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Projective k-invariants

MicHeaL N. DvYER

1. Introduction

Let 7 be a group. A (m, m)-complex X is a finite connected m-dimensional
CW complex having fundamental group = and trivial homotopy modules ;(X) =
0 in dimensions i=2,...,m—1. A w-module m,, is said to be topologically
realizable if m,, = m, (X) for some (m, m)-complex X. The classification problem
for (7, m)-complexes is the problem of describing the set HT (7, m) of homotopy
types of (r, m)-complexes.

For 7 a finite group of order n, H™*'(#; m,,) = Z, as aring. An important aspect
in this classification is the boundary operator 9 :Z¥ = Units (H™(m; m,))— Ko Z,
the (reduced) projective class group of the integral group ring Z, associated with
the Milnor Mayer-Vietoris sequence in algebraic K-theory [10].

This arises as follows. The cellular chain complex Cy(X) of the universal cover
X is a truncated resolution of the trivial 7-module Z:

0— mr,, — C,(X) LI a'>C(,()-()—G--—>Z~-‘-—->0.

The algebraic m-type T(X) of X is the triple (m, m.(X), k(X)) where k(X)e
H™*!(m, m,,) is the k-invariant which arises by comparing the truncated resolu-
tion above with a standard resolution (see section 6; also [5], [6]). One can show
that k(X)e Units (H™"'(#; m,)); furthermore any k€ Z¥ can be the k-invariant
of a finitely generated truncated projective resolution

™ P:0->w,—»P,—>P,_1—+—>Py—>Z—0.

Also the assignment (1, ., k)— Euler characteristic x (Px) = 2iZo(—1)'[P;] ([P] is
the class of the projective P in KoZ) is the negative of the Milnor boundary 4.
Then (m, 7w, k) (k€ Z¥, m=3) is the m-type of a (mw, m)-complex iff k ekerd
[4].

The purpose of this paper is to generalize the above to groups other than finite
groups.
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1.1. THEOREM. Let m be a group and m be an integer m=0 such that
H™Y7; Zw)=0. Let m, be any finitely generated topologically realizable -
module. Then

(a) H™ Y(mr; m,) has the structure of a ring with identity such that the units
U(H™"'(m, mm)) are the projective k-invariants, i.e., those k-invariants realizable
by a resolution of the form (*).

(b) The function x,,: UH™ " (7; m))— KoZm which assigns to each k € U the
Euler characteristic of a truncated resolution P, realizing the m-type (m, ., k) is a
homomorphism.

We say that an m-type (7, 7, k) comes from a (7, m)-complex if there exists
a (m, m)-complex X such that T(X)=(m, m., k) in the appropriate sense (see [4],
[6] for a definition).

1.2. COROLLARY. If m=3 and H™ '(m; Zm) =0, then Ker x,, is the set of
k-invariants which come from (m, m)-complexes.

The corollary follows from a theorem of J. Milnor [11, theorem 3.1] concern-
ing the realizability of a resolution by a (m, m)-complex.

DEFINITION. The subgroup im x,, < KoZm is called the Swan subgroup of
KoZw in dimension m.

If 7r is a finite group of order n, let N=3,..x € Zm be the norm element. The
left ideal (p, N) of Zm is projective provided p is prime to n. For 7 finite,
im x,, =im 8 ={[(p, N)]e KoZm|1<p<n, (p, n)=1}. If 7 is a (Poincaré) duality
group of cohomological dimension m, then im x,,—; =0 2=i=m).

The Swan subgroup im y,, is important because the Wall obstruction of any
CW complex having fundamental group = and realizable ,,,, which is dominated by a
(7', m)-complex lies in im y,, [12].

The organization of the paper is as follows. Let R be a ring. Section 2 gives
certain constructions associated with the exact sequence of R-modules 0— K—
P— C—0. We say that P is K-projective if d: End (K)— Ext (C, K) is surjective.
Section 3 gives conditions under which Ext (C, K) inherits a ring structure from
End (K), provided P is K-projective. Section 4 shows that elements in End (K)
which determine K-projective extensions are right units in Ext (C, K). Section 5
studies conditions under which each K-projective element in End (K) is a unit in
Ext (C, K). Theorem 1 is proved in section 6. In an appendix we study conditions
under which H'(w; Z7)=0.
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2. Extensions as Pushouts and Pull-backs.

