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Algebraic L-Theory

IV. Polynomial Extension Rings

by A. A. RANIcK], Trinity College, Cambridge

Introduction

In Chapter XII of [1] Bass defines the notion of a contracted functor, as a functor
F:(rings) — (abelian groups)

such that the sequence

0—~F (A)—(j-r—)»F (A[X])@F (A[x ' 1) 25 F (A, x™1]) S LF (4)—=0

is naturally split exact for any ring A (associative with 1), where
Byt A—A[xE]  Eyi:A[x®] > A[x, x71]
are inclusions in polynomial extensions of A4, and
B:F(A[x,x™'])> LF(A)
=coker ((E,E_):F(A[x])®F(A[x'])» F(4A[x, x~']))

is the natural projection. Theorem 7.4 of Chapter XII of [1], the “Fundamental
Theorem’” of algebraic K-theory, states that

K, :(rings)— (abelian groups)
is a contracted functor such that
LK, (4) = K, (4)

up to natural isomorphism. Here, we obtain analogous results for the groups of
algebraic L-theory considered in the previous instalments of this series ([5], [6], [7] -
we shall refer to these as Parts I, II, III respectively). In Part I we defined L-theoretic
functors

U,, V,: (rings with involution) — (abelian groups)

V-

f.g. projective

f.g. free EFEES

for n(mod4), using quadratic forms on { A-modules for the {
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(The definitions are reviewed in §3 below, allowing this part to be read independently
of the previous parts). It was shown in Part II that

Va(A[x, x7 )=V, (4)® U, (4)

if the involution ~: 4 — A4; ar>d s extended to A[x, x~1] by £=x"1. The main result
of this part of the paper (Theorem 4.1) is a split exact sequence

01y (A, (LD, (AL D EE, (4L 5D 0, (4)-0
for each n(mod4), with the involution on 4 extended to A[x*!], 4[x, x '] by x=x.
The proof depends on L-theoretic analogues (Lemmas 4.2, 4.3) of the Higman
linearization trick (quoted in Lemma 2.2) and of a result from [2] (quoted in
Lemma 2.3) on the automorphisms of A[x, x™']-modules which are linear in x.
A similar result has been obtained independently by Karoubi ([4]), using an L-
theoretic analogue of the localization sequence of Chapter IX of [1].

Adopting the terminology of [1], we can say that each

V,:(rings with involution)— (abelian groups)
is a contracted functor, with
LV,(4)=U,(4)

up to natural isomorphism. Corollary 4.4 generalizes this ‘“‘Fundamental Theorem” of
algebraic L-theory to describe the intermediate L-groups V,2(A4[x, x~*]), as defined in
Part III, for suitable subgroups Q<K (A4[x,x!]). Corollary 4.5 identifies the
“lower L-theories’ of Part II with the functors

L™U,: (rings with involution)— (abelian groups) (m>0)

derived from U,. (There is an obvious analogy here with the “lower K-theories’ of
Chapter XII of [1],

K_,=L"K,:(rings) — (abelian groups).)

Corollary 4.6 describes the L-groups of polynomial extensions in several variables.
The work presented here was stimulated by a course of lectures on algebraic
K-theory given by Hyman Bass at Cambridge University in the Lent Term of 1973.

§1. Contracted Functors

Let (rings) be the category of associative rings with 1, and 1-preserving ring
morphisms. Let x be an invertible indeterminate over such a ring A commuting with
every element of 4, and define 4 [x, x~ '], the ring of finite polynomials 7~ _, x’a;
in x, x~! with coefficients a;e 4. Let A[x*'] be the subring of A [x, x~'] of poly-
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nomials involving only non-negative powers of x*!. Let

gy A A[x*], Ei:A[x'] - A[x,x71], E=E & :A->A[x,x71]
be the inclusions, and define left inverses

e A[xT] >4, eA[x,x"1]-4

for £,, & by xTli>1.
A functor

F:(rings) — (abelian groups)
is contracted if the sequence

O—»F(A)ELF (AXDOF (A[x D2 F (A[x, x™1])SLF (4)~0

is exact for each A, and there is given a natural right inverse
B:LF(A)- F(A[x, x™'])
for the natural projection

B:F(A[x,x™'])—> LF(A)
=coker ((E+E_): F(A[x]))@F(A[x™'])> F(A[x, x"'])),

that is BB=1:LF(A)— LF(A). (This is just Definition 7.1 of Chapter XII of [1]).

LEMMA 1.1. Let
F, G:(rings) — (abelian groups)

be functors, and suppose given
i) a natural left inverse

E,:F(A[x,x™'])-» F(A[x])
for
E.:F(A[x])— F(A[x,x"'])

such that the square

F(A[x ")—F (A[x, x™*])

- ) s
F(A)———F (4[])
commutes,

ii) natural morphisms

fis:G(A)— L, F(A)=coker(E,:F(A[x])- F(4[x,x7']))
fny: L F(4)—>G(A)
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such that .1, =1, and such that the square

L,F (A ——— G(4)
44+ li-
F(A[x, x '1])——+L F(A)

commutes, where
4,:L.F(4)- F(A[x,x™1])

is the right inverse for the natural projection
5,:F(A[x,x '])> L,F(4)

induced by
1—E E,:F(A[x,x"'])~» F(A[x, x"']),

and 6_,7_ are defined as 6,,1., but with x
Then F is a contracted functor, and

B=n,6,:F(A[x,x"1]) > G(4)

=1 replacing x.

induces a natural isomorphism
LF(A)=coker ((E,E_):F(A[x])®F(A[x"'])> F(A[x, x"1])) > G(4).
Proof. The diagrams

5-E.

7
F(A[JC]) L. F(A)

NN SN

F(A) F(A[x,x™']) G(4)

SN AN AN

—_ P LFA)
~———

0+E-

VR
“ Ty (A[x]) L_F (A)

NN N

F(4) F(A[x, x™']) G(4)

N AN AN

F(A[x‘ 1])&—/ L+F(A) &_—/

E-d+
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are commutative exact braids, where E_, 4_, n_ are defined as E,, 4., n, but with
x~! replacing x. It follows that

0——>F(A)-(££)—>F (A[x])®F (4 [x"])—ff-f—:l-»F (4[x, x'l])iG (4)-0

is an exact sequence, with
B=4,14:G(4)—> F(A[x, x™'])

a natural right inverse for
B=n,6,:F(A[x,x"'])—> G(4).

