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Computation of Lojasiewicz Exponent of /(x, »)1)

TzEe-CHAR KUO

Let f (x), xeR", f(0)=0, be a real analytic function defined near 0.
First, suppose f (x)>0 for x#0. Then Lojasiewicz asserts that there exist ¢>0,
a>0 such that

f(x)=¢|x|®, xnearO.

Geometrically, this says that the graph of y= f (x) lies above the bowl-like graph of
y=¢|x|*

For general f(x), let ¥, denote the variety f(x)=0 in R", then Lojasiewicz ([2],
p. 85; [3]) asserts that

|f (x)|=ed(x, V)", x near 0,

where d (, ) denotes the usual distance in R".
This inequality, known as the Lojasiewicz inequality, is of fundamental importance
in singularities theory.

PROBLEM. Determine the smallest value of « in the Lojasiewicz inequality.

For instance, to determine the smallest integer r such that in the Taylor expansion
of f near 0, all terms of degree > r can be omitted without changing the local topolog-
ical type of f (i.e. the r-jet j”(f) is C°-sufficient) amounts to determining « for
|Grad f (x)| ([1], Theorem 0), where Grad f (x)#0 for x#0.

Let R% denote the upper half plane {(x, y): y>0}; R% the lower half plane y<0.

All points are understood to be in a sufficiently small neighborhood of 0.

§1. The Results

Let f (x, y) be a real analytic function of two real variables with f (0, 0)=0. We
may assume, without loss of generality, that the initial form of the Taylor expansion
of f is not divisible by y (this amounts to saying that the x-axis is not a tangent of
f (x, ¥)=0 at 0). Then, by Puiseux’s Theorem ([4], p. 98), f can be factored (near 0)

1) The purpose of this paper is to give a complete solution of the Problem for functions f (x, y)
of two real variables. Our solution depends heavily on the use of Puisenx’s Theorem.
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into a product

fy)=al] (=2) a%0 (L1)

where m=0(f), the order of f, and each z; is a fractional power series in y with
order O(z]')>1.

EXAMPLE (1.2). f(x, y)=x(x*+y*—y*).
Roots are z1 =0, 23, z5 = +iy** (1 -}y +---) with O (z}) = 00, 0 (z3) = 0 (z3) =3/2.

SOME DEFINITIONS. (i) Each z;* in (1.1) is called a root of f. A fractional
power series is real if all coefficients are real. For a non-real z*, x=z* has no locus in
R2. This is because for y>0, all fractional powers of y are real numbers, and so z* is
not a real number. In R%, however, x=z* may, or may not, have locus. For the roots
z3, 2 in Example (1.2), there are loci in R, the two arcs of a cusp. For the roots of
x?+ y*=0, there is no locus in either half plane (except the single point 0).

(ii) Let z*=) 72 a;y™ a;#0, 1 <n, <n,<--- be a given non-real series, a, its first
non real coefficient. We define the real springboard of z* to be

()= Y ay+tye

i<s—1

where ¢ is a generic real number.
(1.3) Call n, the complex order of z*.
Now we put

e(f,2*)=0(f(z*(t), »))
and
max {0 (z* (t)—z;")}, where z]" runs through all real roots

5(f; %)=, !

1 if there is no real root.
EXAMPLE (1.4). For f (x, y) as in Example (1.2),

e(f,23)=0(t(t2+1) y°*+---)=9/2

for generic values of 7. Notice that for some special value of ¢, such as t=0,
O(f (22 (2), ))>9/2.

We may call e( f, z*) the climbing-exponent of f along z* and é ( f, z*) the distance-
exponent of f along z*.
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THEOREM. The number

s

L, (f)=Max

i

O(f)}

where j runs through all indices for which z} is a non realroot, has the property that in any
given sufficiently small compact neighborhood U of 0, there exists a constant ¢>0 such
that

(Ly)  1f(x p)Ized((x, ¥), V)",  (x,»)eUnRE,

where d (, ) denotes the usual distance in R*, V, the real curve f (x, y)=0. Moreover,
L. (f) is the smallest number with this property.

We put L(f)=Max{L,(f),L_(f)}, where L_(f)=L,(f(x,—y)), and call
L( f) the Lojasiewicz exponent of f.

