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Quadratic Spaces with Few Isometries
(Quadratic Forms and Linear Topologies VI)

HERBERT GROSS AND ERWIN OGG

Herrn Professor Dr. Alexander M. Ostrowski zum 80. Geburtstag gewidmet.

Introduction

What sort of metric automorphisms do always exist on infinite dimensional
quadratic spaces? Clearly, we always have the symmetries about (nondegenerate)
hyperplanes, the identity 1 of the space, —1, and of course finite products of these
isometries; they form an invariant subgroup J in the full orthogonal group of the
space. In the finite dimensional case JJ is already the full orthogonal group. In the
infinite case however, J usually represents only a negligible part of the orthogonal
group associated with the space. In this note we shall show that there are quadratic
spaces of arbitrarily large dimension whose full orthogonal groups equal J. In §1 we
shall describe how to define such spaces over prescribed (non denumerable) base
fields.

The spaces E which we shall investigate below share the following property on
subspaces F,

FcE &dimF > N, » dim F* < dimE. ™

In particular, if such a space E is decomposed orthogonally, E=E; @ E,, then one of
the summands E; necessarily is of finite dimension. Spaces with such few orthogonal
splittings are an extreme counterpart to quadratic spaces admitting orthogonal bases.
For subspaces F of spaces wich admit orthogonal bases we invariably have dim E/F* =
dim F which sharply contrasts (*). We see in particular that dimE#N, for all E
satisfying (*¥). The construction given in §1 yields spaces which actually satisfy the
stronger property on subspaces F,

FcE &dimF > N, > dimF* < §,. *"

The notion which stands in the center of our discussion of spaces with small
orthogonal group O in the sense indicated above (O =) is that of a locally algebraic
isometry (§2). An isometry T on E is called locally algebraic if T admits for every
xeE a polynomial f,(T) (with coefficients in the base field of E) that annihilates
x, f(T)x=0. If f, does not depend on x we call T algebraic. Theorem 3 of §2 says
that the spaces constructed in §1 admit locally algebraic isometries only; in other
words, there are infinite dimensional (**)-spaces E with property (4): ‘Every



512 HERBERT GROSS AND ERWIN OGG

isometry on E is locally algebraic’. By means of somewhat complicated examples one
can however show that (**) does not, in general, imply (A1) (the converse implication
is seen not to be true either by Theorem 3 of §2). Spaces with property (1) and
which, in addition, satisfy (*) absolutely (i.e. which preserve (*) under extensions
of the base field) are seen to have trivial quotientD/J (Corollary 1 of Theorem 3
in §2).

In [3] it is shown that certain spaces constructed in §1 satisfy Witt’s cancellation
theorem: If E=E, @ E,=F, ®F, are orthogonal decompositions of E with E, and F,
isometric, then E, and F, must be isometric; a rare thing indeed to happen in the
infinite dimensional case.

Notations.

Generally speaking, forms &: Ex F — k are additive in each argument and satisfy
®(ix, y)=A®(x,y), ®(x, Ay)=P(x, y)A* with respect to some fixed involution
o (=antiautomorphism of period 2) of the division ring k. We shall however always
assume below that k is commutative. We shall furthermore assume @ to be ¢-hermitean,
ie ®(y, x)=¢ed(x, y)* with e=+1 (hermitean) or e= — 1 (antihermitean). If o is the
identity, then k is necessarily commutative and we speak of symmetric and anti-
symmetric forms respectively. In any case, ‘x.Ly’, defined as usual to be ‘®(x, y)=0’,
is a symmetric relation. E* is called the radical of E (rad E). If rad E = (0) we call ® non-
degenerate and - in analogy with algebras — the space (E, ®) semisimple. @ is said to
be tracevalued if for every xeE there is a £€k such that @ (x, x)=¢+ e£* We shall
always assume @ to be tracevalued, a non trivial requirement only when chark k=2
([1]1§4, No. 2). We shall make use of Witt’s theorem in §2 below ([1] §4, No. 3): Let
E be a space with a non degenerate form @ which is hermitean or anti-hermitean, and
tracevalued if it is hermitean. Then any isometry (=vectorspace isomorphism that
preserves @) between finite-dimensional subspaces can be extended to a isometric
automorphism of E.