Thus F is a contracted functor, with
LF(A)=G(A)

up to natural isomorphism. [J
(The conditions of Lemma 1.1 are necessary, as well as sufficient, for a functor to

be contracted. If
F:(rings) — (abelian groups)
is a contracted functor, then
F(A[x, x '])=¢F(A)®E N, F(A)®E_N_F(A)®BLF(A)
where
N.F(Ad)=ker(ey:F(A[x*'])> F(4)),
and the morphisms

E,:F(A[x,x '])>F(4 [x])——:é+F(A)(-BN+F(A);
E(r)®E, (s )DE_(s-)®B(t)—e. (r)®s.

et LF(4)— L, F(A)=E_N_F(A)®BLF(A); t—0@B(t)

Ne:LyF(A)—LF(A); E_(s_)®B(t)—t

satisfy the conditions of Lemma 1.1, with G=LF.)
§2. K-Theory of Polynomial Extensions

Let P(A) be the category of finitely generated (f.g.) projective left 4-modules.
Write |P(4)| for the class of objects, and Hom, (P, @) for the additive group of
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morphisms g:P - Q€P(4). A ring morphism
fiA- A

induces a functor

. o o PEIP(A)II-—>fP=A'®APE|P(A')|
SR A)>PA); {geHomA (P, Q) fz= | @geHom, (fP, Q).

Given Pe[P(A4)), let
P[x*']=¢.Pe[P(A[x*'])|, P,=EPe|P(4[x, x"'])I.

Defining complementary 4-submodules

0 -1
P*=Y x'P, P =Y Xx'P
j=0

j==w

of P, (where x’P=x’/®P) we shall identify
P*=P[x], xP =P[x7']

in the obvious way.
Let N(A4) be the category with objects pairs
(Pe|P(A)l, veHom, (P, P) nilpotent)

and morphisms
(P, v)> (P, v')eN(A)

isomorphisms feHom, (P, P') such that
v/f=fveHom, (P, P’).
As usual, there are defined functors
K;:(rings) — (abelian groups); A+ K;(P(4))

for i=0,1. Theorem 7.4 of Chapter XII of [1], the “Fundamental Theorem’ of
algebraic K-theory, may be stated and proved as follows:

THEOREM 2.1 The functor K, is contracted, with
L.K,(A)=K\N(A4), LK,(A)=K,(A4)

up to natural isomorphism.
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Proof. Given an automorphism
[:G:—G.eP(4[x,x™']) (GelP(4)))
let F=f(G)<=G,, and define
(P, v)=(G™[x™"F~,x™1)e|N(4)|
for N>0 so large that x " ¥F~<G~. Then

Ei K (A[x, x71]) > K, (A[x]);
1(f:G = G- E,1(ef:G-G)DT((1—v) 1 (1—xv): Pt P ™)

is a well-defined morphism.

LEMMA 2.2 Every element of K, (A[x]) can be represented by an automorphism
f=fot+xf1:G" > G" eP(A[x])

with f,, fieHom, (G, G).
Proof. Given an automorphism

f=fo+xfi+x*fo+-+x'f,eHom,,,(G*,G*) (f;eHom, (G, G),0<j<r)

we can apply the usual Higman linearization trick (first used in the proof of Theorem
15 of [3]), the identity

G TE DG

=(fo+xf'1+°}+xrﬁlfr——1 _Tr_1>:G+€BG+—>G+GBG+
X/

(r—1) times, to obtain a representative automorphism for 7 (f)eK; (4[x]) which is
linear in x (with r=1). [J
Given an automorphism

f=fo+xfieHom,,(G*, G*)
let y=(fo+f,)" ' fieHom, (G, G). Then
f=(fo+f)) 1+ (x—1)7):G" > G"
and (up to isomorphism)

G xS (G), x DN)=(G [x"1(1+(x—1)y) G, x~1)=(G, —y(1—7)"")eIN(4)!.
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It follows that

ELEt(f)=1(fo+/1:G" > G )@t((1+y(1—-y)"")7"
X(1+xy(1=y)"1):G* > G*)
=1(fo+/1:GT>GT)®T(1+(x-1)y:GT>G")
=1(f)ek,(4[x]).

Thus the composite

Ky (A[X]) 5K, (A [x, x 715K, (4[x])

is the identity. Similarly, it can be shown that the square

Ky (A[x ' ])5K, (A[x, x71])

-] L.
K; (A)———K; (A[x])
commutes.

Higman’s trick also shows that every element of K, (4[x, x~!]) may be expressed
as

1=1(fo+xf1:P, > P)®1(x": 0, ~ 0,)e K, (A[x, x™'])
for some P, Qe|P(A4)|, fo, fyeHom, (P, P), NeZ.
LEMMA 2.3. If yeHom, (P, P) is such that
1+ (x—1) yeHomy,, .- 17 (P Py)
is an isomorphism then there exist integers r, s =0 such that
9" (1 —7y)*=0€Hom, (P, P),

and R=kery", S=ker (1 —y)® are complementary submodules of P, such that

y=(”" O):P=R®S—+P=R(—DS
0 s

with ypeHom, (R, R), 1 —yseHom (S, S) nilpotent.
Proof. See Corollary 2.4 of [2] and pp. 232-34 of [8]. [0
If f,, fieHom, (P, P) are such that

f=f0 +xf16H0mA[x.x"1] (an Px)
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is an isomorphism, then
¢f=fo+fieHom, (P, P)

is an isomorphism, and y=(f,+/;)”" fyeHom, (P, P) satisfies the hypothesis of
Lemma 2.3. Hence

(f)=et(fo+fi:P->P)®t(1+(x—1) y:P, > P,)
=&t(fo+f1:P—>P)
QL t(1+(x—1) ya: R[x] > R[x])
®E_t(1+(x"1=1) (1—y5):S[x"*]>S[x"1])
@t (x:S,— S,)eK; (4[x, x1])

It is now easy to verify that

K, (4 [.x]);(;Kl (A[x, x-lj)j—_i KoN(4)