Let R be a ring. All modules are left R-modules. Let C be a given R-module

and ¢£:0— K >P——>C——0 be an exact sequence of R-modules.

It is shown in [9, page 66] that given any module homomorphism k: K— K’
there exists a module kP and a homomorphism kB:P—kP such that the
following diagram commutes

0— K i%P > —0 21

l

Here the bottom row is exact also. kP is defined as the pushout of i and k.

Furthermore, given any module homomorphism s:C—C, there exists a
module Ps and a homomorphism Bs:Ps— P such that the following diagram
commutes

(2.2)

0— K~;—>Ps—~—> C—->0

ok

Ps is defined to be the pullback of j and s.
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3. Extg (C, K) as a Ring.

Let R be a ring and

£:0—K . >P— C—0
be an exact sequence of (left) R-modules.

DEFINITION We say that P is K-projective if
i* :Extg (P, K)=Extg (K, K)

is a monomorphism.

Of course, it follows from the long exact sequence for Extk (—, K) [9, page 74]
associated with £ that P is K-projective iff the boundary operator 9: Endg (K)—
Extg (C, K) is surjective. Here (k) equals the equivalence class of the extension
kP for any ke End(K). If Extg (P, K)=0, then P is K-projective; in particular,
any projective R-module is K-projective.

i

3.1. THEOREM. If 0—K s P—L5C——0 is an exact sequence of R-
modules with P K-projective, then the boundary operator 3 induces an isomorphism

- Endg (K)

1
: K).
*(Homg (P, X)) XtR(C K)

For each ke End(K), let {k} denote the element (k) in Extg(C, K).
End (K) has a ring structure under composition. The question is: when is
B=i*Hom(P,K) a two-sided ideal? If we denote the composition

K—>K-2>K by Ba, then
B={a:K— K| a extends to a map a': P—> K}

is always a left ideal. For, if a€ B, B End(K) and a'€ Hom (P, K) extends «,
then Ba’ extends Ba. Thus B is a right ideal and B# End(K) implies that
Ext (C, K) is a ring with identity.

We will now delineate a sequence of sufficient conditions that imply that B is a
right ideal.

3.2. (C). The composition in End (K) is commutative modulo B.
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3.3. (RE). Each homomorphism in End (K) extends to a homomorphism in
End (P).

3.4. (E). Each homomorphism in Hom (K, P) extends to a homomorphism in
End (P).

Note that the following implications hold:
(E)=>(RE)=> B is a right ideal <(C).

3.5. If Ext(C, P)=0, then (E) is true. This follows because Ext(C, P)=0
implies i*:End (P)—>Hom (K, P) is surjective. If Ext(P, P)=0, then (E) is
equivalent to Ext(C, P)=0. In particular, this is true if P is projective.

3.6. Also, one can easily see that (RE) iff the boundary homomorphism
0:End (C)— Ext (C, K) is surjective iff jx:Ext(C, P)—Ext(C, C) is a mono-
morphism.

Note that Ext(C, K) is cyclic automatically implies (C).

We may call P C-injective if ji:Ext(C, P)—Ext(C, C) is a monomorphism.
Thus Ext (C, K) has a ring structure as above if P is C-injective and K-projective.

More generally, we may proceed as follows: let P be K-projective.

DEFINITION. Let Ext(C, K)x denote the subset of Ext(C, K) such that
{k}e Ext(C, K)k iff Bk < B.
It is clear that

(a) Ext(C, K)k is a subgroup of Ext(C, K).
(b) Ext(C, K)k is a ring with identity under composition.
(c) The image of the center of End (K) is contained in Ext(C, K)k.

Ext(C, K)k is called the mc;ximal K-ring of Ext(C, K).

Let d¢: End (C)— Ext (C, K) be the boundary operator in the exact sequence
for Ext' (C, —) associated with the extension £:0— K—>P—C—0. dc(r) is the
equivalence class of the extension Pr (see 2.2).

3.7. PROPOSITION.

(a) End(C) always induces a ring structure on the subgroup imadc=
cExt (C, K).

(b) cExt(C, K) is a subring of Ext(C, K)k

(¢) If 8C is surjective, then cExt(C, K)=Ext(C, K)k as rings.
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Proof.