Let (E, #) be an ¢-hermitean k-vectorspace with respect to the involution a.
Assume that the division ring k&’ contains k and admits an extension (involution) of
o to k’. We know that the abelian group E'=k’ @, E may be regarded as a vector-
space over k and as a vectorspace over k. The form @':E’'x E’' - k’, defined by
&' (Y A4®x;, Y w;®y) =Y, 4,®(x;, y;)u§ for A;, p;ek’ is e-hermitean. We say that @
satisfies (*), or (**), absolutely, if the form @’ possesses these properties for all exten-
sions k' of k. (E’, ) is called the k’-ification of (E, @) or the space obtained from
(£, @) by extending the ring of scalars.

A space (E, @) is called anisotropic if it contains no isotropic elements, i. €. no
vectors x #0 with & (x, x)=0.

Unless stated otherwise, (E, &) will be assumed to be of infinite dimension.
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§1. The Existence of Spaces with Property **

In this short section we shall describe the construction of infinite dimensional
spaces (E, ®) where @ is an e-hermitean form satisfying (**) absolutely.

Let o be an involution of the commutative field k, cardk>¥N,. Let X<k be a
maximal subset of algebraically independent elements over the prime field &, so that
k is an algebraic extension of ky(X). Let e=+1 or — 1. Since « is of period 2, there
is a subset Y< X with card Y=card X (=cardk) and for every ne Y either en*=n or
en“¢ Y. Let then (e,),.; be a basis of a k-vectorspace with cardk >cardI>N,. We
define an e-hermitean form @ on E x E as follows: Pick an ordering on I. For all
1<k inIset ®(e, e, )=eP (e, e,)"=n,.€Y such that all elements 5, (1 <x) are differ-
ent. Furthermore ® (e, e,)=¢®P(e,, ¢,)*ek such that no & (e, e,) equals a ®(e,, ¢,)
with 1#k. We assert that ® satisfies (**).

Proof. Let U and V be subspaces of £ with dim¥V>dimU=N,, (4,);.y and
(v,),c; bases of U and V respectively. u;=) aye,, v,=)Y B,.e, where the first sum
extends over the finite set M;= {xel|a; #0}, the second over the finite set N,=
={xel | B, #0}. Set M= Uy M;, N= U; N,. Thus card N>card M=N,. Our
assertion is proved if we can exhibit a pair u, ve U x V with @ (u, v)#0. Such a pair is
found as follows.

(i) X contains a denumerable subset A such that {«;, | ieN, ke M} is contained in
the algebraic closure in & of the subfield &, (4).

(ii) Thereis a oo N\M such that

A {D (e, &,,), P (e &) | vEI\{00}} = 0.
LetgoeN,,.

(iii) X contains a finite subset B such that {B,,, | neN,,} is contained in the
algebraic closure in k of ko (B). Since M is infinite, there is a ko€ M such that

D (€405€00)s P (€405 €xo)EB. Letkoe M, .
(iv) Notice that ky# 0,. If ko <0, We let

C ={® (e ¢,) | (x, 0)eM,, x N, \{(x0, 00)}};
if oo <k We let
C={®(e,e)| (2, K)eN,, x M, \{(0> ¥0)}} -
Thus, if x, <g, we see by (ii), (iii), (iv) that #,,,= D (ey,s €,0)¢ AU BU C; similarly, if

00 < Ko we have 1, = D(e,,, €x,)¢ A4 u Bu C. Thus, if k, is the algebraic closure
in k of ko(AuBuUC) we see that n,,,,¢k, if Ko<@o and 1,,.,¢k; When g, <x,. In
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the first case we consider