+

is a direct sum system, with

A, :KoN(A)- Ky (A[x, x71]); [P, v]—t((1—=v) ™! (x=v): P, > P,)
8,: K (A[x, x 1)) > KoN(4); 1 (f:G,— G~ [GH [XNF*, x]—-[F*[x"F*, x]

where F=f(G)< G, (as before) and N>0 is so large that xX"F*<=G™*, (so that, in
particular,

81t(fotxfi:Pe P =[S, =75 (1= 15)]e KN (A)).
Identifying

L. K, (4)=K,N(4)
in this way, note that the morphisms

N+ :KoN(4) - Ko (4); [P, v]—[P]
7+:Ko(4) > KoN(4); [P]—[P, 0]

are such that the conditions of Lemma 1.1 are satisfied. Hence
K, :(rings) — (abelian groups)

is a contracted functor, with
LK, (4)=K,(4)

up to natural isomorphism. This completes the proof of Theorem 2.1. [] -
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§3. Review of the Definitions of the L-Groups

Let (rings with involution) be the category of rings 4 (as in §1) with involution
~:A- A; a—d such that

1=1,a+b=d+b, ab=b-G, a=a for all a, beA.

As in Part I it will be assumed that f.g. free 4-modules have a well-defined dimension.
Given a ring with involution A4 define a duality involution

Pe|P(A)|—>P*=Hom,(P, A), left A-action by
*: P(4) > P(4) AXP*—P*; (a, p*)(p>p*(p)-d)
feHom, (P, Q)= (f*:Q*—P*; g*>(p—>q*(f (p))));

using the natural isomorphisms
P—P**; p>(p*>p*(p)) (Pe|P(4)))
to identify
**=1:P(4)->P(A).
An g-hermitian product (over A) is a morphism
0:0-Q*eP(4)
such that
6*=efeHom,(Q, 0*),
where ¢=+1. A + form (over A) is a pair
(QelP(4)l, peHom, (Q, 0%)),
and
0=¢+¢*eHom,(Q, Q*)
is the associated + hermitian product. An isomorphism of + forms

(£ 2):(Q, 0)- (2, ¢")

is an isomorphism feHom,(Q, Q') together with a morphism yeHom,(Q, O*)
such that

f*o' f—o=xFx*eHom,(Q, 0*).
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Such an isomorphism preserves the associated + hermitian products, in that
f*(@' xo*)f=(pte*)eHom,(Q, 0*).

A +form (Q, ¢) is non-singular if the associated + hermitian product (p+¢*)e
Hom, (Q, 0*) is an isomorphism. The hamiltonian + form on Pe|P(4),

HE(P)=(PoP*, (o o))

is non-singular. A sublagrangian of a non-singular + form (Q, ¢) is a direct summand
L of Q such that
j*@j=AF A*eHom, (L, L*)

for some AeHom, (L, L*), denoting by jeHom, (L, Q) the inclusion. It was shown
in Theorem 1.1 of Part I that if L is a sublagrangian of (Q, ¢) there is defined a
non-singular + form (L*/L, ¢) on a direct complement L*/L to L in the annihilator of

Lin (2, ¢),
L*=ker(j*(p+t9*):Q—L*),

and that there is defined an isomorphism of + forms
(fs 1):(Q; @) > HE(L)®(LY/L, §)

with f the identity on L*=L@®L*/L. A lagrangian is a sublagrangian L such that
Lt=L,

in which case there is defined an isomorphism of + forms

(f, 2):(Q, ¢)> HE(L).

A + formation (over A), (Q, ¢; F, G), is a triple consisting of
i) a non-singular 4 form over 4, (Q, ¢),
ii) a lagrangian F of (Q, ¢),
iii) a sublagrangian G of (Q, ).
An isomorphism of + formations

(f,2):(Q, 95 F, G)>(Q', ¢'; F', G')
is an isomorphism of + forms

(£ 10):(Q, 0)=(Q' @)
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such that f(F)=F', f(G)=G". A stable isomorphism of + formations
[/ x]:(@, 0; F, G)~>(Q', ¢'; F', G')
is an isomorphism of + formations
(£, 1):(Q, 0; F, GY®(HL(P); P, P*)—>(Q, ¢'; F', GY®(HL(P'); P', P'*)

defined for some P, P'e|P(A4)|.
Let T< K, (4)=coker (K, (Z)— K, (4)) be a subgroup invariant under the duality
involution

*:Ky(4)> Ky (4); [P]—[P*] (thatis, *(T)=T).

isomorphism

For n(mod4) define the abelian monoid X (4) of , :
stable isomorphism

+ forms (Q, @)

+ formations (Q, ¢: F, G) over A such that the projective class

classes of {

2i

{[Q] lies in T< K, (4), under the direct sum @, with + =(— ) if n= {2i+1

[G]-[F*]
The monoid morphisms
T.yT SxT )@, 0)—(Hz(2); Q, I, ¢)) ____{Zi
a 'Xn (A) Xn—l(A)’ {(Q’ 0; F, G)H(G_L/G’ ¢) n

2i+1
are such that (67)?>=0, where

Fg,n={(x (¢t0*)x)|xeQ}c0®O*.

Define an equivalence relation ~ on ker(67: X, (4)— X, (4)) by z,~z, if there
exist by, b,e X1, (4) such that z, 07, =z,®07b,e X (A4). It was shown in Theo-
rem 2.1 of Part III that the quotient monoids

UT (4)=ker (27: X[ (4) > X1_ , (A4))fim (07 X1y (A) > X2 (4))
of equivalence classes are abelian groups, generalizing the definitions in Part I of
U,(A)=Us"?(4), V. (4)=U;"(4).
Theorem 2.3 of Part III established an exact sequence
= H"H(T'|T)> Uy ()~ U, (A)-H"(T'|T)> Uy (4)>-
for *-invariant subgroups 7T’ = K, (4), where
H"(G)={geG [g*=(~)" g}/{h+(-) h* | heG}

are the Tate cohomology groups (abelian, of exponent 2).
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There are analogous definitions and results for L-groups associated with sub-
groups R= K, (4)=coker (K, (Z)— K, (A)) invariant under the duality involution

*:Ki ()~ K, (4); < (f:P—> Q) t(f*: Q%> P¥)

denoting by P af.g. free 4-module P with a prescribed base, and by P the dual based
A-module.