COROLLARY 1. The Lojasiewicz exponent L( f) is the smallest number having
the property that in any given sufficiently small compact neighborhood U of 0 in R?,
there exists a constant ¢>0 such that

(L) 1f(xp)=ed((x, ), V)FD, (x,p)el.

COROLLARY 2. If all roots of f (x,y) (respectively f (x,—y)) are real, then
L,(f)=0(f) (respectively L_(f)=0(f)).

COROLLARY 3. If all roots of f (x, y) are non-real, then L, (f)=Max,<;<m
{e(f, 2)}-

EXAMPLE. f (x,y)=x%+y* Both roots of f(x, y) are non-real, L, (f)=3.
Both roots of f (x,— y) are real, L_(f)=2. Hence L(f)=3.

COROLLARY 4. L(f), L. (f), L_(f) are rational numbers.
§2. Proof of Theorem

Notations. For two real-valued functions A4(x,,..., x,)>0 and B(xy,..., x,)>0
defined for (x,,..., x,) in a domain D in R" with 0e D— D, we write

Az B 2.1)

if there exists a constant k>0 such that k4> B for all (x,,..., x,) in D near 0. If
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AZ Bz A, then we write A~ B; this is the case if, and only if A/B lies between two
positive constants, x near 0.

For a fractional power series y* in y, and for d >0, w >0, a horn neighborhood of
y* of degree d and width w is the point set

H; (y*; w)={(x, y): Ix—7*[<w|y|"},

where j* is y* with all terms of degree > d omitted. We often write H,(y*) instead of
H,(y*; w). This is a horn-shaped set with vertex 0, containing the point set x— y*=0,
except the origin, in its interior. The definition given here is slightly different from that
in [1] in that this new horn neighborhood is the closure of the old one; in particular,
the origin is contained in the new but not in the old.

For (x, y)e H; (y*; w), |x— y*| >w|y|". (2.2)

For two fractional power series y*, z* let H (y*, z*) denote the horn neighborhood
H,(y*; w) where d =0 (y*—z*), w a sufficiently small number. Call H (y*, z*) the
horn neighborhood of y* against z*.

H (y*’ Z*)ﬂH (Z*’ y*)= {0} (23)

LEMMA (2.4). Let z* be a given fractional power series (iny). For a finite set
of fractional power series {y1, ..., y¥} and d >0, there is a finite subset Z=2,(y7, ..., y)
of R such that for t ¢ Z,

o((z*+1y*)—yH)<d, 1<i<s. (2.5)

The case s=1 is quite obvious, the rest of the proof is by an easy induction on s.

Now consider all real springboards z{ (¢;) of the non-real roots z{ of f. Let d,
denote the complex order (see (1.3)) of z*. By a repeated application of Lemma (2.4),
we can choose specified real values for ¢; in z*(¢;) such that

O (2 (t)—2*)<d;, 0(zf (1)~2] (1))<d:  i#}, (2.6)
where z* is any real root.

EXAMPLE (2.7). f(x, )= (x—y?) (62 +y*)?, zi=)2 z3=z3=0? zi=zi=
. 2
= —iy“.
We may choose any values for ¢;, 2<i <5, provided that #;#1, and ¢;#¢; for i # j.
Note that z,=¢; or t,=t5 are not allowed.

LEMMA (2.8). Let y*=2z*(t) be the real springboard of a non-real fractional
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power series z* with complex order <d. Then for (x, y)¢H,(y*; w), (x, y)eRA,
(2.9)

|x = y*|~ |x—2z*.
Proof. Let c be the first non real coefficient of z*. First, suppose d =0 (y*—z*)=
=complex order of z*. Then

|x —2*|< [x— p¥| + | p* —2* < |x = y*| +2]e—2] | y|.
By (2.2), |x— y*|>w|y|“ hence
[x—z¥|< |x— y*[+ 2le—2]/w) |x— y*|.
Hence
|x —z¥|< |x— y*|.
Now,
| = p*| < Ix—z*| + |2* = y*|< [x—z¥| +2c— ] | y]".
For y>0, y* is real, while cy? is non-real. Hence
Ix—2z%=%1c| |yl
where ¢’=Im(c), and so,

|x— y*|< |x—z*| + (4|c—t|/|c']) |x—z*¥|,
|x—y*|< |x—z*|, proving Lemma (2.8).