(a) Pis K-projective implies that im {j4: Hom (C, P)—End (C)} is a two-sided
ideal. This follows because each homomorphism in End(C) extends to a
homomorphism in End (P). Consider [ € End (C) and the extension PL Then P is
K-projective implies that there exists a k € End (K) such kP and P! are equivalent
extensions. Thus there is an isomorphism «:kP-— Pl such that the following
diagram commutes:

0->K—P—->C—0
ey

k
0 K/klP\C 0
Pl "
I#
0-K—>P—->C—0

(b) Any {k}€Ext(C, K) (ke End(K)) which is in the image of dc clearly

satisfies Bk = B. Let dc(l) ={k}. Then we may choose an extension as in (a) so
that the following commutes

0—-K—P—->C—0

ool
0—K—P—>C—0

Now a€B iff a extends the zero map 0:C—C, i.e., the following diagram
commutes:

0—-K—->P—->C—-0
o e P
0->K—>P—->C—0

But a € B and {k}€im dc implies that a ° k extends 0° [ =0. Thus (b) is proved.

(c) follows easily from (a) and (b). We only note that the ring isomorphism is
given by the correspondence d-(l)—{k} where k € End (K) extends l€ End(C).
This completes 3.7.

Note that dc is surjective iff condition (RE).

We now give a simple example to show that B is not always a right ideal. Let
R = Z and let the basic extension be given by

0—ZBZ—>ZD 721572, Z,—>0

I |
K P o
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30 .
where i has matrix ( 0 2) with respect to the natural bases. Then Bc

End(Z® Z) is the set of all 2X2 matrices (a“ aiz
azy 4ax;
column divisible by 3, the second by 2. Ext(C, K)= Z3® Z3. Representatives of

the cosets modulo B are given by

%z{(au alz) O=a =2 =1, 2}
az; 4azz

0= Air = 1 ’
It is easy to check that only the diagonal matrices in R have the property that
Bok < B. Hence Ext(C, K)xk =2Z;® Z,< Ext(C, K) by embedding in the first
and fourth coordinates.

) over Z with the first

4. K-Projective k-Invariants

Throughout this section we assume that i*: End (K)— Ext(C, K) is surjective;
i.e., that P is K-projective.

DEFINITION. The class {k} € Ext(C, K) determined by k € End (K) is called
the k-invariant of the extension kP. A k-invariant {k} is called K-projective if kP is
a K-projective R-module. An element k € End (K) is also called K-projective if
{k} is K-projective. Let Px(Ext(C, K)) denote the set of K-projective k-
invariants in Ext(C, K), Px(End (K)) the set of K-projective elements End (K).

DEFINITION. Let E be a ring with identity. An element «a € E is a right unit
if there exists B € E such that Ba = 1. The set of (right) units of E is denoted by
(R)U (E).

For each a € E, let a™* denote the abelian group homomorphism E— E given
by right multiplication by a. « is a right unit iff «* is surjective.

4.1. THEOREM. Let Ext(C, K) inherit a ring structure from End (K). {k} is a
K-projective k-invariant iff {k} is a right unit.

~ Proof. Suppose that k is K-projective. Then di:End(K)—Ext(C, K)
(dk(a) =(a ° k)P, a € End (K)) is surjective. Thus there is a k'€ End (K) such that
(k"o k)P is equivalent to P as extensions. Hence k'ck—1€B, and k is a right
unit,

If k'ok—1€B, we will show that kP is K-projective. P and (k' k)P are
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equivalent extensions, so there is a commutative diagram
/4, \
0—K = C—>0
(k'o k)P

kr

5 O

0— K —*> kP—*> C—>0

Call the resulting map B:kP— P. Apply Ext(—, K) to this diagram to obtain the
commutative diagram:

Ext (C, K)—— Ext (P, K) —> Ext (K, K)

Ext (C, K)—— Ext (kP, K)—— Ext (K, K)

Thus j¥=B*j*=0 because j*=0. Thus i} is a monomorphism. This completes
4.1.

4.2. THEOREM. If {k° k'}={k ° k'}={1} in Ext(C, K), then Ext(kP, M)=0
iff Ext(P, M)=0, where M is an R-module.

If we were to define the ‘“degree of projectivity” of k by the class of modules
My such that Me M, iff Ext(kP, M)=0, then the above says that {k} is a unit
implies that M, =M,; i.e., kP is ‘“just as projective” as P is.

