Analytic Self-Mapping Reducing to the Identity Mapping

Autor(en): Kato, Takao
Objekttyp: Article
Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 49 (1974)

PDF erstellt am: 28.05.2024
Persistenter Link: https://doi.org/10.5169/seals-38008

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Analytic Self-Mapping Reducing to the Identity Mapping

Takao Kato

1. Accola [1] gave a criterion for an analytic self-mapping of Riemann surface to be the identity mapping as follows:

THEOREM A. Let W be a Riemann surface of genus greater than one. Let f be an automorphism of W. Suppose that there are four independent cycles C_{1}, \ldots, C_{4}, so that $C_{1} \times C_{3}=C_{2} \times C_{4}=1$ and $C_{i} \times C_{j}=0$ if $i+j \equiv 1(\bmod 2)$. Suppose $f\left(C_{i}\right) \sim C_{i}($ reads $f\left(C_{i}\right)$ is weakly homologous to C_{i}) for $i=1, \ldots, 4$. Then f is the identity mapping. Here $C_{i} \times C_{j}$ denotes the intersection number of C_{i} and C_{j}.

If any one of the assumptions of this theorem is omitted, then the conclusion fails. In this sense Theorem A is best possible. Despite of this fact it is still open to discuss the possibility of giving weaker conditions. In this paper we shall try to seek for such weaker conditions for an analytic self-mapping to be the identity mapping.
2. At first we shall consider some conditions which imply that an analytic selfmapping reduces to an automorphism. The present author and Kubota [3] obtained such a condition already. We state it in a weak form.

THEOREM B. Let W be a Riemann surface of positive genus and with non-abelian fundamental group, f an analytic self-mapping of W and C a non-dividing cycle on W. Iff $(C) \approx C$ (reads $f(C)$ is homologous to C), then f is an automorphism of finite period.

In terms of weak homology we have an analogue of Theorem B as follows:

THEOREM 1. Let W and f be as in Theorem B. Suppose that $f(\gamma)$ is a dividing cycle for every dividing cycle γ. Let C be a non-dividing cycle. If $f(C) \sim C$ then f is an automorphism of finite period.

Proof. Since $f(\gamma) \sim 0$ for every $\gamma \sim 0$, we have $f^{n}(C) \sim C$ for every positive integer n, where f^{n} denotes the n-th iteration of f. Suppose that f is not an automorphism. Then $\left\{f^{n}\right\}$ tends to a point on W or a component of the ideal boundary of W uniformly on every compact subset of $W(\mathrm{Cf} .[2,3,4])$. This contradicts the fact that $f^{n}(C) \sim C$ and that C is a non-dividing cycle (Cf. Proof of Lemma 2 of [3]).

Using Theorem B and Theorem 1 we can paraphrase Theorem A under weaker assumptions. We omit them.

On the other hand as a supplementary result of Theorem B we have

THEOREM 2. Let W be an open Riemann surface of positive genus. Let f be an analytic self-mapping of W. Suppose there exist two cycles C_{1} and C_{2}, so that $C_{1} \times C_{2}=1$ and $f\left(C_{i}\right) \approx C_{i}(i=1,2)$. Then f is the identity mapping.

This is a counterpart of a result of Marden, Richards and Rodin [4, p. 224].
Proof. Since $f\left(C_{1}\right) \approx C_{1}$ and C_{1} is a non-dividing cycle, f is an automorphism of finite period. Therefore, there is a canonical subregion R of W such that $C_{1}, C_{2} \subset R$ and that f is an automorphism of R. Hence we may assume that W is a compact bordered Riemann surface. Let \hat{W} be the double of W, and let \hat{f} be the extension of f to \hat{W}. We can carry C_{1} and C_{2} to $\hat{W}-W$ in the standard manner. Applying Theorem A to \hat{W} and \hat{f}, we conclude that f is the identity mapping.
3. Using a condition on the topological characters of a Riemann surface, we have

THEOREM 3. Let W be a Riemann surface of genus $g(\geqq 2)$ and with $k(\geqq 0)$ boundary components. Let f be an automorphism of W. Let C_{1} and C_{2} be cycles on W such that $C_{1} \times C_{2}=1$. Iff $\left(C_{i}\right) \sim C_{i}(i=1,2)$, then the period of f is a common divisor of $g-1$ and k. If $k=0$ or ∞, then the period of f is a divisor of $g-1$. If $g=\infty$, then the period of f is a divisor of k.

