zp modules generated by 0>(R) <ô,ar> and ^(£, /*) (()&,} with £#0
respectively.

Let Go be the Zp submodule of PH*(K; Zp) generated by 0*{R)ao and inductively
define Gt to be the union of Gt_t and the Zp submodule of PH* (K; Zp) generated by
0>(RK0>/*t> for j&l.

By Theorem 1.3 part 4, this is not a disjoint union. Thus we define Mr Gr/Gr_1.
Let Mr&M?®M} where Afr° is generated by the image of 0>{p1i)(&pu and M,1 is

generated by the image of 0* (RK0* f*ry where pfR, i.e. the image of &(R')&£&/*,)
Thus in the Adem basis, vL^cQH*(Kk; Zp) is generated by admissible monomials
pBi0>Sl... 0>SkpEkocr with 5^8i l, that is monomials involving exactly one Bockstein.

Similarly vMr° is generated by admissible monomials as above with £ef 0 and

^ 0 (modp) for i ^ t and st 1 (mod/?) for some that is monomials involving no
Bocksteins and exactly one ^(p) algebra generator &fl.

The foliowing coalgebra structure theorem is essentially Theorem 3.12 of [K6].
The submodules L^, LÎ, M?, and Ml do not appear explicitly in this theorem. They
will, however, be necessary later in the description of //*(Efc; Zp).

THEOREM 1.5. There is a coalgebra isomorphism

where Ft is the dividedpower coalgebra truncatedat height p*.

Section 2

Our induction hypothesis insures that Ek exists and that H * (E*; Zp) is a biassoci-

ative, bicommutative Hopf algebra. Thus we hâve a spectral séquence of Hopf
algebras with

e2 « CotorH*(K; Zp) (Zp9 Zp)

which converges as algebras to H*(E; Zp). (see [K7] and [M4]). This is the dual

spectral séquence to the homology Eilenberg Moore spectral séquences with

e2 « TorH*(K;z*> (Zp, Zp) => H» (E; Z,).
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If BcH*(X; Zp) is a submodule of odd dimensional cohomology classes, we
define a submodule fi^B of even dimensional cohomology classes to be generated by
P^sx where xeB has dimension 2s +1 (see [M4]).

The computation of Tor^Zp, Zp) is well known if H* is a bicommutative bi-
associative Hopf algebra (see for example [C]). Since Cotor is the dual functor we can
easily dérive the following Hopf algebra isomorphisms.

Cotor£(x) (Zp9 Zp) « Zp [sx]

Cotorrtiy) (Zp, Zp) « E (sy) ® Zp fay] (2.1)

as Hopf algebras where x is odd dimensional, y is even dimensional and

bidegsz (1, degz)

(2, p'degy).

PROPOSITION 2.2. The generator

t(y)* H*($rt(y))

represents the restricted p ' fold Massey product (sx}1*.
Proof. The élément fitx is représentée! in the cobar construction

by

I MM-
where yt is the z'th divided power of x=y1 (see [K7] and [D]).

Since d [yj

in the cobar construction, we hâve that (yt) forms a defining System for ({x}yptcH*
x ($Ft(x)). The resuit follows by observing that sxeCotorFt(x) corresponds to

{x}eH*(%rt(x)).
Since Cotor commutes with ® for cocommutative coalgebras we can immediately

give the e2 term of the Eilenberg Moore spectral séquence. The theorem below follows
from the above algebra and the observation in [K2], [K7] and [M4] that (sx}p

THEOREM 2.3. As bigraded Hopf algebras

e2 « zp [e *L7] ® e [e rf+] ® zp [e
® £ [e ^mj ® zp [e iuk_r+tMr].
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When p=29 it was shown in [K3] that £2 eoc- For odd primes the situation is
somewhat more complicated. To détermine the differentials. we must make full use of
the algebraic structure of e*.

THEOREM 2.4. The differentials are determined algebraically by

dr:sî>2s->err+l'2s-r+1.

Furthermore dr is 0 unless r=pq—\ andls 2tpq or r=2pq—l and2s (2tp + 2)pq
for some q^\ and t^\.