¢ (ulo’ vvo) = Z alo xﬁvoq ¢ (ex’ ee) + amxo Bvoeo nxoao .
(x, p) # (x0, po)
If we had & (u,,, v,,)=0 then we had a nontrivial linear equation for #,,, with co-
efficients in k4, $0 77,.,,€k;. If 9o <k, We conclude in the same manner that & (v,,,u,,
#0. Clearly our proof remains valid if we pass to the form &’ on the k’-ification
E’'=k’' @, E of E with respect to some overfield k’ of k (admitting an extension of x).
This proves our assertions. We note our result as

THEOREM 1. For e=+1 and for ¢e= —1 there exist e-hermitean forms ® over
any commutative field k with given involution and cardk >N, which satisfy (**) abso-
lutely; we may choose the dimension of ® to be card k.

We had card k> dim E for the spaces E in the above construction. We do not know
if this is necessarily so for spaces with property (**). It is easy to see that (**) does
imply (card k)N, >dimE. Thus, at least in the special cases where cardk is a beth
(e.g. when k=R or C), (**) does imply card k >dim E.

THEOREM 2. Let k=ky(X) be a purely transcendental extension of k, and
card X >W,. If - in the notation of the preceding construction — ® is chosen symmetric
with ® (e,, ,)=¢,€X (1, kel and cardI>N,) such that £, =&, if and only if {1, k}
= {v, u}, then & (x, x) is a square in k only when x=0.

This result is proved in [3]; it guarantees the existence of anisotropic forms with
property (**) over all fields of a certain type. In the special case where & is assumed
orderable the part of theorem 2 ruling out isotropic vectors follows directly from
Jacobi’s diagonalization formula (for finite spaces). It is clear that after extending the
base field @ may admit isotropic vectors. The fact that k is a purely transcendental
extension of some k, is not however crucial for the existence of an anisotropic @ over
k satisfying (**). We give an example of such a form over R by specifying a subspace of
an infinite separable Hilbertspace (H, ®) over the reals: Note that the collection of all
sets M of linearly independent vectors x, y,:- with {®(x, y) ] x, ye M} algebraically
independent over Q is inductively ordered by inclusion. Let M, be a maximal element
by Zorn’s lemma. If card M, > ¥X,, then the restriction of @ to the span of M, satisfies
(**) as we have demonstrated above. Assume by way of contradiction that card M, <N,.
Let (x;);c; be the elements of M, in some ordering, and let A= {®(x;, x;) | i, jeJ}.
Introduce an orthonormal basis (e;);., in the span X of the x; (ieJ), e;=) a;;x; with
(«;;) triangular. Then (a;;)™'=(B;) is triangular and o, ﬁ,-jeﬁ(A_) (real closure).
Since card A <N, we can pick a family (#;),.;, the #; in R and algebraically indepen-
dent over Q@ (4) with Y, t}=t<oo. The closure X of X in H (in the normtopology of
&) contains a vector x with @ (x, e;)=4;t, for any choice of 1; with, say, 0<A;<1. We
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have @ (x, x;)=3 B;;4;t;. It follows that the set {®(x, x;) | jeJ} is algebraically inde-
pendent over (QA) for A, rational. If we can arrange for ®(x, x)=) (4;¢;)* to be
outside Q(4U(7;),) we have the desired contradiction: M,u {x} contradicting the
maximality of M,. Now if J should be finite, then X=X and we may, if necessary,
pass from x to a vector x+y with ye X* and & (y, y)=a—®(x, x) and suitably chosen
a. If card J=¥, then by varying the rational A, in the open unit interval we can arrange
for &(x, x) to be any real number of the open interval [0, ¢]. Clearly then, there is a
choice with @ (x, x) outside the denumerable Q (40U (7;);). Q.E.D. We can do the
same for hermitean forms over a complex Hilbert space. Thus

THEOREM 3. There exist (infinite) positive definite symmetric (hermitean) forms
over R(C) which satisfy (**) absolutely.