This theorem yields immediately
COROLLARY. Under the same hypotheses of Theorem 3, if one of three cases (1) $g=2$, (2) $k=1$ and (3) $g-1$ and k are coprime, is assumed, then f is the identity.

If it is not the case of Corollary we can construct a pair of W and f whose period is the greatest common divisor of $g-1$ and k.

To prove Theorem 3 we need a lemma due to Accola [1].
LEMMA. Let W be a compact bordered Riemann surface of genus greater than one. Let f be an automorphism of W so that $f\left(C_{i}\right) \sim C_{i}(i=1,2)$, and $C_{1} \times C_{2}=1$. If f has a fixed point or f leaves a boundary component invariant, then f is the identity mapping.

Proof of Theorem 3. Since f is an automorphism of W, the hypothesis of Theorem 1 is fulfilled. Thus f has a finite period. If g is finite, there is a compact Riemann surface of genus g, and it has an automorphism whose period is the same as the period of f. Such a Riemann surface is constructed as follows: Since g is finite, there is a compact subregion of W whose genus is g, and the restriction of f to it is an automorphism of it. Then there is a compact Riemann surface \dot{W} of genus g which contains that region as its subregion, so that the automorphism of the region can be extended conformally to it in the unique way (Cf. Oikawa [5]).

We also denote the extension by f. Let Φ be the cyclic group generated by f. Denote the order of Φ by $n(\geqq 2)$. For each $j<n, f^{j}$ has no fixed points by virtue of Lemma. Therefore the natural projection of \mathscr{W} onto the quotient \mathscr{W} / Φ has no branch points.

Let g_{0} denote the genus of \hat{W} / Φ. We have $n=(g-1) /\left(g_{0}-1\right)$ by the Riemann-Hurwitz relation.

If k is finite and positive, since f has a finite period, there is a canonical subregion R of W, so that the restriction of f to R is an automorphism of R and the number of boundary components of R is k. The restriction of f to R induces a permutation of the boundary components of R. It is known that every permutation can be written as the product of disjoint cycles. In our case, by virtue of Lemma every cycles of the permutation has the same period. Thus the period of f is a divisor of k. This completes the proof of Theorem 3.

Restricting ourselves to the hyperelliptic case, we have the following:

THEOREM 4. Let W be a hyperelliptic Riemann surface. Let f, C_{1} and C_{2} be as in Theorem 3. Then the period of f is at most two. Particularly, if W is of even genus, then f is the identity.

Proof. Let W be the hyperelliptic Riemann surface defined by the equation $y^{2}=P(x)$, where $P(x)$ is a polynomial of degree at least six and each zero of $P(x)$ is simple. There always exists the automorphism of W, so called the sheets exchange, which we denote by s. Let ϱ be the projection of W onto the x-sphere. Tsuji [6] showed that $\varrho \circ f \circ \varrho^{-1}$ is an elliptic linear transformation of the x-sphere.

If f has a fixed point, then it is the identity by Lemma. Suppose that f has no fixed point. Then $s \circ f$ has four fixed point. Since, $s \circ f=f \circ s$, we have $(s \circ f)^{2}=f^{2}$. Hence f^{2} is the identity.

If W is of even genus, then f has an odd period by Theorem 3. Thus f is the identity.
In Theorem 4, if W is of odd genus, there is a pair of W and f so that f is not the identity.

Let W be the Riemann surface defined by the equation $y^{2}=x^{2 g+2}-1$ where g is an odd number. Let C_{1} be a cycle on W which surrounds $g+1$ points $e^{n \pi i /(g+1)}$, $n=0,1, \ldots, g$, once, respectively. Let C_{2} be a cycle on W which surrounds $g+1$ points $e^{n \pi i /(g+1)}, n=1,2, \ldots, g+1$, once, respectively. Let f be the automorphism of W such that $(x, y) \rightarrow(-x,-y)$. Then these satisfy the assumption of Theorem 4 , but f is not the identity.