Proof. Since sr is a spectral séquence of Hopf algebras, dr is algebraically
determined by its action on the indécomposables, which are concentrated in primary de-

grees 1 and 2. Also e2 is primitively generated and dr maps primitives to primitives.
The only primitives of primary degree greater than 2 are the pqt\v powers of even
dimensional primitives, and thèse hâve bidegree (pq, (2f + l )/?**) and (2pq,2tpq+i)
by (2.1). Thèse primitives hâve even total degree, and so if they are in the image of dr9

then a simple counting argument shows that r and s must be as in the theorem. See

also [C] and [M4] for similar arguments.
An élément ;cf7/'(Kfc; Zp) détermines an élément sx — [;t]eej'f. If [x]is an infinité

cycle, then [x] represents an élément in the associated graded of Ht+1(Ek; Zp). If
t £ 1 (mod2/?) then crQHt+i (Ek; Zp)-^PHt(Kk; Zp) is a monomorphism [C]. In this
case we will dénote by [x] the unique élément of QHt+1(Ek; Zp) satisfying a[pc\ =x.

The classifying space Ek can be constructed from Kk using the géométrie analogue
of the bar construction [M2]. Thus, by naturality, the differentials in the associated

spectral séquence commute with Steenrod opérations in the graded sensé. In particular
if [x]es25 * is an infinité cycle, so is [^(E, R)x]ee\' *.

Clearly [ao]e£2ï2m is an infinité cycle representing u. Furthermore, by Theorem
3-4> [<ô« ar>] and [<^^ar>] are infinité cycles for dimension reasons. Thus we
hâve the following results.

PROPOSITION 2.5. The éléments of sLr, sMQ, and sMlr for r =0,..., k in e\* * are

infinité cycles.
Thus it remains to compute the differentials on sM? for r 1,..., k. This we will

do in the next section.

Section 3

It turns out that dp_x is nontrivial on jjl^cej1*. We can détermine this differ-
ential and simultaneously détermine X:QHq(E; Zp)-+QHq/p(E; Zp) see (1.1) by

looking at Dyer Lashof opérations.
Recall the following facts about thèse opérations ([Ml], [N])
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THEOREM 3.1. If X is an n fold loop space, then there are natural homology
opérations

p:Hs(X;Zp)-+Hs.1(X;Zp)

and

for 2j(p — 1 < « H-2sp satisfying

**QJ QX (1)

where a#:Hq-l(QX)-*Hq(X) is the loop homomorphism.

QJx xp if dimx 2/. (2)

QJx 0 if dimjc>2/. (3)

(4)

Proof The first three properties can be found in [Ml]. The last one can be derived
from the Nishida relations [N]. A full exposition of thèse relations will be given in a

later paper.

PROPOSITION 3.2. For z>0 and

inQH*(E;Zp).
Proof With s=mpr+p\ the composite o*v

PH2s. (K; Z,) - 6H2s_ t (K; Z,) -> FH2s (E; Zp)

is an isomorphism. Let yePH2s(E; Zp) and x= (ût^v)"1 y. The following chain of
equalities uses the adjointness properties of homology and cohomology, Theorem 3.1,
and the facts that <x, «> 0 if u is decomposable and Qsx is primitive if x is.
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The theorem foliows immediately by the duality between PH+ and QH*.

THEOREM 3.3. In the spectral séquence er

Proof. Let xePH2a^(K; Zp) where s mpr + pi. By [Kl]-pQsx (x>p in
H2SP-2 (K; Zp), where <*>p is the restricted Massey product defined with the Pontrja-
gin product in H* (K; Zp). By [K7], the differentials in the homology spectral séquence

are determined by Massey products. In particular

d"-1[x|^|x] [<x>"].

Using the previous theorem and the équations A^i+1=0 and

P&1+1 =^i+iP — Qi+i

we hâve

<Qsx, (<Pl+1j8 - Gf+i) ar+1>

The theorem now follows from the duality between the spectral séquences ef and er.

Remark 3.4. This theorem could also hâve been proven directly, that is without
référence to Dyer Lashof opérations, using the techniques of [K7].