Next, suppose d <O (y*—z*). Then

lim |y* —z¥| |y| "¢=0.
y—0

Again, (2.9) follows from the triangle inequalities
Ix—y¥|< lx—z¥ + 2% = y*|
and

X —z*| < lx— p*| + | y* —2*|.

From now on, z},..., z* denote the m roots of f (with multiplicity), and let

¥%5..., ¥¥ denote the real roots and the springboards of non-real roots, satisfying (2.6).
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That is, y; =z} if 2} is real, and y} =z (¢;) if z]' is not real. All fractional power series
are understood to be in y with order > 1. All points (x, ) are understood to be in R3.

Thus H,(y*; w) " R% will be written simply as H,(y*; w).

Let & denote the family of horn neighborhoods of the y,’s against one another:
F={H y]):i#j}

We divide a neighborhood of 0 (in R; ) into regions of three types. Type I: Re-
gions which are the smallest members of §. Type 2: Those of type H -\, H,, H,
H,e§, where H, runs through all members of § contained in H. Type 3: The com-
plements of the union of all members of .

Inequality (L. ) will be established in regions of each type.

For a real fractional power series w*, let V,. denote the point set x —w*=0.

LEMMA (2.10). Let y* be a real fractional power series. Then

d ((x, ), Vyo)~ Ix—y*|. (2.11)

This is obvious.
LEMMA (2.12). Let y*, z* be two real fractional power series. Then for (x,y)
¢H (y*, z*¥),

d((x, ), Vyr)RA (%, ), Vzs)- (2.13)
Consequently, for (x, y)¢H (y*, z*) U H (z*, y*),

d ((x, ), Vy)~d (%, 7), V). (2.14)

Proof. To show (2.13), let us first consider the special case y* =0, whence V. is
the y-axis. Write z*=ay?+---, a#0. Now, by (2.11), d((x, y), V;s)~x, d ((x, ),

Vo)~ |x— (ay®+---)|. For (x, y)¢H (y*, z*)=H,(y*), where d=0(y*—z*), |x|>
>w]|y|? by (2.2). Hence

[Ge— (ay? +--P/xl = 11— (@y* +--)/x| <1+2lal |y/wiyl*=1+2]al/w,

and (2.13) follows.
For the general case, we can perform a C'-coordinate transformation

X=x—p* Y=y (2.15)

(this transformation is C' since O(y*)=>1). Then the general case is reduced to the
above special case.
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LEMMA (2.16). Let y*, z* be two real fractional series. Then for (x, y)e H (y*, z*),
d((x,y), V)~ IyI%,  a=0(y*—z%). (2.17)
Proof. By (2.3), (2.2),
|x—z*|>w|y|*.

Now

H(y*a Z*)=Ha(y*)’
|x—z* < |x— y*| + | y* —z*|
Wyl + [y*—z¥ ~ | yl®.

Hence (2.17) follows.

Type 1. Consider a smallest member H of §. Say H=H (¥}, yy).

First, suppose y; is the real springboard of a non-real root z}, i =z} (¢,).

Let d; denote the complex order of z*[(1.3)].

We claim that H = H; (7). Indeed, the complex conjugate Z; of z}' is another root
of f, since f is real. Say 7 = z¢. Now O (z; —z;')=0 (yx — y!)=d,, where yy =z} (t,),
and so H, (y1')=H (¥, y¢) is a member of §. Since H is a smallest member, we must
have H = H, (y}). By (2.6), Hy,(y¥) is a smallest member of §; hence H = H, (y}).

Now, for (x, y)eH, |x—z}|~ |y|*; moreover, for any j#i, |x— y]|~ |y|*, where

a;=0(yF— ), by (2.17). If y}, j#i, is the real springboard of a non-real root zJ,
then we have |x—z}|~ [x— y}|, by Lemma (2.8). Hence

|/ (x, p) = ];le—27|~|yle(f’y"’, (2.18)

since e(f, y)=d;+ Y ;41 ;.
Now, ¥ is defined by [ ];(x— yi)=0 where y} runs through all real roots. Hence

d ((x,y), V;)=Min; {d ((x, y), V}s )}
For (x, y)eH = H,, (1),

d ((xs y)’ Vy‘,)N [%— yﬂ ~ | y|*
where

4=0(y/~y})=0(y-2})
(See (2.6)). Hence

d((x, y), Vo)~ IyI"20. (2.19)
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By (2.18), (2.19), we have, for (x, y)e H, (¥})
Lf (6 »~d((x, ), V)" (2.20)

where y,=e(f, y1)/3 (£, ¥7).
Next, suppose yi is a real root. As y} can be a multiple root, let u denote its
multiplicity. Hence

