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Projective fc-invariants

Micheal N. Dyer

1. Introduction

Let tt be a group. A (tt, m)-complex X is a finite connectée! m-dimensional
CW complex having fundamental group tt and trivial homotopy modules 7r,(X)
0 in dimensions i 2, ...,m-l. A ir-module 7rm is said to be topologically
realizable if irm~7rm(X) for some (tt, m)-complex X The classification problem
for (tt, m)-complexes is the problem of describing the set HT (tt, m) of homotopy
types of (tt, m)-complexes.

For tt a finite group of order n, Hm+1(Tr; TTm) Znasa. ring. An important aspect
in this classification is the boundary operator d:Z* Units (Hm+1(7r; 7rm))-&gt; K0Ztt,
the (reduced) projective class group of the intégral group ring Ztt, associated with
the Milnor Mayer-Vietoris séquence in algebraic K-theory [10].

This arises as follows. The cellular chain complex C*(X) of the universal cover
X is a truncated resolution of the trivial 7r-module Z:

The algebraic m-type T(X) of X is the triple (tt, rrm(X), fc(X)) where k(X)e
Hm+1(TT, TTm) is the k-invariant which arises by comparing the truncated resolution

above with a standard resolution (see section 6; also [5], [6]). One can show
that k(X)e Units (Hm+1(ir; 7rm)); furthermore any keZ* can be the k-invariant
of a finitely generated truncated projective resolution

Also the assignment (tt, TTm, k)-»Euler characteristic ^(^k) Lm=o(-l)t[PJ] ([P] is

the class of the projective P in K0Ztt) is the négative of the Milnor boundary a.

Then (tt, Tjm, k) (keZ*, m&gt;3) is the m-type of a (tt, m)-complex iff kekerd
[4].

The purpose of this paper is to generalize the above to groups other than finite

groups.
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1.1.THEOREM. Let tt be a group and m be an integer m^O such thaï
Hm+1(7r; Ztt) O. Let iTm be any finitely generated topologically realizable tt-
module. Then

(a) Hm&apos;hl(7r; 7rm) has the structure of a ring with identity such that the units
U(Hm+1(7r, 7rm)) are the projective k-invariants, i.e., those k-invariants realizable

by a resolution of the form (*).
(b) The function Xm • U(Hm+l(ir; irm))-&gt;KqZtt which assigns to each keU the

Euler characteristic of a truncated resolution $Pk realizing the m-type (tt, 7rm, k) is a

homomorphism.

We say that an m-type (tt, irm, k) cornes from a (tt, m)-complex if there exists

a (tt, m)-complex X such that T(X) (tt, TTm, k) in the appropriate sensé (see [4],
[6] for a définition).

1.2.COROLLARY. // m&gt;3 and Hm+1(Tr; Ztt) 0, tfien ker Xm is the set of
k-invariants which corne from (tt, m)-complexes.

The corollary follows from a theorem of J. Milnor [11, theorem 3.1] concern-
ing the realizability of a resolution by a (tt, m)-complex.

DEFINITION. The subgroup im Xm c K0Ztt is called the Swan subgroup of
KqZtt in dimension m.

If 77 is a finite group of order n, let N £xe7rx e Ztt be the norm élément. The
left idéal (p, N) of Ztt is projective provided p is prime to n. For tt finite,
im^m=ima {[(p, N)]6K0Z7r|l&lt;p&lt;n, (p, n)=l}. If tt is a (Poincaré) duality
group of cohomological dimension m, then im Xm-i 0 (2 ^ i &lt; m).