Combining Theorem A and Theorem B, we have
THEOREM 5. Let W be a Riemann surface of genus greater than one and with not more than four boundary components. Let f be an analytic self-mapping of W. Let C_{1}, \ldots, C_{4} be non-dividing cycles, such that $C_{1} \times C_{3}=C_{2} \times C_{4}=1$ and $C_{i} \times C_{j}=0$ if $i+j \equiv 1(\bmod 2)$. Suppose $f\left(C_{i}\right) \sim C_{i}(i=1, \ldots, 4)$. Then f is the identity mapping.

Proof. Since there are at most three independent dividing cycles, there is a linear combination of C_{1} to C_{4} such that

$$
f\left(\sum_{i=1}^{4} n_{i} C_{i}\right) \approx \sum_{i=1}^{4} n_{i} C_{i}
$$

Hence, by Theorem B, f is an automorphism. Thus f is the identity by Theorem A.
4. In Theorem 5 the number four of cycles is best possible. We shall show it by an example.

Let E_{1} be a triply connected plane region bounded by $\{|z|=1,0 \leqq \arg z \leqq \pi$, $7 \pi / 6 \leqq \arg z \leqq 11 \pi / 6\},\{|z|=7 / 8, \pi \leqq \arg z \leqq 7 \pi / 6,11 \pi / 6 \leqq \arg z \leqq 2 \pi\},\{\arg z=0, \pi, 7 \pi / 6$ and $11 \pi / 6,7 / 8 \leqq|z| \leqq 1\},\{\arg z=\pi / 8,7 \pi / 8,2 / 3 \leqq|z| \leqq 1\},\{|z|=2 / 3, \pi / 12 \leqq \arg z \leqq \pi / 8$, $7 \pi / 8 \leqq \arg z \leqq 11 \pi / 12\}$ and $\{\arg z=13 \pi / 12,23 \pi / 12,5 / 8 \leqq|z| \leqq 3 / 4\}$. We distinguish from E_{1} slits along $\{\arg z=\pi / 12,11 \pi / 12,5 / 8 \leqq|z| \leqq 3 / 4,7 / 8 \leqq|z|<1\}, \quad\{\arg z=\pi / 6,11 \pi / 6$, $25 / 192 \leqq|z| \leqq 3 / 16,49 / 192 \leqq|z| \leqq 1 / 3\}$ and $\{\arg z=\pi / 4,3 / 4 \leqq|z|<1\}$.

Let E_{2} be a simply connected plane region bounded by $\{|z|=1 / 2,1,0 \leqq \arg z \leqq \pi / 6\}$, $\{\arg z=0, \pi / 6,1 / 2 \leqq|z| \leqq 1\},\{\arg z=\pi / 24,2 / 3 \leqq|z| \leqq 1\}$ and $\{|z|=2 / 3, \pi / 24 \leqq \arg z \leqq$ $\pi / 12\}$. We distinguish from E_{2} slits along $\{\arg z=\pi / 12,5 / 8=|z| \leqq 3 / 4,7 / 8 \leqq|z|<1\}$.

Let E_{3} be a simply connected plane region bounded by $\{|z|=1 / 2,1,5 \pi / 6 \leqq \arg z \leqq \pi\}$, $\{\arg z=5 \pi / 6, \pi, 1 / 2 \leqq|z| \leqq 1\}, \quad\{\arg z=23 \pi / 24,2 / 3 \leqq|z| \leqq 1\}$ and $\{|z|=2 / 3,11 \pi / 12$ $\leqq \arg z \leqq 23 \pi / 24\}$. We distinguish from E_{3} slits along $\{\arg z=11 \pi / 12,5 / 8 \leqq|z| \leqq 3 / 4$, $7 / 8 \leqq|z| \leqq 1\}$.