If G P~ Ix=yf 1T T Ix~2]1, (2.21)

where z} runs through all roots other than y;. For (x, y)e H=H (y, yr), we claim
that

d((x, ), Vy)~d (5, 9), V)~ lx = p71. (2.22)

Indeed, since H is a smallest member, H is contained in H (y;, y¥), and is therefore
disjoint from H (y¥, y), where y¥ is any real root other than y;. Then the first ~ of
(2.22) follows from (2.13), the second ~ follows from (2.11). Moreover, for (x, y)e H,
and for j #i,

|x—zF|~ |x—yTIZ |x— y¥l, (2.23)

the first relation follows from Lemma (2.8), and the last relation follows from (2.13).
Now, by (2.21), (2.23) and (2.22),

|f (e IR x =y "~d ((x, ), V)", m=0(f). (2.24)

Remark. We may not replace 2 by ~ in (2.24). See Example (3.6) in §3. How-
ever, for (x, y) in a sector S,= {(x, y):|y|<#n|x|} we do have

Lf Ce, ) ~d ((x, »), V)" (2.25)

In fact, since the initial form of f'is not divisible by y, for (x, y)€S,, n sufficiently small,
|f e p)l~e™, o= (x*+)) 2 ~x,

and
d((x, ), Vi)~ x| ~e.

Hence we have (2.25).
Type 2. The region is of the form H —|J,H,. Collect all ;' for which V. c H.
By permutting the indices, if necessary, we may assume they are y%,..., yi. Then
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Vs, £H, q>k. For i<k, V, cH, then H=H, (y!) for some d;. Hence for ¢>k,
H (y;, y')nH={0}.

First, suppose none of the y;’s, 1 <i<k, is a real root. Choose a fixed y¥, say y}.
For any j, 1< j<k, H (y},y}) and H (y}, yT) are disjoint proper subsets of H.
Hence, by (2.11), (2.14),

Ix—yil~Ix—=yjl, for (x, y)eH—kaJ H,.
By (2.2),

x=yiRIY, a;=001-¥7), L<j<k.
Moreover, by (2.6),

0(yi—-y))=001—z) 1<j<k.

Hence, by Lemma (2.8),

K k
[T Ix~=2f1~TT Ix=y 121y,
i=1 i=1

where a= Yi.; O(y}—z]).
Now, for any g>k, H (y}, y1)n H = {0}. Hence for (x, y)e H,

x—zgl~x =1z, a=0(1-y)=0(1-z]).
Thus, for (x, y)eH,

|f (e, PRy, (2.26)
We now show that

d((x, y), Vp)~ 1y (2.27)

and then (L, ) follows.

In case f has no real root, ¥V,= {0}, 6(f, y7)=1 and (2.27) is obvious.

Now let y*, s>k, be any real root. We claim that H < H (¥}, y¥). Indeed, H is a
horn neighborhood of y¥, say of degree 4. If d; <O (y}— y¥), then we would have
V,..< H, acontradiction. Therefore d, > O (s — y¥), H = H (¥}, y¥). By Lemma (2.16),

d((x, »), Vs )~I*, a,=0(1—»). (2.28)

Since y} is any real root, (2.27) follows.
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Next, suppose some y}', 1<i<k, is a real root. Say i =1. By (2.11) and (2.14),
Ix—yil~x—y¥  2<j<k.

For g>k,
Ix—yil=Ix—yil

by (2.13). Therefore,
|f (x, y)l=jH1 x— 27|~ Ix= ¥R Ix=y"~d ((x, ), Vs)".
= J

We have again established (L, ) in this case.
Type 3. First, suppose f has at least one real root. Say y7 is a real root. For

(x, )¢ U, ; H (3, v7),

Ix—yf|~Ix—y¥|, forallij. (2.29)
Moreover,

/G )I=11 lx-ZS"I~Il] x—y¥l~lx~yiI"™
Now,

d((x, y), Vf)~Miin {Ix—yi1}~Ix—»il

by (2.29), where y} runs through all real roots.
Therefore we have

Lf G, )l ~d ((x, ), V)™ (2.30)

Finally, suppose there is no real root. We still have (2.29). Since (x, y)¢H (], ¥7)
for all i, j,

[x—yfIZ|p|¥ where a;=0(y!—y}), Jj#i.
Hence
If (e IR YO D, 1<i<m.