The Swan subgroup im Xm is important because the Wall obstruction of any
CW complex having fundamental group tt and realizable ?rm, which is dominated by a

(tt\ m)-complex lies in im Xm [12].
The organization of the paper is as follows. Let i? bea ring. Section 2 gives

certain constructions associated with the exact séquence of R -modules 0-»K-&gt;

P-»C-*0. We say that P is K-projective if a: End(K)-»Ext(C, K) is surjective.
Section 3 gives conditions under which Ext (C, K) inherits a ring structure from
End (K), provided P is K-projective. Section 4 shows that éléments in End (K)
which détermine K-projective extensions are right units in Ext (C, K). Section 5

studies conditions under which each K-projective élément in End (K) is a unit in
Ext (QK). Theorem 1 is proved in section 6. In an appendix we study conditions
under which H\tt\ Ztt) 0.
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2. Extensions as Pushouts and Pull-backs.

Let R be a ring. Ail modules are left R-modules. Let C be a given JR-module

and £:0 &gt;K &gt;P &gt;C &gt;0 be an exact séquence of R-modules.

It is shown in [9, page 66] that given any module homomorphism k.K-ïK&apos;

there exists a module kP and a homomorphism k/3:P-»fcP such that the

following diagram commutes

K
(2.1)

C

¦K&apos; &gt;kP *C &gt;0

Here the bottom row is exact also. kP is defined as the pushout of i and k.

Furthermore, given any module homomorphism s:C-*C, there exists a

module Ps and a homomorphism j8s:Ps-&gt;P such that the following diagram
commutes

0 &gt;K &gt;Ps &gt;C

0 &gt;K &gt; P &gt;C &gt;0

(2.2)

Ps is defined to be the pullback of / and s.
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3. ExtK (C, K) as a Ring.

Let R be a ring and

£:0 &gt;K-Up--Uc &gt;0

be an exact séquence of (left) K-modules.

DEFINITION We say that P is K-projective if

**:ExtR(P,K)^ExtR(K,K)

is a monomorphism.

Of course, it follows from the long exact séquence for ExtR(-, K) [9, page 74]
associated with £ that P is K-projective iff the boundary operator d:EndR (K)-*
ExtR(C, K) is surjective. Hère d(k) equals the équivalence class of the extension
kP for any k€End(K). If ExtR (P, K) 0, then P is K-projective; in particular,
any projective R-module is K-projective.

3.1. THEOREM. If 0 &gt;K—^&gt;P-^-*C »0 is an exact séquence of R-
modules with P K-projective, then the boundary operator d induces an isomorphism

K).!*(HomR (P, K))

For each keEnd(K), let {k} dénote the élément d(k) in ExtR(C, K).
End(K) has a ring structure under composition. The question is: when is

B i* Hom (P, K) a two-sided idéal? If we dénote the composition

K-^K-^K by 0a, then

B {a : K-»K | a extends to a map a&apos; : P-»K}

is always a left idéal. For, if aeB, /3eEnd(K) and a1 € Hom (P,K) extends a,
then (3af extends 0a. Thus B is a right idéal and B^EndCK) implies that
Ext(C, K) is a ring with identity.

We will now delineate a séquence of sufficient conditions that imply that B is a

right idéal.

3.2. (C). The composition in End(K) is commutative modulo B.
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3.3. (RE) Each homomorphism in End(K) extends to a homomorphism in
End(P)

3.4. (E) Each homomorphism in Hom (K, P) extends to a homomorphism in
End(P)

Note that the following implications hold

(E)^&gt;(RE)=&gt;B îs a nght idéal &lt;=(C)

3.5. If Ext(C, P) 0, then (E) is true This follows because Ext(C, P) 0

implies i* End(P)^Hom(K, P) is surjective If Ext(P, P) 0, then (E) is

équivalent to Ext(C, P) 0 In particular, this is true if P is projective

3.6. Also, one can easily see that (RE) îff the boundary homomorphism
d End (C)-&gt; Ext (C, K) is surjective îff /* Ext(C, P)-»Ext(C, C) is a mono-
morphism

Note that Ext(C, K) is cyclic automatically implies (C)
We may call P C-injectwe if /* Ext(C, P)—»Ext(C, C) is a monomorphism