A based + form (Q, ¢) is a + form (Q, ¢) on a based A-module Q. The rorsion of
a based + form (Q, ¢) is ~

(et o*:0— 0%)ek, (4) if (Q, o) is non-singular
0eK,(4) otherwise.

“Q -]
An R-isomorphism of based + forms
(£, 0):(Q: 9)— (2 ¢)
is an isomorphism of the underlying forms
(£, 0):(Q 0)~ (2", ¢')
such that
©(f:0— Q')eR=K, (4).

A based + formation (Q, ¢; F, G) is a + formation (0, ¢; F, G) with bases for F, G
and G*/G. The rorsion ©(Q, ¢; F, G)eK, (4) of a based + formation is the torsion of
the isomorphism

FEOE* -~ GOG 06

in the isomorphism of + forms
(fsx):H£(F)-> H£(G)®(G/G, §)

given by Theorem 1.1 of Part I. An R-isomorphism of based + formations
(£, 1):(Q, 0; ,G)~(Q, ¢, F',G)

is an isomorphism of the underlying + formations such that the restrictions

F~F.G~G. GG~ GG

of f have torsions in R< K, (A4). A stable R-isomorphism of based + formations

[f2]:(Q, 95 F,G)— (2, ¢"; £/, G')
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is an R-isomorphism

(f:2):(Q, 93 F. Q@(HE(P); P, P¥) > (Q', ¢'; F', G)(HE(P"); P', P'*)
R-isomorphism

stable R-isomorphism
over A with torsion in RS K, (4), under the direct sum @,

For n(mod4) define the abelian monoid Y, (4) of classes
+ forms

+ formations

defined for some based 4-modules P, £’. {

of based {

. The monoid morphisms

. o f2i
with +=(-) 1fn—{2i+1

*: YR (A)-YR, (4); {(g’ ¢)—(H=(2); g F(,g’ ») n={2i

(. 0; F, @)~ (G'/G, 9) 2i+1

are such that (8%)?=0, and the quotient monoids

VE(A)=ker (3% XX (4) > ¥R | (4))im (0% V51 (A)= YF(A))

are abelian groups (by Theorem 3.1 of Part III) generalizing the definitions in Part I of
Vy(A)=VED(4) (=UL(4)), W, (4)=V" (4).

Theorem 3.3 in Part III established an exact sequence
s H" L (R'[R)= ViR (A) > VF (A) > H" (R'[R) > VR | (4)>--

for *-invariant subgroups RS R'c K, (4).
A morphism of rings with involution

fid—- A

such that f(T)=T' (for some *-invariant subgroups T<K,(4), T'c K, (4’)) in-
duces abelian group morphisms

T (Vo UT (47): 1 (2> 0)=(fQ, f9) _f2i

Similarly, if f(R)< R’ (for *-invariant subgroups R< K, (4), R’ K (A4’)) there are
induced morphisms

FVRA)-VE () (n(moda)).
§4. L-Theory of Polynomial Extensions

Given a ring with involution 4 and an indeterminate x over 4 commuting with
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every element of A extend the involution on A4 to the involution

' e o) [e 0]
TiA[x, x 1] Ax, x"1]; Y, xla;o Y Xa
j=-w j=-o

on A[x, x™']. This restricts to involutions on the subrings A[x], A[x '] of A[x, x™!].
F. g, free A[x]-modules have well-defined dimension, as do those over A[x™'],
A[x, x~']. Thus the rings with involution 4 [x*1], A[x, x~'] satisfy the conditions
imposed on A4 in §3.

Call a functor

F:(rings with involution) — (abelian groups)
contracted if the sequence

0+ F (A (A L) @F (AL 520 F (A L, - ) S LF (4)0

is exact for every ring with involution 4 and there is given a natural right inverse
B:LF(A)-> F(A[x,x'])
for the natural projection

B:F(A[x,x"*])— LF(A)
=coker(E,E_): F(A[x]®F(A[x~'])- F(A[x, x~'])).

The obvious analogue to Lemma 1.1 holds for functors
(rings with involution) — (abelian groups)
as does the following analogue of Theorem 2.1 for the L-theoretic functors of §3:
THEOREM 4.1. Each of the functors
V,:(rings with involution)— (abelian groups)  (n(mod4))
is contracted, with
LV,(4)=U,(4), L.V, (4)=U?(4[x""])

up to natural isomorphism, where Ry (4)=ézK,(4)= Ko (A[xT']). O

The proof of Theorem 4.1 in the case n=2i will be similar to the proof of Theo-
rem 2.1. The case n=2i+ 1 will follow by an application of the results of Part II on the
L-theory of Laurent extensions (that is, of the ring 4[x, x~!] with involution by
F=x"1).
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Recall from Part II that a modular A-base of an A[x, x”']-module Q is an A4-
submodule Q, of Q such that every element g of Q has a unique expression as

g= Y x%; (4,€Qn{j|a;#0} finite),

j=—w

so that Q=A[x, x~']® 40, up to 4[x, x~']-module isomorphism. For example the
A-modules generated by the bases of free 4[x, x™']-modules are modular A4-bases.
Define a morphism

8+ : Vo (A%, x 1) UFP (A[x™1]);
(Q, 9)—~>(P[x~ '], [@]-1—x""[0]-2)

by choosing a modular 4-base Q, for Q (which is a f.g. free A[x, x~!]-module) and an
integer N >0 so large that

(p£0%) (x"Q3)=x™"Q5"  (x=(-)),
defining

P=x"Qs n(p£0™) ™" (x5 )e[P(4)l,
with [¢];€eHom, (P, P*) given by

[01,(») ()=ajed (y,Y eP, jeZ)
if

0() ()= 3 waedlxx] (4,e4),

j=—o0

and writing P[x~'] for &_P=A[x"']®, Pe|P(A[x~'])I.
The A-module isomorphism

[‘Pifp*]-ﬁQ“’Q*

may be expressed as

[e]-1x([e]-0)* 0 0
[oto*]-;= 0 0 1):POLOL*>P*®L*DL
0 +1 0

where L=(p+¢*) 1 (x 704 "), L*=x"0g =0, so that (P, [¢]_,) is a non-singular
+ form over A.
For any y, y'eP

[eto*]_.(») ()=[ete*]-1(xy) (V)
=[o+o*]_1 (xy—x"yy_1) (V')eA4,



Algebraic L-theory 153
where yy_1€0Q, is such that
__1 —_— — — — - —
y—x""lyy_exV '06 N(p+o*) 1(X N 1Q3)=x 'P.