Note that in the Serre spectral séquence of the fibration

K (Zp, 2mp + l)^Ei^K (Zp9 2m + 1)

we hâve ri2mp+i=P^mi2m+i and T0*j+1i2m,+i=(Qjhm+i)p bY naturality of the

transgression t and Adem relations.
Recall that if xeH2m(X;Zp) satisfies xn=0, then the n fold transpotence

<pn(x)czH2mn-2(QX; Zp) is defined. By [D], the following is immédiate.
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COROLLARY 3.5. <0>j+1ar+1>e(pp([QjOir-])czH*(K; Zp).
By Theorems 2.5 and 3.3 the sp term of the spectral séquence is obtained from s2

by dividing out by E(sM?) for r l,..., A: and Zp[(^Lr°)p] for r =0,..., jfc-l. For
dimension reasons, we hâve already checked that no other differentials are possible.

Let Z(p1)[x] Zp\_x]/(xp). Then we hâve proved the following structure theorem.

THEOREM 3.6. As an algebra

H* (Ek; Zp) « Zp[© sL\~\ ® Zp[>L°]

p
r<k

® Zp [0 /fc^] ® £ (0 5M,1)

Section 4

The submodule /*fc_r+1Mr of £2'* consists entirely of infinité cycles by Theorem 2.4.

Thèse éléments correspond to pk~r+1 fold restricted Massey products on the odd
dimensional classes [^(/^Xl in 77* (Efc; Zp) by Proposition 2.2 and the results of
[K7]. In fact Ek is clearly the universal example for <w>pk+1.

THEOREM 4.1. LetveH2m+i(X; Zp). Then <i;>pk
+ 1

is defined if and only ifthere
is a map

such that f*u v and /*<M>pk+1cz<î;yk
+ i.

Proof. If / exists, then <t;>pk+1 is defined by naturality. Conversely if <t?>pk+1 is

defined, then <u>pk is defined and contains 0. By induction, on k and Theorem A
there is a map f'\X^Ek_x such that /'**:*(*) =0. Thus /' lifts to f :X~>Ek.

Note that this shows that (v}pk+1 is defined if and only if <t?>pk is defined and
contains 0. This situation is in sharp contrast to the définition of gênerai higher order
cohomology opérations. Also the indeterminacy of <w>pk+1 is more controllable.

PROPOSITION 4.2. Let veH2n+1(X; Zp) and suppose that <v>pt+i isdefinedfor
some />1. Then the indeterminacy of (v}pt+l contains O>p= -p0>nptw for ail
weH2npt+1(X;Zp).

Proof. Let (at) be a defining system for <u>pt+1and let b a cocycle représentative

for w. Using the techniques of Theorem 14 and Lemma 16 of [K2], we can con-
struct a defining system (a't) with aj=^j for i<p\apt—aptJtb, and such that the
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différence in the related cocycles is cohomologous to a defining System for <w>p. The

proposition follows.
By Theorem B9 H*(Ek, Zp) is a bicommutative, biassociative Hopf algebra. This

extra structure is useful in getting a better hold on the Massey products.

DEFINITION 4.3. Let xePH2n+i (Ek; Zp) and assume that <x>pt is defined and

non zéro in QH2npt+2(Ek; Zp). Let/if((xx) dénote the set of ail wePH(Ek; Zp) such

that vw6<;c>pt.

It is probably true that ixtaxci(x)p\ although we hâve no proof of this as yet.
We may consider \it to be a higher order opération from PH2m(QX; Zp) to
PH2mpt+2(X; Zp) whenever Zis an i/space. The results of [D] and [K7] show that

lit is dual to the transpotence.
Let ¥ K(Zp9 2mpk+1 and j:F->Efc be the fiber inclusion of Theorem A. We

will show that j* detects Massey products.

THEOREM 4.4. // r =0 or pfR, then

Thus y* restricted to jUfc_r+1Mr is a monomorphism.
Proof. First assume that r =0 and R 0.

Thus the équation reduces to

/V*+ i«o - J^mpki in PH* (F; Zp)

or

/<Myk+1 <Iy in QH*(F;Zp).

The map y and its loop suspension induce a map of spectral séquences

j*:sr(Kk)-*er(F).

It is easy to check that

I Z bmi | ?»*]

in £2«CotorHW>Zp (Zp, Zp)«JÏ*(5JÏ*(flF; Z,)). (see [K7]). The équation fol-
lows by Proposition 2.2.