Thus Ext(C, K) has a ring structure as above if P is C-mjective and K-projective
More generally, we may proceed as follows let P be K-pro]ectwe

DEFINITION Let Ext(C, K)K dénote the subset of Ext(C, K) such that

{k}eExt(QK)K ifï BkaB
It is clear that

(a) Ext(C, K)K is a subgroup of Ext(C, K)
(b) Ext(C, K)K is a ring with îdentity under composition
(c) The image of the center of End(K) is contained m Ext(C, K)K

Ext(C, K)K is called the maximal K-nng of Ext(C, K)

Let dc End(C)-&gt;Ext(C, K) be the boundary operator in the exact séquence
for Extl(C,-) associated with the extension £ 0-»K-»P-^C-*0 dc(r) is the

équivalence class of the extension Pr (see 2 2)

3.7. PROPOSITION
(a) End(C) always induces a ring structure on the subgroup imdc

cExt(C,K)
(b) cExt(C, K) is a subring of Ext(C, K)K
(c) If dC is surjective, then cExt(C, K) Ext(C, K)K as rings
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Proof.

(a) F is K-projective implies that im {/# : Hom (C, F)-* End (C)} is a two-sided
idéal. This follows because each homomorphism in End(C) extends to a

homomorphism in End (F). Consider /eEnd(C) and the extension PL Then F is

K-projective implies that there exists a k e End (K) such kP and F/ are équivalent
extensions. Thus there is an isomorphism a:kP-*Pl such that the following
diagram commutes:

r
(b) Any {k}eExt(C, K) (keEnd(K)) which is in the image of dc clearly

satisfies BkciB. Let dc(l)~{k}. Then we may choose an extension as in (a) so

that the following commutes

0-»K-h&gt;F-*C-*0

V V V

0-^K-*P-*C-*0
Now aeB ifl a extends the zéro map 0:C--»C, i.e., the following diagram
commutes:

But a g B and {k} g im dc implies that a°k extends 0 ° / 0. Thus (b) is proved.
(c) follows easily from (a) and (b). We only note that the ring isomorphism is

given by the correspondence dcO^W where keEnd(K) extends leEnd(C).
This complètes 3.7.

Note that dc is surjective ifî condition (RE).
We now give a simple example to show that B is not always a right idéal. Let

R Z and let the basic extension be given by

0
II

K
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where i has matrix 1 with respect to the natural bases. Then fîc

End (Z©Z) is the set of ail 2x2 matrices (n ai2| over Z with the first
\a21 a22)

column divisible by 3, the second by 2. Ext(C, K) Zl®Z\. Représentatives of
the cosets modulo B are given by

\\a2l a22/|0&lt;al2&lt;l&apos; J

It is easy to check that only the diagonal matrices in &lt;3l hâve the property that
BokczB. Hence Ext(C, K)K Z3©Z2c» Ext(C, K) by embedding in the first
and fourth coordinates.

4. K-Projective k-Invariants

Throughout this section we assume that i*:End(K)-»Ext(C, K) is surjective;
i.e., that P is K-projective.

DEFINITION. The class {fc}eExt(C, K) determined by fcEEnd(K) is called
the k-invariant of the extension fcP. A k-invariant {fc} is called K-projective if fcP is

a K-projective R-module. An élément keEnd(K) is also called K-projective if
{fc} is K-projective. Let ^K(Ext(C, K)) dénote the set of K-projective k-
invariants in Ext (C,K), ^K(End(K)) the set of K-projective éléments End(K).

DEFINITION. Let E be a ring with identity. An élément a e E is a right unit
if there exists j3 e E such that jSa 1. The set of (right) units of E is denoted by
(R)U(E).

For each a g £, let a* dénote the abelian group homomorphism E-*E given
by right multiplication by a. a is a right unit iff a* is surjective.

4.1. THEOREM. Let Ext(C, K) inherit a ring structure from End(K). {k} is a
K-projective k-invariant iff {fc} is a right unit.