Proof. Because k' k —1 € B, the argument of (4.1) implies the existence of the
following commutative diagram:

0— K—*>kP—* > C—>0

k B

0—> K—*> kP

Now ko k'=1+a’<i, where a'e Hom (P, K). Let M be any R-module such
that Ext (P, M)=0. Apply the functor Ext(—, M) to the above diagram.
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Ext (C, M)~ Ext (kP, M)—— Ext (K, M)

E

Ext (P, M) (kok)*

lﬁr*

Ext (C, M)—— Ext (kP, M)—> Ext (K, M)
Tk Lic

The rows are exact at Ext(kP, M). (kek'Y*=(1+a'ci)*=1+(a’°i)*=1, since
(@'oi)*=0. Thus B™oB* is an isomorphism. Then Ext(P,M)=0 implies
Ext (kP, M) =0. A similar argument shows the converse. This completes (4.2).

Since the set of right units is a semigroup under composition, the following is
clear.

4.3. COROLLARY. Let Ext(C, K) have a ring structure as above. Then the
set P (Ext (C, K)) of K-projective k-invariants is a semigroup with identity under
composition. Py is a group iff each K-projective k-invariant is a unit.

5. k-Invariants as Units.

In this section we will study conditions under which right units are units in the
ring Ext(C, K). We continue our assumption that P is K-projective. We also
assume in this section that B is a right ideal.

DEFINITION. For each k€ End(K), let B, =im{Hom (kP, K)—End (K)}=
ker {9, : End (K)— Ext (C, K)}, where 9, (a)=(a ° k)P (a € End (K)).

5.1. LEMMA. B =im{Hom (P, K)— End (K)} is a right ideal iff B < By for all
k € End (K).

Proof. Let a € B. For any k e End(K), a ° ke B since B is a right ideal. Thus
(o k)P=qa(kP) is trivial implies that «a € B,. Conversely, if B< B, for all
k€ End (K), then let ae€ B, and consider a°k (keEnd(K)). a€ B, implies
a(kP)=(a ° k)P =K X C which in turn implies that a ° k € B.

We say that {k}e Ext(C, K) is a right zero divisor if there exists a {k} # 0 such
that {k'- k}=0.
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5.2. PROPOSITION. {k}e Ext(C, K) is not a right zero divisor iff B= B,. If k
is K-projective, then {k} is a unit iff B = B,.

Proof. For each ke End(K), let k*:Ext(C, K)—Ext(C, K) be the function
defined by right multiplication by {k}. It is a homomorphism of the underlying
abelian group structure. Thus {k} is not a right zero divisor iff k* is a monomorph-
ism. But k* is a monomorphism iff B = B, follows from the following commuta-
tive diagram:

0— B —End (K)—>Ext(C, K)—>0

lk*
a

0—> B, —> End (K)—— Ext (C, K)—> Ext(kP, K)—>- - -

Here o(a) = aP, d(a)=a(kP)=(a ° k)P and the horizontal sequences are exact.
Furthermore, k* is an isomorphism implies that 9, is surjective and hence B = B,.
B = B, together with 9, surjective implies k* is an isomorphism.

5.3. LEMMA. Let k€ End (K) and suppose there exists k' € End (K) such that
k'ek—1€B. Then B = By..

Proof. Consider the homomorphisms k*, k'™* as in the proof of (5.2). The
composite k*o k'™ =(k'ek)*=1. Thus k'* is a monomorphism and, by (5.2),
B= Bk'.

We will now give several conditions under which K-projective k-invariants are
units. Clearly, if Ext (C, K) is commutative or has no zero divisors, then every right
unit is a unit. Furthermore a theorem of N. Jacobson [7] shows that any ring
having right units which are not units must be very large. The following is just a
restatement of theorem 1 of [7].

5.4. THEOREM. If E=Ext(C, K) has either the ascending or descending
chain condition for principal right ideals generated by idempotent elements, then
right units are units.

Thus it follows that if E is finitely generated as a left (or right) E module, then
right units are units in E. For example, if R is commutative and K is a finitely
generated R-module, then Ext (C, K) is a finitely generated R-module and hence,
by (5.4), right units are units.
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Now let P be a projective R-module and consider any exact sequence

1

0—> K;— P;——> K—0

of R-modules where P; is projective. The boundary operator
9:Ext' (C, K)—Ext*(C, K,) =Ext' (K, K;)
is given by d({k}) =class of the extension Pk (see 2.2).