In the gênerai situation, Theorem 4.1 implies that there is a map
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where QEk-r&Kk__r=K (Zp, 2t x ••• x K (Zp9 2tpk~r)with the twisted H structure,
2t =dim0>(R)oir and /V=[^(i*)ar]. The proposition now follows by naturality
and the observation that ypjc-i^(R)ar=^(pk~rR)(xk.

Thèse results enable us to get our hands on the generators and relations of
H*(Ek;Zp).

THEOREM 4.5. // xePH2npt+2(Ek; Zp) satisfies crx=0 and j*x= j*fity9 then

xe\ity.
Proof. Theorem 3.6, the only primitive generators which are in Kerc are of the

form p^z and ny. The theorem follows from Proposition 4.2 and Theorem 4.4.

To make results on the ^/(p) structure of H* (Ek; Zp) easier to state, we need to
introduce some abbreviations. Recall that

by Proposition 3.2. Also for dimension reasons [0ar] is in Ker>l for r =0 or

6 9%0>p g>ûp QtQp or Qo.

Compare the following with (1.2) and (2.6).
Notation 4.6. Let [0ar] <[<0ar>]> in PH*(Ek; Zp) if 0 is as above. Also let

[gfar] dénote the divided power

ypi[Qo*r-ï] if Kr
jAQi-ru) if i>r-

mH*(Ek\Zp).

THEOREM 4.7. Le//?f=l + -+/?1"1.
Then the following relations hold in PH*(Ek; Zp).

(1)

(2)

""l*o if t>k
-r+i) if 0<t<k. (4)

Proof, By Proposition 3.10 of [K6] we hâve

By [K4], exep^s—2^+1. Equation 1 now follows directly from Theorems 4.4 and
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4.5. To verify équation 2, use the above and the formula excgf/^s 2.ï+2. Equation
3 is derived from the relation

^jP^si2S+i (Qjhs+iY of [M3] and [K4],

while équation 4 follows from

\ for

an odd dimensional class x.
By naturality, thèse relations will generate ail others involving nk_r+1Mr. For

completeness we record some of them.

COROLLARY 4.8. // r =0 or pJfR, then

r+1 <*¦(*) ar>. (1)

(2)

ar>. (3)

THEOREM 4.9. PH*(Ek; Zp) is generated as an unstable left ^(p) module by

u, [PP/trl [Qoccrl 9%\Qpù md QtlQM M U j> 1 and r 1,..., k.
The relations are generated by

(l)
(2)

A A if *>0 (3)

[Qo«r] ^y [Ql«r] + ^« [fij«r] + 6o [^^«J
1^^J«r-1] (4)

if s mpk (5)

0 if s > mpk

0 if s>mpk (6)

0 if r<t. (7)

Proof. The séquence (1.1) and our observations on the action of a imply that the

set of generators is correct. That équations 1 through 6 are relations is immédiate

from Theorems 1.3, 4.3 and 4.4. Equation 7 follows from Theorem 3.3. The fact that

équations 1 through 7 generate ail relations also follows from Theorems 1.3 and 4.3

using the techniques of Section 3 [K6].
Note that the description of the generators and the relations of PH*(Ek; Zp) is
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considerably simpler when p is an odd prime than when p — 2 (compare Theorem 12

[K3]). This is partly because the kernel of À is larger in the odd prime case.

Section 5

Ail the information necessary for describing the Hopf algebra structure of
H*(Ek; Zp) has now been developed. As in [K3] a Hopf algebra which starts off
looking like a divided power Hopf algebra and ends up looking like a polynomial
algebra is needed. This Hopf algebra was considered by W. Browder [B].

DEFINITION 5.1. Let x be an even dimensional class in a Zp module. For
0</<oo, let Mt{x) be the Hopf algebra, which as an algebra is generated by x,
ypx9..., yptx with relations (yprx)p 0 for r<t. That is as algebras Mt(x)

Zipi)[x]®~-®Zp1)[ypt-lx']®ZPlyptx']. As a coalgebra, yprx is the prth divided

power of x and (yptx)p* is primitive. That is as coalgebras Mt(x)œrt(x)®
ri((yptx)pS). As Hopf algebras M0(x)*Zp\x\ and M^{x)^r{x\. If B is an
even dimensional Zp module with basis {xj, then Mt(B) « ® Mt\_xt"].