Proof. Suppose that fc is K-projective. Then dk :End(K)~&gt;Ext(C, K)
(dk(a) (a o fc)p, a g End (K)) is surjective. Thus there is a k&apos; 6 End (K) such that
(k&apos;°k)P is équivalent to P as extensions. Hence fc&apos;°k-leB, and k is a right
unit.

If fc&apos;°k-leB, we will show that kP is K-projective. P and (k&apos;o k)P are
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équivalent extensions, so there is a commutative diagram

0 &gt;K

0 &gt;0

Call the resulting map @ : kP-^P. Apply Ext(—, K) to this diagram to obtain the
commutative diagram:

Ext (C, K)-^-» Ext (F, K) Ext (K, K)

Ext C, K)-^Ext kP, K)-^Ext (K, K)

Thus /* /

4.1.
0 because /* 0. Thus i* is a monomorphism. This complètes

4.2. THEOREM. If {k ° k&apos;} {k ° k&apos;} {1} in Ext (C, K), then Ext (kP, M) 0

iff Ext (F, M) 0, where M is an R-module.

If we were to define the &quot;degree of projectivity&quot; of k by the class of modules

Mk such that MeMk iff Ext (kF, M) 0, then the above says that {k} is a unit
implies that Mk~M\\ i.e., fcP is &quot;just as projective&quot; as F is.

Proof. Because k! ° k -1 g B, the argument of (4.1) implies the existence of the

foliowing commutative diagram:

0- &gt;kP- ?0

Now k° k&apos; l + ar°i, where a&apos;eHom(P,K). Let M be any R-module such

that Ext (F, M) 0. Apply the functor Ext(—, M) to the above diagram.
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Ext(C, M)~^Ext (kP, M)-^Ext(K, M)

Ext(P, M)

Ext(C, M) &gt;Ext(kP, M) &gt;Ext(K, M)

The rows are exact at Ext(kP,M). (k°k&apos;)* (l + a&apos;° i)* l + (a&apos;° i)* 1, since
(a&apos;°i)* 0. Thus /3&apos;*°j3* is an isomorphism. Then Ext(P, M) 0 implies
Ext (kP, M) 0. A similar argument shows the converse. This complètes (4.2).

Since the set of right units is a semigroup under composition, the following is

clear.

4.3. COROLLARY. Let Ext(C, K) hâve a ring structure as above. Then the

set ^&gt;k(Ext(C, K)) of K-projective k-invariants is a semigroup with identity under

composition. &lt;3&gt;k is a group iff each K-projective k-invariant is a unit.

5. k-Invariants as Units.

In this section we will study conditions under which right units are units in the
ring Ext(C, K). We continue our assumption that P is K-projective. We also

assume in this section that B is a right idéal

DEFINITION. For each k e End (K), let Bk im {Hom (kP, K)-+ End (K)}
ker{ak:End(K)-&gt;Ext(C, K)}, where dk(a) (a ° fc)P(a€End(K)).

5.1. LEMMA. B im {Hom (P, K) -» End (K)} is a right idéal iff BaBk for ail
keEnd(K).

Proof. Let a e B. For any k e End (K), a°keB since B is a right idéal. Thus

(a°k)P a(kP) is trivial implies that aeBk. Conversely, if B&lt;=Bk for ail

keEnd(K), then let aeB, and consider a°fc (fceEnd(K)). aeBk implies
a(fcP) (a ° k)P K x C which in turn implies that a ° k e B.

We say that {fc}eExt(C, K) is a right zéro divisor if there exists a {k&apos;}#0 such
that {k&apos;ofc} o.
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5.2. PROPOSITION. {fc}eExt(C, K) is not a right zéro divisor iff B Bk. If k

is K-projective, then {k} is a unit iff B Bk.