5.5. THEOREM. If 9:Ext' (C, K)=Ext’(C, K,) is a monomorphism, then
projective k-invariants are units in Ext(C, K).

5.6. COROLLARY. If Ext(C, R)=0 and K is finitely generated as an R-
module, then projective k-invariants are units in Ext(C, K).

The proof of (5.5) is postponed to (6.13). The corollary follows because K is
finitely generated implies P; may be chosen to be finitely generated. Ext(C, R) =
0 then yields Ext(C, P;) =0 and this implies that 9 is a monomorphism.

6. The k-Invariant of a Truncated Resolution.

Let M be an R-module. Choose a projective resolution
O 3y a, ER
FM): -+ — Cp—> Cpu 1 —> Gy p——> -+ —> Co—>M—0

of M, where each G, is projective R-module. (M) is called the base resolution;
each m,, =ker d,,(m=0) is called an M-realizable R-module. If M = Z, the trivial
R-module, then m,, is realizable means it is Z-realizable. We say that a resolution

F is of finite type if each C, is a finitely generated R-module.
Let

G(M): - - ._QGm_E'l.,Gm_l i W ;GO_E‘L,M___,Q

be a (not necessarily projective) resolution of M. Let =/, denote ker g,. The
k-invariant of 4 in dimension m relative to % is the element {k}¢€ Extg ™' (M, 7%,
determined by a chain map f : #(M)— %(M) covering the identity on M. Thus f is
a sequence of maps making the following diagram commute:

a

am+1 m 5
G+ > Cn > Cn—1 Bove >Co—>M—0
:
:k fm fm—l fo
'
v g
0—> Ty G Gy — -+ ——>Go—> M—>0
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m+1

The map k= f, °9m+1: Cn+1—> 7, determines an element {k}€ Extg" " (M, /).
This is well-defined by a standard argument [5].

6.1. LEMMA. For each m=0 and each element ke Extg* (M, #’) 3 a
resolution 4z of M realizing k. If C; (i=0, 1,... m) and ', are finitely generated,
then 4™ may be chosen to be of finite type.

Proof. Consider k : C,,,1— '/, realizing k ; k - 9,,.» = 0 implies that k defines a
map k':m,— @/, Use the construction of section 2 to build

O—mm > Cn > Tn—1 >0
il

{1

m—>k'C,,—> mp—1—>0

Then the m-skeleton 4™ is given by

i’ 3
oO— ', —k'C,,—C,,.-1—> - >Co— M—>0
. . i i’ .
where 4/, is the composite k'C,,— 7,1 &> C,,—;. This completes 6.1.

DEFINITION. An element k € Ext™""' (M, ., is called projective if k can be
realized as the k-invariant of a truncated projective resolution:

P 0> 7= Pp—>Ppy— > P> M—0
when compared with the base resolution #(M). The set of projective k-invariants
of Ext™"' (M, ) is denoted by P(Ext™"" (M, 1,)).

6.2. THEOREM. Let M be any R-module and mr,, be M-realizable for m=0.
Then

End (m7,,)
imHom (C,,,, 7,,)

(b) If B™=im{Hom(C,, mn)—End(m,)} is a right ideal, then
Ext™"' (M, m,,) has a ring structure induced from that of End (,,) such that the
projective k-invariants lie between the units and right units of Ext™" ' (M, m,,):

UExt™ (M, my)) < P(Ext™ (M, m,)) < RUExt™ ' (M, m,,)).
(c) If B™ is a right ideal, ?(Ext™" ' (M, m,,)) = UExt™*" (M, m,,)), and each C;

(a) Extg"' (M, m,,) =
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(i=0,1,...,m+1) a finitely generated free module, then the function
Xm : P(Ext™ ' (M; m,,))— KoR

which assigns to each k € P the Euler characteristic x,,(P™) =Y (=1)[P,]€ K,R
of P is a homomorphism.

Note. (1) Theorem 6.2 is theorem 1.1 in the case R=Znw and M= Z. This
follows because H™*'(w; Zm)=0 and C,, finitely generated implies that
H™'(m; C,)=0. Thus H™"'(7r; m,,) is a ring (3.5) and by (5.6) right units are
units because m,, is finitely generated.

(2) It follows from [11, theorem 3.1] that if m=3, any w-module m,,
realizable by a truncated free resolution over Z is topologically realizable as well.