Let C be a graded Zp module with C+ and C ~ the even and odd dimensional
submodules. Then recall that S (C) is the free commutative Hopf algebra on C. That
is S(C)«Zp[C+]®£[C~] as Hopf algebras.

To get the Hopf algebra structure theorem for H* (Ek; Zp), it simply remains to
fîx notation for various submodules of the primitives.

DEFINITION 5.2. Let BrcPH*(Ek; Zp) be the Zp module generated by
&{R)QiU if r=0 and &(R)iQ0*r] and ^{R)^j{Q^r] # r=\9...,k. Let
Crcz P^*(Efc;Zp)be the Zp module generated by^(i?)wif r =0and^(JR)[^l^ar]
if r l,..., k. Finally let Dr be generated by &(E, R)\_Qtoir"] for r =0,..., k, where

THEOREM 5.3. As a Hopf algebra

H* (Ek; Zp) « 0 Mfc_r (Br) ®S(®Cr® Dr)
r r

H*(Eœ;Zp)x®r(Br)®S(®Cr®Dr).
r

Roughly speaking H*(Eo0;Zp) is a divided power coalgebra on éléments in-
volving one Bockstein tensor a free commutative algebra on éléments involving 0 or
more than one Bockstein.

It is possible to compute H*(BEk; Zp) as a Hopf algebra over <s?(p) using very
similar techniques. In fact it can be shown that
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where

Moreover in the spectral séquence

e2 « CotorH,(E, Zp) (Zp9 Zp) => H* (BE; Zp)

we hâve

Thus jFf*(.5E00; Zp) will be roughly a divided power coalgçbra on éléments in-
volving two Bocksteins tensor with a free commutative algebra on éléments involving
0 or more than two Bocksteins. In a later paper, the author plans to describe the
cohomology of the iterated classifying spaces of K as well as the complète structure
of H*(K; Zp) over the Dyer Lashof algebra.

Section 6

We now complète the induction hypothesis by identifying the k invariant of
Efc+1. By the induction hypothesis, there is an H space Ek such that Q2p~~ArE'k ^k.

THEOREM 6.1. The iterated suspension homomorphism
a2P-*:PH2mpk+1+2p-2(E'k ; Zp)~>QH2mpk+i+2(Ek; Zp) is an isomorphism.

Proof. The map v:PHq-+QHq is an isomorphism if q£0(mod2p by (1.1). The

map G.QHq-*PHq~l is an isomorphism unless #==2 or — I(mod2/? by [C]. Just

compose thèse isomorphisms.
Proof of Theorem B. Consider a class rje(u}pk+iczQH2mpk+i + 2(Ek; Zp).
By the previous theorem rj a2p~4rj/ for rj'ePH*(Ek). Let

K':E'k-+K(Zp, 2mpk+1 + 2p-2) be an H map representing r\' and let E'k+l be the
fiber space over E^ induced by k'. Then since r\' is primitive, Ek+i is an H space.
Define Ek+i Q2p-4Ek+l and K:Ek-*K(Zp,2mp+2) to be Q2p~*k'. Then clearly
Ek+l is the fiber space induced by k which proves Theorem B.

Proof of Theorem A. Part 1 follows from Proposition 4.2 and Part 2 follows since
a<w>pk+1 0 [K2]. This implies immediately that QEk+i splits topologically into the

product QEkxK(Zp,2mpk+1) since the k invariant is null homotopic. We must
show that there is an H map which induces the équivalence, where inductively
QEkxK(Zp,2mpk+1)*Kk+1.

This follows easily from [H] where k=0. The resuit can now be checked by
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naturality in the diagram

Finally we must identify the k invariants in ternis of phh order Bocksteins.

LEMMA 6.2. IfueH2m+1(X; Zp), then &>k(m)u=0>''km... â^u.
Proof. For k=\, this is well known. By Milnor's multiplication table [M3],

The excess of the i th term is 2 ipkm + m by [K4]. Thus only the term /=0 contributes
when applied to u. The lemma now follows by induction.

Proof of Theorem C. By construction K*(i)e<w>pk+1. This class is represented in
the spectral séquence by

E [

[K7]. (see Proposition 2.2). Furthermore the élément

represents &k(ni)u in H*(Ek; Zp).
Let Z(p) be the rationals with denominators prime to p. Then it suffices to show

that

in

This is immédiate from Theorem 11 [K5].
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