Thus
(P, [o£0*]1-1) " ([o+0*1-2))=((p £ ™) ™" (x Qs *)/x 05, x)e N (4)],

and (P[x™'], [¢]-,—x""[¢]-,) is a non-singular + form over A[x"'].
Suppose that Qy is a different modular A-base of Q. Let M >0 be so large that

M . M .
QoS Z x'Qo, QoS Z x'Qp.
="M j==M
Then N'=N+ M is so large that
(p+e*) (x"' Q" )=x"MQ5 ",
and
P'=x"Q0y n(px0™) ' (x™VQ**)  (definition)
=x"(x"0," N Q3 )®P®x " (p£0™) 7 (@5 nxTMQ5"T).
Now
L=("(xM0y n Q) [x 1P [x™ 1]
is a sublagrangian of (P'[x7'], [¢]-1—x"'[@]-,) with LY/L=P[x"'], so that
(P'[x™ ') [0]- 1 —x"'[@]-2)=(P[x" '] [¢]-1—x""[¢]-2)®H (L)
=(P[x™'] [0]-1—x""[]-2)e U (A [x"]).

Thus the choice of N and Q, is immaterial to the definition of §.,.
Finally, suppose that

(Q, 0)=E, (05, po)e Vai(A[x, x™'])

for some (Qg, ¢¥o)eV,;(4[x]). Then we can choose N=0, and
5+ (2, 9)=0e U™ (A[x""]).

Hence the morphism
841 Vy(Alx, x 1) » U@ (A[x™])

is well-defined, and such that the composite

Vas (A[X])— Vi (A [x, x 1) — USA (4 [x71])



154 A.A.RANICKI

is zero. Before going on to show that this sequence is in fact split exact, we need an
L-theoretic analogue of Lemma 2.2 (the Higman linearization trick):

LEMMA 4.2. Every element of U™ (A[x]) (resp. Va;(A[x, x™1])) can be
represented by a linear + form, (Q%, @o+x¢,) over A[x] (resp. (Q,, ¢o+x¢,) over

A[x, x™1]) where ¢,, p,€Hom 4,(Q, 0*).
Proof. Given (Q*, 0)eU5™ (4[x]), let

N
¢= Zoxjﬁ"j Hom,,,(Q%, 0**)  (¢,eHom, (Q, 0%)),

and suppose N> 1. Now

1 00 0 —x"lpy O
(( —x 1 0) (o 0 o)
+x¥ "1t 0 1/, 0 0 0
o—x"oy —x"loy x
(@7, 0)®H: (Q7)~ Q*@Q*@Q*",( 0 1))
0

is an isomorphism of +forms over A[x], so that
@, 9)=(Q", ) Uz (4[x])
with Q'=0® Q0® Q* such that

N-1

¢'= 3 x'¢jeHomy4(Q'",0™") (¢jeHom,(Q', Q™).

.

j=0
Iterating this procedure (N—1) times we obtain a representative for
(Q*, 0)e US™ (A[x]) with N=1.

The same method works for elements (Q,, ¢)eV,;(4[x, x~']) provided we can
assume that

(pxo*) (Q%)=0*".
Choosing N >0 so large that

(pLo*) (x"QT)=x~VQ*,
note that

(x", 0):(Qx, ¢’ =x*"9) > (Qx, @)
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as an isomorphism of 4 forms over 4[x, x™!], so that

(Qxs 9)=(Qx> P)eV2:(A[x, x1]),
and that
(@'te™*)(@")s0*". O
The morphism
Ay URD (A7) = Vo (A[x, x71]) 5
(Q[x7'], 9) (2 x9)DEe_ (@[], —0)OH 1 (— Q)
is clearly well-defined, with —Q€|P(A4)| such that 0@ —Q is f.g. free.
The composite
USD (A [~ Vai (A3, x D)= USD (A[x~1])
is the identity: by Lemma 4.2 it is sufficient to consider 6,4, (Q[x™!], ¢) with
¢=@o+x""¢_yeHomyp,-1;(Q[x7'], @*[x7']) (9o, ¢, eHom, (Q, %)),
and

0.4, (Q [x_l]’ ¢0+xw1(l’—1)
=04 ((Qxs X0o+0-1)®(Qx, — (9o +¢-1))®H: (—Qy,))
=((Q@ " n(x (‘Poi(P:)‘i'(fP—li(Ptl))_l (QH)) [x_l] )
[xpo+@-1]-1—% " [xpo+0_1]-3)
=((1+x"%) 7" (x71Q), [x@o+ @111 =% [xpo+¢-1]-2)

where y= (0ot ¢5) ! (¢~ L ¢*)eHom,(Q, Q) is nilpotent. Now

1+x"'y) = ;0 (=) x7 Y eHom,,-(Q[x™'], @ [x~ 1),
so that

[xpo+ @ ]; (1+y~ )™  (x7 ') (L+x71p) " (x71Y)
={§00(}’) ()

.. =1 ,
(-1~ oy —7*90) () (¥') ]fj—{—z (. y'eQ),

and
Q-1 — QoY —V*@o=—0¢_;+xFx*eHom,(Q, 0*),
where y=¢_, —y*¢p,eHom, (Q, 0*). Thus

0.4, (Q [x—l]s ‘Po+x_1¢—-1)=(Q [x_l], 900+x_1 (‘P—1—(X$X*)))
=(Q[x™'L @o+x"'p_)e U (4[x"1])
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and
544, =1:U5(4[x71]) > UFP (A[x71]).

It is therefore sufficient to prove that V,;(A4[x, x"!]) is generated by the images of
E.:Vy(A[x]) = Vau(A[x, x71]), 442U (A[x71]) = V(A [x, x7]) for the
exactness of

Vo (A[x])— Vi (A [x, x 1] — USRS (4 [x™1]).