(3) It follows from (4.1) that the set P, of m,,-projective k-invariants is equal
to the set of right units of Ext™*' (M; m,,). Furthermore, (4.2) implies that any
unit in Ext™"' (M, m,,) must be projective. We do not know whether in general &
is distinct from U or RU (see 5.4).

The following lemma is useful in the subsequent work:

6.3. LEMMA OF COCKCROFT-SWAN [3, Appendix]. Let &™:0—m,,—
E,,—>P,,_—---—>Py,—>M—0 (i=1,2) be resolutions of M with each P} (j=
0,1,..., m—1) projective. Let f:&™— ¢35 be a chain map covering the identity
on M and inducing an isomorphism on m,,. Then

En.®P;_®P,,® - =E.®P,_DP2L_, P
Note the similarity between this and Schanuel’s lemma [11].

6.4. COROLLARY. Let £™ be projective (i.e., E,, is projective) and suppose
k(€)= k(&5™) when compared to %. Then

E.®P,_,®P: ,® - -=E2®P._DP.L_.PH---

and hence £57 is projective also.

Proof. By standard obstruction arguments, there exists a chain map &™— &5
inducing the identity on M and m,,. Then apply (6.3).

Proof of 6.2. We will only show that if ?=U, then x:?—>K,R is a

homomorphism. Let k, k'eEnd(,) represent projective Kk-invariants in
Ext™*' (M; m,.). We will show that

(k"o k)Cr, @ Ce @ Crt1 =kC,, D Kk'C,, D Cpro 1.
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Let ok'e End (7,,.;) be any map determined by extending k':
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O"”"Tm+1"-) Cm+l_) 1Tm—)()

+

ok’ 1B+ lk'

+
0— 7Tm+1—')cm+l_)7rm——)0

The correspondence {k'}—{dk’} gives the boundary homomorphism

9:Ext™ ' (M; 7, ) > Ext™ (M mpaty)-

6.5. LEMMA. Let k'eEnd(m,) be projective.

Then (Bk"Cphi1DKk'C,, =

Con ® C,i1. Hence (0k')C,41 is projective and [(9k')Cpr1]+[k'C,]=0 in KoR.

Proof. Consider the resolutions

(a) 0 > Tm+1

4

ak’

0—> Tm+1

ak’

L

Cm+1

’
Bm+]

Bm+1

(b) 0— w1 ——(3k )Cm

TTm

SN

k’Cm —_—> Tm—-1 —> 0

1:

Cm *;‘"-m+1_)0

These resolutions (a) and (b) necessarily have the same k-invariant, (a) is

projective; hence (b) is also projective by lemma 6.4. (3k")C,....Dk'C,

Cn+1® C,, follows from (6.4).

6.6. LEMMA. k is projective and k'ck—1e€B™

(k' © k)Con B (9k") Cipt1.-

Proof. Realize the k-invariant {9(k'e k)}={ok’'°ok}eExt™"*(M; mpn+1)

implies C,,.1®D kC,,

P

I



three ways:

D —— Tm+1 "'""'"'_)‘Cm-#—l__)(klo k)Cm

4

O > Tm+1 > Cm+l

0—— T+l —> Cr

It follows that

ak

ak’

a(k’ek)

(k"o k)Cp =k'(kCp)

via a map inducing identity on m,_; and m,, because the k-invariants are the
same. Thus {9(k'° k)} ={0k’ o 9k}. Note that k' k is projective because it is a unit.

n-+1

Projective k-invariants

¥

Tm+1 >0

> Tin—1 O

k’(kcm)’——) Tm 11— ()

Furthermore, the following also has k-invariant ok’ dk:

ak’
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Thus, by another application of lemma ‘6.4, we have G, DkC,=
(k' o k)G ® (0k")Cinv1- (6.5) and (6.6) taken together prove (c).

CONJECTURE (see [11, lemma 6.1 (¢)]).

(k' k)C,, B C,,=kC,,DKk'C,.

Let 9:Ext™"" (M, m,,)—>Ext™"*(M, m,.+,) be the boundary operator in the
coefficient exact sequence associated with the functor Ext' (M, —) and the exact
sequence

0— Tm+1—> Cm+1'—') Tl'm"—>0.