Remark. We briefly indicate how to construct spaces which satisfy (**) but not
absolutely so. Let k be nondenumerably infinite. Let ( f,), s, (g,).<s be bases of k-vec-
torspaces F and G respectively, card/=cardk. Choose subsets X and Y of k& with
XNnY=0 and XU Y algebraically independent over the primefield k, of k. Define a
symmetric bilinear form @ on E=F®G as follows: ®(f,, f)=—P(g., &)=
D(f1r 8)=P(fe> 8)=Mu With {, € X, n,.€Y and £, =¢,, and n,,=1,, if and only if
{1, k}={v, u}. If k is assumed orderable, then the reader proves by the method illu-

strated above that E=F@G satisfies (**). However, over the extension k(\/ ~1)E
decomposes orthogonally, E= H® L with H spanned by all f, +\/ —1-g,(1eI)and L

spanned by allf,—\/jlf-g, (1€l).
§2. The Orthogonal Group

In this section we study the orthogonal group O associated with certain infinite
dimensional spaces (E, ) which satisfy (*). Here ¢ will always be symmetric or
anti-symmetric and tracevalued if it is symmetric.

Consider an isometry T such that there is an orthogonal decomposition E=E,DE,
with dim E; < 0 and 7= +1 on E,. Any isometry T with Ker(7—1) or Ker(7T+1) of
finite codimension in E admits such an orthogonal decomposition of E. The set J of
all such isometries 7 is an invariant subgroup of the orthogonal group O associated
with the space E; it contains the subgroup 3, of index <2 of all T which are the
identity on almost all of E. For symmetric ¢ and chark #2 [2] gives a detailed ac-
count of J,; in that case J, is generated by all symmetries about semisimple hyper-
planes. We shall show that for prescribed natural n>1 there are infinite spaces (E, &)
with O/, isomorphic to a product of n copies of Z, (characteristic not 2).

It is natural to expect, that spaces with few orthogonal splittings in the sense of
(**) admit ‘few’ isometries. A confirmation of this expection is provided by the first
two theorems.
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THEOREM 1. If (E, ®) satisfies (*), then every isometry on E is determined modu-
lo a factor from 3, by its action on any subspace of denumerably infinite dimension.

THEOREM 2. If (E, ®) satisfies (*), and this absolutely so when the base field is
not algebraically closed, then every locally algebraic isometry belongs to the group J
associated with (E, ®).

Proof of Theorem 1. Assume first that E is semisimple. For 17#0 an element of the
basefield k let X' (1) be the eigenspace ker (T— A1) of the isometry 7T of E. X (1)L X (1)
if Ap#1. Thus we cannot have dim X (1)=dimE unless A>=1 by (*). Im(AT—1)<
cX(A)*and Ker(AT—1)=X(A"") so

dimE/X (A™!) <dim X (4)". 1)

Assume that for some subspace U of E we have T |U=1U, dim U=N,. Since T pre-
serves @ we conclude that Im(7—1) is contained in U* and thus of dimension smaller
than dimE. Hence we must have dimX(1)=dimE and therefore dimX(1)'< oo
by (*). Hence dimE/X (1)< o by (1) and therefore dimX(1)*<dimE/X(1) as E is
semisimple. Together with (1) dimX (1) =dimE/X (1)< . From this we conclude
that there exists a subspace H= X (1) of finite codimension in E with E=H® H".
Since T is the identity on H we have TeJ,. If E is not semisimple, then rad E is of
finite dimension. Let E, be a linear complement of rad £ in E. We can find T, in J,
such that T,T(E,))< E,. Since radicals are mapped onto themselves under isometries
we must have T,T(E,)=E,. By what we have already proved it follows that the
restriction of T, T'to E, is determined modulo J, by its action on Un EynKer (T, —1).
Hence the same holds for 7. Q.E.D.