We shall do this using the following L-theoretic analogue of Lemma 2.3:

LEMMA 4.3. Let (Q,, ¢) be a non-singular + form over A[x, x™'] such that
¢=p+(x—1)veHom,p, ,-1(Qs» Q%) (#, veHom,(Q,Q%)).
Then (Q,, @) is isomorphic to the sum
(Rys pp+ (x—1) vg)®(Sy, pis+ (x—1) vs)
of non-singular + forms over A[x, x™'] such that
(R[x], ug+(x—1) vg)
is a non-singular + form over A[x], and
(S[x™"], x™* (us+ (x—1) vs))

is a non-singular + form over A[x™'].
Proof. The invertibility of

eto*=(utp*)+(x~1) (v+v¥*)eHomy, -1 (Qx OF)
implies that

e(pto*)=p+pu*eHom,(Q, 0*)
(nxp*) ' (oxo*)=1+ (x—1) yeHomy, ,-1;(Qx O)

are isomorphisms, where

y=(utp*)" ' (v+v*)eHom ,(Q, Q).
Hence, by Lemma 2.3,

Vs

with yzeHom, (R, R), 1 —yseHom, (S, S) nilpotent.
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Adding on some F hermitian products of type yFx*eHom, (Q, Q*)to u and v
if necessary, it may be assumed that u(R) (S)=0, v(R) (S)=0. Let

u=(Hr FRS). R@s— R*@S*, v=( % '*):R@S-R*®S*
0 Us 0 Vs

so that

ﬂxiﬂj’: URrs ) (YR 0) (VRiV: VRrs ) * *
= ‘R®S » R*®S*.
(iﬂ:s ustus) \0 s +vis VstVs

Working as in the calculation of 6,4, above,

0+ (2w @)=((Q" n(0x0™) 1 (Q*") [x™ '], [0]-1—x""[@]-2)
=((1+(x—=1)y5) ' () [x 7], [s+(x—1) vs]- 1 —x ' [us+ (x—1) vs]-5)
=(S[x7'] x7 ! (us+(x—1) v5)) e U@ (4 [x71]).

Thus ¢_6, (Qx, ®)=(S, us) is a non-singular + form over A4, and hence so is (S, vs),
because

(vsvs)=(us L u5) ys€ Hom, (S, S¥)

and yseHom, (S, S) is an isomorphism (being unipotent). Let
g= i("si";)—l V:SEHomA (R, S)
ﬂ,=(uk=ux—g*usg 0 ):R@S SRS

0 Us
r__ ¥
V/=(VR_VR g Vs8 O).R@S—?R*®S*.
0 Vg
Now

(/£ x)=(<:, ?) ((,,s+(x0—1) vs) & g))

H(Qn 0)=(R.®S,, p+ (x—=1) )= (2 ¢)=(Re®S;, '+ (x—1) V')
is an isomorphism of + forms over A[x, x~']. It follows that
¥ (@' £9™) f=(oto*)eHomy,, x-11(Qs OF)

and as fis defined over 4

f*(wtu'*) f=(ptp*)eHom,(Q, 0*)
f*(' £v'*) f=(v+v*)eHom,(Q, 0*).



158 A.A.RANICKI

Defining
' ’ rk\—1 %
y'=(utp™*)" (v'iv”"):(”"”("RJ—““R0 (e £vR) 2):1{@5—)12@5,
S

we have that

, _, (1 0\ /[y o>< 1 0) ( v 0)
- 1_ R = = :R®S— RO®S.
v=he (g 1) (0 s/ \—& 1 8Yr—7Vsg Vs

Hence
yr=Yr€Hom, (R, R)

is nilpotent, and (R[x], ug+(x—1) vg) is a non-singular + form over A[x]. This
completes the proof of Lemma 4.3. []
Given (Q,, ¢)eV,;(A[x,x"']) it may be assumed, by Lemma 4.2, that

p=p+(x—1) veHom,, ,-1; (Q,, Q%) (1, veHom, (Q, 0*)). Applying the decom-
position of Lemma 4.3,

(Qxa (p)=(Rxs ﬂR+(x_ 1) VR)@(SJu ﬂs+ (x_ 1) Vs
= {(Rx’ Ugr + (x"‘ 1) VR)®(Sx9 “S)}@{(Sx’ l‘s+ (x" 1) VS)
@(Sx’ "'”S)@H:t (_Sx)}

=E,((R[x], pr+(x—1) va)®(S[x], 15))
@4+ (S[x71, x7* (us+ (x—1) vs))e Vi (A[x, x71]).

As pointed out above, this suffices to prove the exactness of
Es+ 3+ -
Vi (A[x])— Vyi (A [x, x~1])— U (A[x~1]).
Define next a morphism

Eq:Vyu(Alx, x71]) = Vau(A[x]) 5
(Qw 0)= (01 0™) 7 (x™71Q* ) nx™MQ* ") [x], [@Jo—x ([¢]:)
S((x"Q" n(pxe*)™! (x™"0*")) [x], [¢]-1~[¢]-2)
for N, N; =0 so large that
2N;+1
(exo*) (@<= Y x'0*
j="2N
with Qe|P(A4)| f.g. free. The verification that E, is well-defined is by analogy with
that for é,.. Moreover, if

(Qx’ ¢)=(Rx9 HR+ (x"' 1) VR)®(Sx’ ﬂS+(x_ 1) VS)
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(as in Lemma 4.3), then
E+ (Qx’ ‘P)= (R [x]s /‘R+ (x'— 1) VR)E}—)(S[JC], .us)e VZi(A [x])’
so that the composites
US4 [x‘*])—i—i» Var(A[x, x 11— ¥y, (A [x])
Var(A[X])—5 Vo (A [%, x 1) — Vi (A [x])

are 0, 1 respectively. Thus
E+

o4
Va(A[x]) = Vy(A[x, x™ ) =2 U@ (4[x7*])
E. 4+
defines a direct sum system, and we can identify
L.V (A)=UZ5“ (A[x7*]).