The previous proof shows that o is a ring homomorphism, provided the domain
and range are rings.
Furthermore, we see that because C; is finitely generated and free for

i=0,...,m+1,thenim y,, €im x,,+:. This follows from the commutative diagram:
P(Ext™ 2 (M, 1))
a} KoR

m

PExt™ (M, 7))

The conditions of section 3 have obvious analogs in this setting:
6.7. (C(m)). The composition in End (m,,) is commutative modulo B™.

6.8. (RE,,). Each map keEnd(m,) extends to a map in
End (C,) ©93:Ext™ (M, m,_,) = Ext™"' (M, m,,) is surjective
S Ext™'(M; C,,)— Ext™" (M; m,,_;) is monic.

6.9. (E,). Each map feHom (m,, C,) extends to a map in
End(C,,) ©Ext! (mm-1, Cn) =Ext™"'(M; C,.)=0

Again: (E,,)=>(RE,,)=> B™ is a right ideal <& (C(m))

At the present writing, I know of no examples where C(m) is not satisfied.
We can ‘“‘dualize” RE,, as follows:

6.10. (RE™). Any map k € End (m,,) which coextends to C,,., extends to C,,.
Thus, in the following diagram,

i
M = Cy,

30’;,"’ ’r’
, k ” HB

k" . k”
Cm+1 > Tm
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the existence of a such that joa =k implies the existence of a B such that
B °i=k. The converse is always true because C,, is projective.

6.11. PROPOSITION. Any map k€ End (m,,) which coextends to C,,.; ex-
tends to C, iff 8:Ext™*'(M, m,)—=>Ext™">(M, m,..1) is a monomorphism iff
ix: Ext™ (M, 7n11) > Ext™ (M, C41) is surjective.

6.12. PROPOSITION. If each ke End(m,) which coextends to C,., also
extends to C,,, then Ext™"' (M; m,,) is a ring.

Proof. Let k, keEnd(m,), let k extend to C,. We must show that kok
extends to C,.. But k extends to C,, implies that k coextends to C,,.; by (6.10).
Thus k o k' coextends to C,,.;. But condition RE™ implies that k o k' extends to
C... This proves (6.12).

Note that (RE,,)&(E,.)=>(RE™).

Notice that it follows from (6.6) that if {k}e€ Ext™(M, m,,-,) is projective and
{k' k}=1, then {8k'}c Ext™"" (M; m,,) is projective. Also, (6.5) implies that a{k}
is projective if {k} is.

6.13. COROLLARY. If 8:Ext™"'(M; m,,) = Ext™*"*(M; m,,+1) is a mono-
morphism (condition RE™), then each projective k-invariant is a unit.

Proof. Let {k}eExt™"'(M; m,) be projective. By (5.3), there is a k'e
End (m,,) such that k'ok’—1e B™. Thus 9k'cok—1e B™"'. By (6.6), {9k'} is
projective. By (5.3) again, {90k cdk'}=1={0k' - dk}. Since 9 is a monomorphism,
imd a ring, and a{k c k’}={0k 2 dk'}, then {k o k'}=1={k'ok}. This completes
(6.13).

The proof of the following corollary is similar to 6.13.

6.14. COROLLARY. If 8|s : P(Ext™ (M, mm_1)—> P(Ext™" (M, my)) is sur-
jective, then each projective k-invariant in Ext™*' (M, m,,) is a unit.

Questions. (a) If M= Z, is B™ always a right ideal? For example, if A(m) is
the augmentation ideal in Zmw, is H'(7; A(m)) a ring?

(b) If B™ is a right ideal, is P(Ext™*'(M; m,,)) a semigroup under composi-
tion?



276 MICHEAL N. DYER

Appendix: Groups Having H'(7; Zm)=0

We will give some results that show that the hypothesis of theorem 1.1 is often
satisfied.

(a) If = is a finite group, then H'(m; Zw) =0 (i>0). This follows because any
projective w-module is weakly injective.

(b) If 7 is a (Poincare) duality group with cohomological dimension m, then
H'(w; Zw)=0 (i#m) [1].

(c) If F is a free abelian group of countable rank, then H'(F; ZF) =0 for all
i=0.

(d) [1, Proposition 3.1] If S is a subgroup of G with finite index (not necessarily
normal), then H'(S; ZS)=H'(G; ZG) as right S-modules. Thus if S<G such
that [G : S]<c», then H*(S; ZS)=0&H"(G; ZG)=0.