Proof of Theorem 2. Case 1: there is a A with dim X (4)=dim E. Hence 1*=1 and
Te J by Theorem 1.

Case 2: dimX (A~ ')<dimE for all Aek\{0}. Thus dim X (1)* =dimE by (1) and
so dim X' (1) < oo for all Aek\{0} by (*). For every member x of a Basis #Z of E we let
[, be the annihilating polynomial. f, splits into linear factors over the algebraic closure
k' of k, f,= [] (Z—A4;). Every linear factor provides an eigenvalue 1,ek’ of T':E’
=k'®E— E’. Since E’ satisfies (*) by the assumptions of the theorem we see that
the number / of different A; must be less than dim E. Hence there are only /<dimE
different annihilating polynomials f, (xe #). We conclude that there is at least one
f, annihilating a subspace G E of dimension dimG=dimE. Let f,= [] (Z—4,) be
the splitting of this very polynomial. If some of the 4; equal +1 we let G, be the image
of G under the map [];,=+; (T—4,1). We have dimG,=dimG in the present case.
Let g be the product of the remaining linear factors (Z— 1). Since dim G,=dim E and
since g(T') annihilates G, and hence also G, =k’® G, we conclude that the dimension
of ker(7T—A) must equal dimE for at least one A% 4 1. This is a contradiction as
G, satisfies property (*).
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COROLLARY. If (E, ®) is as in Theorem 2, then the set of all locally algebraic
isometries on E is a group. It coincides with the set of all algebraic isometries on E and it
is generated by all Te O with E[Ker(T—1) or E/Ker (T+ 1) finite dimensional; hence it
is a normal subgroup of O.

LEMMA. Assume that E,,..., E, all satisfy (*) and that dimE;>dimE;,, (i
=1,...,n—=1). If T is any endomorphism of the orthogonal sum E=E,®---®E, that
preserves orthogonality then the E; are left almost invariant under T: dim (E;+ T(E;))/E;
is finite for all i.

Proof. Let F;=E,®---@E,. DimE, >dimF] so that there is a subspace V, of E,
with T(V;)< E; and dim ¥V, =dim E,. By the assumptions of the lemma dim7'(¥,)=
dimE,. Call K, the projection of T'(F;) onto E, (for the decomposition E=FE, @ F,).
T(V,)LK, hence K, and (F, + T(F,))/F, are finite dimensional. Setting F, =E;®--- @
E, we have dimE, >dimF,. As F, + T(F,))/F, is finite dimensional we conclude that
there exists V,cE, with T(V,)cE, and dim V,=dimE,. It is now clear how the
argument may be repeated in order to conclude that there exist spaces V,<E,; with
T(V;)<E;and dim V;=dimE,. Let then K;; be the projection of T'(E;) on E;. K;; LV
for all i#j. Since dimT(V;)=dim E; by the choice of the V; and by the assumptions of
the lemma, we conclude that K;; is finite dimensional for all pairs i# . This is what the
lemma asserts.

We now consider the orthogonal sum of finitely many spaces (E;, ®;)of the kind con-
structed in §1. For the sake of simplicity we choose @; symmetric: For i=1,2,... n
let (¢1),c; .1 be a basis of E;, ®,(el, e;)=¢&}, where &, =&, if and only if {1, v} ={u, }
and where, for every fixed i, the set X" of all &}, {1, veJ(i)) is algebraically indepen-
dent over the prime field k, of the basefield k. We shall not assume that the sets
X1, ..., X" are disjoint. For these symmetric spaces we prove

THEOREM 3. Assume that dimE;>dimE;, >N, (i=1,...,n—1). Then every

isometry of the orthogonal sum E=E|®---®E, is locally algebraic.
Proof. For the sake of simplicity we omit the superscript 1 when mentioning
el and x,!; furthermore let J(1)=J. Let us study the action of T on E, for T an iso-

metry of E:

Te,=) a,e, + 8, where geE,®@E,
Xj

By the previous lemma, G=k(g,),., is of finite dimension. Let Q<J be such that
(8.).cq is a basis of G. We introduce the finite sets M (1)={ueJ |, #0}. Let M
=, es [M(1)\{1}]. We show that M is finite. Assume by way of contradiction that
M is infinite. There is a denumerably infinite subset S<J and a map « that assigns to
every 1€S a x(1)eJ with k(1)e M (1)\{1} and x(1)#x(v) for all 1# v in S. There is a
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subset 4 of X' U -+ U X" with card A<N, such that a,, ek, (4) (the algebraic closure

of ko(A4) in k) for all keM (1), 1€S and ®(g,, g.)ek,(A4) for all 1€S, keQ. Let
N=J,cs M(1). card N=¥N,. There is a veJ and for it a u,e M, such that y,¢ Nu S
and

{t€X|1eN}NA=0 (2)
ForTe,=Y ,cm(v) tvu €y + D xeco P&y We have

(Teu Tev) = éw = am(z)avuo'frc(t)yo + Z oc,,cozwfw + ZQ ﬁmcd) (gv gx) (3)
xu K€

The first sum in (3) extends over the set [M (1) x M (v)]\{x (z), po}. There is a finite

subset B of X' u-.-U X" such that ozv,,el—c:z—f) for all ue M (v) and ﬁmel?(F) for all
xeQ. Since S is infinite, there is a o€ S with &, (,),,¢B. As k(0)# 0 by the choice of
the map « and since py# 06 we have £,,#¢& gy, Let C=AUBU {&,,, &, | (x, p)e
e[M(a)x M(v)]\(x(a), uo)}- By (2) we have &, (4),,¢ 4, hence &, ,),, ¢ C. All quan-
tities in equation (3) equated for 1=0 are contained in k,(C) with the exception of

Ex(oyuo- The coeflicient of &, (,y,,in(3)is not zero. Hence we should have &, ,,,€k, (C);
SO &y (oyuo 18 algebraically dependent over C which is a contradiction. We have thus
shown that M is finite. G being finite dimensional, there is a subspace F; of E, spanned
by finitely many e}, 1€J(i), i=1,..., n such that Te} ek (e} )+ F, for all veJ(1). In the
same manner we find for i=2, ..., n finite dimensional spaces F; such that Te}ek(e))+
+F,. Set F=) 1., F,. We have Te\,ek(e})+F for all ueJ(i) and all i=1,...,n. In
particular T(F)<F. Since F is finite dimensional we conclude that T is locally alge-
braic on all basis vectors e, and hence locally algebraic on each xe E. Q.E.D.

Let us look at the proof for one more moment. We have shown that there is a
subspace F of E, spanned by finitely many of the basisvectors e} such that Teek (e)+ F
for all basis vectors e=e;. Hence F is the orthogonal sum of its projections onto the
summands E; in the decomposition E=E, +---+ E,. These projections, say G,, are
semissimple (as are all spans of collections of basisvectors of our particular bases
(€)ies iy (i=1,..., n)). Therefore E;=G;®(G; N E;). Since T(F)=F it follows that
the spaces Gi N E; are left invariant under T. If we extend 7'~! | r to an isometry 7, on
E by letting T, act as the identity on F* we have Toe J,(E) and T, T leaves each
summand E; of E invariant. The restriction of T, T to E; is locally algebraic. Hence if
chark # 2 then we see by Theorem 2 that these restrictions are, up to a factor +1, a
product of finitely many symmetries. We have thus shown that we can find altogether
finitely many symmetries S on E such that Tyo T [ | S acts on each E; as 15, or —1g,.
Since Ty e, (E) we obtain the

COROLLARY. Let E=E,®---@®E, be as in Theorem 3 and chark#2. The
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quotient group (3, of the full orthogonal group of E modulo the invariant subgroup J,
is isomorphic to the direct product of n copies of Z,. In particular, if n=1, thenO|J is
trivial.
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