Similarly, replacing x with x~!, there is defined a direct sum system
E-

5-
Vu(Ax" )2 Vy(A[x, x™ ') 2 U (A[x]),
E. 4-
allowing the identification
L_Vy(4)= U@ (A[x])-

The proof of Lemma 4.2 shows that every element (Q[x '], ¢)eV,;(4[x~*]) has
a representative with

(P=(Po+x_1‘l’~1 e Hom - 1 (Q [x—l], o* [x— 1]) (@0, ¢-1 €eHom,(Q, 2"%)).
The composite
Var (4[5 ) Var(A L%, x™ D)= Vay (4 [x])
sends such a representative to
E.E_(Q[x7'], 9)=(((p£9*) ™" (xQ*")n Q") [x], [¢]o—[¢]1)
O((x2™ n(ete*)™! (x7'0%) [x], [¢]-1—[¢]-2)

=(Q[x]. 00)® (9t 0*)~! (Q*®x710*) [x], [¢]-,
—[e]-2)eV,i(4]x, x-l])-

The A-module isomorphism

QD0 (0™~ (Q*®x7'0%);
(1Y)~ (0£0*) ™ (9ot 95) 3, 7 ((Po £ 03)+0-1 0% ,)) ¥+ (0o 1 05))))
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defines an isomorphism of + forms over 4

0. ("4 _0 N (@ten) (@ @509, [o]- ~[4]2).

Therefore

ELE_(Q[x7'], 0o+x"0_1)=(Q[x], 9o+ 0- )D(Q[x]DO[x], 0o® — ¢0)
=(Q[x], po+0_4)
=&,e_(Q[x71], @o+x"o_1)eVy, (A[x]),
and the square
Vi (4 [’i—i])—f;’ Vai (A [x, x—l])
°- &+ lE+
Vi (A)— V2 (A [x])

commutes. Similarly, we can verify that the square

US™ (4[x™"])—5 Uy (4)
4+ la-
Vo (A[x, x71]) = UZp (4 [x])
commutes, where

UFE Uf?u) (A[x*']) - Uy (4), #:Uy(4)> Uz@ (A[x7'])

are the morphisms induced by

ne:AxT] - 4; Y xVa;oa,,  Er:A- AT
j=0
respectively (so that .74+ =1). For
6-4,(Q [x_l]: €0=¢o+x—lfp—1)
=0_((Qx x0)D(Qs, — (9o +¢-1))®H: (—0,))
=((x7'2" n(ex9*) 71 (@*7)) [x], [xe]-1 —x[x¢]o)
=((x71Q) [x], [x¢]-1)=(Q[x], ®0)
=71, (Q[x™'], 0)e U5 (4 [x]).
The conditions of Lemma 1.1 are now satisfied, and so
V,;: (rings with involution) — (abelian groups)

is a contracted functor, with

LV (A)=URP(A[x*']), LV, (4)=U,(4)
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(up to natural isomorphisms), and the diagram

6-E+

1?:::::§3 m— //’—“\\

Va(A[x]) - U“Wﬂﬂ)

NN AN

Vai(4) Vai(A[x, x™1]) Uai(4)

Z N7 NN\

Va(A[x™1]) UR“(A[x™1])

E-44

incorporates two commutative exact braids.
Let So<=K, (A[x, x"!]) be the infinite cyclic subgroup generated by B([4])
=1(x:4,— A4,), and define

(A% x~ D=V (A[x, x])  (n(mod4)).
Working as for V,,(A4[x, x™1]), it is possible to define morphisms to fit into a diagram

0-E4

/A/AA

Wau(A[x]) Vi O(A[x])

AN AN

WZ:(A) WZ!(A[X X 1]) V21(A)

N NN

Wz.(A[x' 1) Vi O(Alx” 1])

\__/ v

E-Ad4
with E,E, =1 etc.) incorporating two commutative exact braids. For example,
P

8 Wai(Ax, x™'1) > Vi@ (A[x™1); (o @) (B[x "], [0]-1 =7 [0]-2)
Ey:Wy(A[x, x™']) - Wy (A[x]) 5
(Qx (P)H(,}:l [x], [¢Jo—x [¢]1)@(£ [x], [¢]-1—[¢]-2)
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for any A-base P of P=x"Q™ n(p+¢*)™' (x"¥Q**) (which is free for sufficiently
large N>0, as 7(Q,, #)eS, and [P]=Bz(Q,, ¢)=0eK, (4)) with
Pi=(p10*)' (x"g*)®(0p£0*)™! (P*)
the corresponding 4-base of P, =(p+¢*)™! (x¥*1Q*")nx~NQ™*, for N so large that
2N+1

(oxe*) (@< ¥ x0*.

j=—2N

Also, let
A, VED (A [x™]) o oy (A L%, 5113 (Q[x 11, ) (Qer 30) © (L ~F5_0)
where 0= (e- (1 0*)™" ().

Given an invertible indeterminate z over A commuting with every element of A
define 4, as A[z,z™!] but with involution by Z=z"'. Similarly, define A [x*'],,
A[x, x1],, and identify

A[xil]z':AZ [xi 1]’ A [x’ x._l]z:AZ [‘x’ x—l]'
Let So K, (4,) be the infinite cyclic subgroup generated by 7(z:4,— A4,) and define

Wo(4,)=V,°(4,)
Br(AL11)= Vi (4 [x21])
W (A[x, x~1],)=ViES®@STo (4% x~17,)

for n(mod4). By analogy with W,;(4 [x, x~']), ﬁ’zi(A [x, x~1], fits into a diagram
incorporating two commutative exact braids (where A4,=A[z,z7'], with z=z7").

Esd-

AW [x];.‘/—:/ﬁVK‘(“’(A[x])//K/_\_\O
'\ N

W ALx, x~71,) Vai(4.)