Again, we have proved (L. ).
To complete the proof of the theorem, it remains to show that L, (f) is the
smallest number having the property (L,). This follows from (2.20) and (2.25).
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Proof of the Corollaries. Corollary 1 follows immediately. Corollary 2 is obvious.
Corollary 4 follows from Puiseux’s Theorem ; the exponents of the roots z;* are rational
numbers (with a same denominator). Corollary 3 follows from the fact that 0 (z])>1
for all i, and hence e(f;, z}')= O (f).

§3. Illustrative Examples

For two arcs y:x=y*, f:x=z*, call d(y, p)=0(y*—z*) the degree of contact
of y and B.
For a real arc y:x= y*, the Lojasiewicz exponent of f along v, {;(y), is defined by

Lf % I~d (", ), V)P,

In particular, if f (x, y) is positive definite, then

O™ y)~Iy?.

EXAMPLE (3.1). f (x, y)=x%+»'°. Both roots are non-real. The real spring-
boards of the roots are y;:x=t;y°, i=1, 2.
For any real arc §,

_ )10 if d(y, p)=5
Y (ﬁ)_{zd (v B) if d(v, B)<S.

(3.2). As p varies so that d (y;, p) increases, /() increases.
The maximal value of /() is 10 and is taken when d (y;, )= 5.
Observe that L(f)=10 by Corollary 1.

A phenominon similar to (3.2) appears in the next example.

EXAMPLE (3.3). f(x, )= (x*+'%) ((x—»*)* +»*°).

Consider the real springboard y,:x=ty°, arising from the first factor, we have
I;(y,)=16. Let us perturb y, to B:x=1ty’+ (sy* +terms of degree>d), where s#0,
|s| small. For d=d (y;, B) varies in the range 1 <d <o,

16 if d>5
(B)={2d+6 if 5>d>3
4d if 3>d

(3.4). As d(y,, B) increases, /() increases.
Observe that /,(y;)=16 is a maximal value, which is reached when d>35.
Now consider y,:x= y* +1y°, the real springboard of a root of the second factor.
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For any B:x=(y*+ty*°)+ (sy?+---), we have

46 if d>20
L, (B)=16+2d if 20>d>3
4d if 3>d

(3.5). Again, as d=d (y,, B) increases, /() increases.

Observe that /,(y,)=46 is a maximal value. Also, by Corollary 1, L( f)=46.

When f (x, y) has real roots, the way /, varies near a real root is quite different
from that near a non-real root as in the last two examples.

EXAMPLE (3.6). f (x, y)= (x—»?) (x*+ »'°).
Consider the value of /,(f), where
B:x=y*+(sy?+--), s#0.

We have, along g,

B lyld+10 d>5/2
|f (x, J’)I—{Msa 52>d,

d((x, y), Vp)~Iyl".
Hence

1+10/d d=5)2
’f(ﬁ)={5 5/2>d.

Now observe that in contrast with (3.2), (3.4) and (3.5), /() decreases as d increases.

The maximal value of /, over arcs of type f is 5. Note that O (f)=5. However,
the maximal value of /, near a real springboard of either root of the second factoris 12;
and L(f)=12.

In this example, e(f, y7)/6 (f, y7)=12>0(f)=5.

It is not true, however, that for general f, e/6 = O (f).

EXAMPLE (3.7). f (x, y)=x(x—»?) (x*+ y*?), p>q. Thene=p+q+2p, d=p,
O(f)=4, and ¢/6<O(f).

To close this section, we give an example due to Lojasiewicz, which shows that for
a polynomial f of degree n, one can have L(f)>n.

EXAMPLE (3.8). ([2], p. 85).
F(x9)=x*"+ (x— y")? = (x— y"+ix") (x— y"—ix").

The roots are z}, z5:x=y"+iy™ +---. We have e(f, z}')=2n*=L(f).
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