For example, if 0— C—> G— T—0 is an exact sequence of groups where C is
a group of cohomological dimension n and T is finite, then H'(G; ZG)=0 for
i > n. Thus, any finitely generated abelian group A of rank n has H'(A; ZA)=0
for i# n.

(e) The following theorem is an easy consequence of the spectral sequence of
a group extension: Let 1—->N—7— G—1 be an exact sequence of groups. Let N
be finite. Then H'(m; Zw)=H'(G; ZG) for all i >0.

For example, if 7 is an extension of a finite group by a duality group of
cohomological dimension n, then H'(w; Zw)=0 for i#n. Also any one relator
group G [8] is such that H'(G; ZG) =0 for i =3.

(f) We say that a group = has property ?" if H'(w; Zm)=0, 0<i<n. The
functor H*(mr, —) is strongly additive if it commutes with arbitrary direct sums. For
example, if 7= admits a projective resolution of finite type

+v+—>P,—>P,_ 11— +—>Py—>Z2—-0

of the trivial m-module Z (i.e., each P; is a finitely generated projective -
module), then H*(mr; —) is strongly additive. The following is then true: Let
1—- A— 7—> B—1 be an exact sequence of groups such that H*(A; —) is strongly
additive. Then A has ?' and B has P’ implies that  has P, where k = min (i, j).

(g) Let n(G) denote the smallest integer <« such that H'(G; ZG) =0 for all
i>n(G). Let & be the class of all groups G such that n(G) is finite. It follows
easily from (d) and (e) that £ contains all polycyclic (=soluble with maximum
condition on subgroups) groups. More generally, if o is a class of groups, we say
that a group G is poly () if there exists a finite sequence of subgroups

G=Gy2G;2G;2-:0G,=1
such that G;,;<\G; and G,/G;;: is a member of &. Let fcd denote the class of
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groups of finite cohomological dimension. By the use of (d) and (e) one may show
the following:

THEOREM. If G is poly (finitely generated abelian) or poly (finite or fcd) then
G is a member of &.

Furthermore, it follows from [13, page 138] that & is closed under finite sums.
It is closed under infinite sums provided that each of the summands G; has
n(G;)<k, k being independent of i. £ is closed under amalgamated sums by
[2]. If G = UiczG: is a countable union of subgroups G; such that n(G,)=M <
for all iex, then n(G)=M+1 (R. Bieri). Thus any countable torsion group G
has n(G)=1, because G is the countable union of finite subgroups. There are
simple examples to show that & is not closed under arbitrary direct limits.

BIBLIOGRAPHY

[1] Bieri, R., and EckMANN, B., Groups with homological duality generalizing Poincare duality, Inv.
Math., 20 (1973), 103-124.

[2] ——, Amalgamated free products of groups and homological duality, Comment Math. Helv., 49
(1974), 460-478.

[3] Cockcrort, W., and SwaN, R., On the homotopy types of certain two-dimensional complexes,
Proc. London, Math. Soc., 3 (11) 1961, 194-202.

[4] Dyer, M., Homotopy classification of (m, m)-complexes (to appear in Jour. Pure and Applied
Algebra).
[5] EILENBERG, S., and MAcLANE, S., Homology of spaces with operators 11, Trans. Amer. Math. Soc.,
65 (1949) 49-99.
[6] ——, Cohomology theory in abstract groups 111, Ann. Math. Soc., 50 (1949), 736-761.
[7] JacossoN, N., Some Remarks on one sided inverses, Proc. Amer. Math. Soc., 1 (1950), 352-355.
[8] LynpoN, R. C., Cohomology of groups with a single defining relator, Ann. Math. 52 (1950),
650-666.
[9] MACLANE, S., Homology, Springer-Verlag, New York, 1963.
[10] MiLNOR, J., An introduction to algebraic K-theory, Annals of Mathematics Studies No. 72,
Princeton University Press, Princeton 1971.
[11] Swan, R., Periodic resolutions for finite groups, Ann. Math., 72 (1960), 267-291.
[12] WaLL, C. T. C., Finiteness conditions for CW complexes 1, Ann. Math., (2) 81 (1965), 59-69.
[13] Gruensera, K. W., Cohomological topics in group theory, Vol. 143, Lecture notes in mathema-
tics, Springer-Verlag, Berlin-Heidelberg-New York, 1970.

Mathematical Institute
University of Heidelberg, and
University of Oregon,
Eugene, Oregon

Received May 6, 1975






	Projective k-invariants