/
/\ LA N

2i A x—l Kl(Az) A x—l .
‘%:// : ]v)\__,__/\i-"" A ]\_v\_;’ﬁ

3+E-
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We can now apply the decompositions

Wai(A.)=(2) Wy (A)®B(2) V-1 (4)
Wai (A[x].)=2(2) Wai (A[x])® B (2) V-1 (A [x])
Wor (AL, 7 11.)=8(2) Wau (A%, ' D@B(2) Vares (A5 x™'])
Va4 (A[x],)=2(2) V5 (4)@ B (2) USI™ (4)
V2i(4:)=2(2) V3 (A)®B(2) Uyi-, (4)
given by Theorem 1.1 of Part II (and extended to the intermediate L-groups in Part

III). The above diagram splits naturally (via £(z), B(z)) into two similar ones:
the diagram for W,,(4[x, x~']) and the diagram

0 Vai(A[x]) zi’(Ax)(A[x
N NS N
// x[ / "K\O(A)(A [—‘l//7 \

0

where
Ey: Vs (A[% %™ ]) > Wy (A [, x™11,) s Woy (A [X].) s Vo s (A[x])
64t Vs (A[x, x'*])—f‘i’»ﬁzi(A[x x711,)
s VAU (4[x71],) 2% USRS (A [x1])
F(z)

A, URAR (A ) — V42 (A[x71],)

B(z)

—-+§’2,(A[x, x> Vaimg (A%, x71])

(and similarly for E_, §_, 4_). Thus the conditions of Lemma 1.1 are also satisfied
in the odd-dimensional case, and

V,i-1:(rings with involution)— (abelian groups)
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is a contracted functor, with identifications
Li Vzi— 1 (A)= Ugfﬂ) (A [x;E 1]) s LVzi— 1 (A)= Uji-1 (A) .

This completes the proof of Theorem 4.1 [J
The groups

Nily (4)=ker (¢4 : K; (4 [x*']) > K, (4))
are such that

K (A[x*'])=E.K, (4)®Nil, (4)
K, (A[x, x"1])=2K,(A)®E Nil, ()@ E_Nil_ (4)®BK, (A),

fitting into direct sum systems

6+Es n:
Nily (4) = KoN(4)= K, (4)
Esd: fx

(by Theorem 2.1).
Given *-invariant subgroups S = Nil, (4), define

N:{:VnS* (A)=kel'(8i . V5¢K1(A)®S¢ (A [x:tl]) 3 Vn (A)) (n (mod4))
.. N.V,(A4) N, VM (4)
writing {NiW,,(A) for {NiVn{o} 4

COROLLARY 4.4. Given *-invariant subgroups
RcK,(4), S, cNily(4), T<k,(4)
there are direct sum decompositions
VIROS (4 [x*1]) =, Vi (A)ON £ Vi ()
UpT(A[x*1])=2.U; (A)®N .V, (4)
VE(A[x, x '])=EVR(A)BE.N VS * (A)®E_N_V,5 - (A)®BU, (4)
for n(mod4), where
Q=iRPE,S,®E_S_®BT<K,(A[x, x"])
=&k, (A)@E, Nil, (4)®E_Nil_ (4)®BK,(A4)

with T< K, (A) the preimage of T under the natural projection Ky(A4)— K, (A).
Proof. The forgetful map

V,(A[x*']) > UET (A [x*'])
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fits into the exact sequence of Theorem 2.3 of Part III, which splits, via &,, &, into
two exact sequences

- 0 - NV, (4) - N V,(4) - 0 -

1l l S )
> H"™ (6, T) - V,(A[x*']) » U T(A[x*1]) » H" (8. T) -
Ex Tl g1 & 'n - £y Tl Ex Ex Tl €y

- H"Y(T) - V,(4) - U4 - HY(T) -.

Hence N, V,(4)sV,(A[x*']) is mapped isomorphically to ker (4 : U2*T (4[x*'])
— UT(4)) and so (up to isomorphism)

UsT(A[x*'])=2: Uy (A)®N 1V, (4).
In particular,

U@ (A[x*'])=2:U, (A)®N :V,(4),
Vi(A[x*']) =1 V,(A)DN+V,(4).

It now follows from Theorem 4.1 that
Vn (A [.X, x_1])=éVn (A)®E-+N+ Vn (A)('BE—N— Vn (A)®BUn (A)

The expressions for V;**®5=(4[x*']), ¥2(A[x, x~']) may be deduced from those
for V, (4 [x*']), ¥, (A [x, x~']), working as for U%*T (4 [x*']) above. (In particular,
for R=0,5,=0,S_=0, T=0 we have

0=S,=Kk, (A[x, x7])
and

Wn (A [xi1])= é:t Wn (A)G')N:t Wn (A)’
W.(A[x, x ' ])=eW,(A)DE. N, W,(A)®E_-N_W,(4)®BV,(4).) O

In §4 of Part II there were defined lower L-theories, functors
L{™: (rings with involution) — (abelian groups)

for m<0, n(mod4) by
LV (A)=ker (e: LT}, (4,)- LTV (4))

with L (4)= U, (4). By convention, L{" (4)=V,(4).

COROLLARY 4.5. The lower L-theories L™ coincide (up to natural isomorphism)
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with the functors LV,, L*V,,... derived from V,, with
P (A)=L""V,(A) (m<0, n(mod4)).
Proof. By Theorem 4.1,
LV, (4)=U,(4)=L (4).

Assume inductively that
LP (4)=L'""V,(4) (n(mod4))

for 0= p>m, for some m< —1. Then

L () =ker (e: 9%, (4,) L0 (4))
=ker (e:L™"V,+1(4,) = L™ "V,+4 (4))
=L(ker (e: L™ W41 (4) > LT V,14(4))
=L (ker (&: LyY',” (4.) » L7¥1P (4)))
=LL P (4)
LV, (A)=L "V, (4)

giving the induction step. [J
Given a functor

F: (rings with involution) — (abelian groups)
define
N.F(A)=ker(es:F(A[x*']) > F(4)).
(By Corollary 4.4, the previous definitions of N, V,(A4), N. W, (A) agree with this, up

to natural isomorphism).
By analogy with the first part of Corollary 7.6 of Chapter XII of [1] we have

COROLLARY 4.6. Let x4, X5,..., X, be independent commuting indeterminates
over A, with %,=x; (1<j<p). Then

L™ (A[x1, X3, ..., %,])=(1ON, )? L™ (4)
Ly (Alxe, %1 Y %20 %5 s o0 %0 %, 1) = (10N, ON_@OL) LI (4)

up to natural isomorphism, for m<1, n(mod4),p>1. [
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