Let E_{4} be a simply connected plane region bounded by $\{|z|=1, \pi / 6 \leqq \arg z \leqq \pi / 3\}$, $\{\arg z=\pi / 3,1 / 12 \leqq|z| \leqq 1\},\{|z|=1 / 12,-\pi / 3 \leqq \arg z \leqq \pi / 3\},\{\arg z=-\pi / 3,1 / 12 \leqq|z|$ $\leqq 1 / 2\},\{|z|=1 / 2,-\pi / 3 \leqq \arg z \leqq \pi / 6\}$ and $\{\arg z=\pi / 6,1 / 2 \leqq|z| \leqq 1\}$. We distinguish from E_{4} slits along $\{\arg z=\pi / 6,11 \pi / 6,25 / 192 \leqq|z| \leqq 3 / 16,49 / 192 \leqq|z| \leqq 1 / 3\}$ and $\{\arg z=\pi / 4,3 / 4 \leqq|z|<1\}$.

We construct the desired Riemann surface W by joining E_{2}, E_{3} and E_{4} to E_{1} along their corresponding distinguished slits in the standard manner. Then W has five boundary components.

Let γ_{11} (resp. γ_{21}) be a simple closed curve on W surrounding $3 e^{\pi i / 12} / 4$ and $7 e^{\pi i / 12} / 8$ (resp. $3 e^{11 \pi i / 12} / 4$ and $7 e^{11 \pi i / 12} / 8$) once, respectively. Let γ_{31} (resp. γ_{41}) be a simple closed curve on W surrounding a slit $\{\arg z=13 \pi / 12$ (resp. $23 \pi / 12$), $5 / 8 \leqq|z|$ $\leqq 3 / 4\}$ once. Let γ_{12} (resp. γ_{22}) be a simple closed curve on W surrounding $3 e^{\pi i / 6} / 16$ and $49 e^{\pi i / 6} / 192$ (resp. $3 e^{11 \pi i / 6} / 16$ and $49 e^{11 \pi i / 6} / 192$) once, respectively. Let γ_{32} (resp. γ_{42}) be a simple closed curve on W surrounding $25 e^{\pi i / 6} / 192$ and $3 e^{\pi i / 6} / 16$ (resp. $25 e^{11 \pi i / 6} / 192$ and $3 e^{11 \pi i / 6} / 16$) once, respectively. The orientations of these curves $\gamma_{i j}$ are determined appropriately so that the discussion below holds good.

Put

$$
C_{i}=\gamma_{i 1}+\gamma_{i 2} \quad(i=1, \ldots, 4)
$$

Let ϕ be the natural projection mapping W into z-plane. Then f is determined so

that $\phi \circ f \circ \phi^{-1}=z^{2} / 3$. Such an f is uniquely determined. Thus we have $C_{1} \times C_{3}=C_{2} \times C_{4}$ $=1, C_{i} \times C_{j}=0$ if $i+j \equiv 0(\bmod 2)$ and $f\left(C_{i}\right) \sim C_{i}(i=1, \ldots, 4)$. But f is not an automorphism.

REFERENCES

[1] Accola, R. D. M., Automorphisms of Riemann Surfaces, Journ. Analyse Math. 18 (1967), 1-5.
[2] Heins, M., On a problem of Heinz Hopf, J. Math. Pures Appl. 37 (1958), 153-160.
[3] Kato, T. and Kubota, Y., A note on analytic self-mappings, Kōdai Math. Sem. Rep. 25 (1973) 104-110.
[4] Marden, A., Richards, I., and Rodin, B., Analytic self-mappings of Riemann surfaces, Journ. Analyse Math. 18 (1967), 197-225.
[5] Oikawa, K., A supplement to "Note on conformal mappings of a Riemann surface onto itself", Kōdai Math. Sem. Rep. 8 (1956), 115-116.
[6] TsuıI, R., On conformal mapping of a hyperelliptic Riemann surface onto itself, Ködai Math. Sem. Rep. 10 (1958), 127-136.

Department of Mathematics
Tokyo Institute of Technology
Received February 18, 1974