Proof For each keEnd(K), let fc*:Ext(C, X)-^Ext(C, K) be the function
defined by right multiplication by {k}. It is a homomorphism of the underlying
abelian group structure. Thus {k} is not a right zéro divisor iff k* is a monomorph-
ism. But k* is a monomorphism iff B - Bk follows from the following commuta-
tive diagram:

0 &gt; B » End (K)-^Ext (C, K) »0

0 &gt;Bk &gt;End(K)—^Ext(C, K) &gt; Ext (kP, K) &gt;• • •

Hère d(a) aP, dk(a) a(kP) (a ° k)P and the horizontal séquences are exact.

Furthermore, k* is an isomorphism implies that dk is surjective and hence B Bk.

B Bk together with dk surjective implies k* is an isomorphism.

5.3. LEMMA. Let keEnà(K) and suppose there exists k&apos;eEnd(K) such that
Then B Bk&gt;.

Proof. Consider the homomorphisms k*, k&apos;* as in the proof of (5.2). The

composite k*° k&apos;* — (k&apos;° fc)* 1. Thus fc&apos;* is a monomorphism and, by (5.2),

We will now give several conditions under which K-projective k-invariants are
units. Clearly, if Ext(C, K) is commutative or has no zéro divisors, then every right
unit is a unit. Furthermore a theorem of N. Jacobson [7] shows that any ring
having right units which are not units must be very large. The following is just a

restatement of theorem 1 of [7].

5.4. THEOREM. If E Ext(QK) has either the ascending or descending
chain condition for principal right ideals generated by idempotent éléments, then

right units are units.

Thus it follows that if E is finitely generated as a left (or right) E module, then

right units are units in E. For example, if R is commutative and K is a finitely
generated R -module, then Ext(C, K) is a finitely generated R-module and hence,

by (5.4), right units are units.
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Now let P be a projective K-module and consider any exact séquence

of R-modules where Pi is projective. The boundary operator

d : Ext1 (C, K)-&gt;Ext2 (C, K^ Ext1 (K, K^
is given by d({k}) class of the extension P^k (see 2.2).

5.5. THEOREM. If d : Ext1 (C, K)-&gt; Ext2 (C, Ki) is a monomorphism, then

projective k-invariants are units in Ext(C, K).

5.6. COROLLARY. 1/ Ext(ÇR) 0 and K is finitely generated as an R-
module, then projective k-invariants are units in Ext(C, K).

The proof of (5.5) is postponed to (6.13). The corollary follows because K is

finitely generated implies Pi may be chosen to be finitely generated. Ext(C, R)
0 then yields Ext(C, Pi) 0 and this implies that d is a monomorphism.

6. The k-Invariant of a Truncated Resolution.

Let M be an R-module. Choose a projective resolution

of M, where each Q is projective R-module. 9(M) is called the base resolution;
each 7rm ker dm(m ^ 0) is called an M-realizable R-module. If M Z, the trivial
K-module, then rrm is realizable means it is Z-realizable. We say that a resolution
3F is of finite type if each Q is a finitely generated jR-module.

Let

^(M): &gt;Gm &gt;Gm-i &gt; &gt;G0 &gt;M &gt;u

be a (not necessarily projective) resolution of M. Let tt^ dénote kergm. The

k-invariant of &lt;S in dimension m relative to 3F is the élément {k}eExtR+1 (M, 7r&apos;m)

determined by a chain map / : 9(M)-*«(M) covering the identity on M. Thus / is

a séquence of maps making the following diagram commute:
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The map k /m odm+1:Cm+i--*TT&apos;m détermines an élément {fc}eExt£+1(M, tt&apos;J.

This is well-defined by a standard argument [5].

6.1. LEMMA. For each m&gt;0 and each élément keExtS+1(M, 7r&apos;m) 3 a
resolution % of M realizing k. If Q (i 0, 1,... m) and 7r&apos;m are finitely generated,
then &lt;5§(fcm) may be chosen to be of finite type.

Proof Consider k : Cm+i-&gt; irfm realizing fc ; fc • dm+2 0 implies that k defines a

map k&apos;:7rm—&gt;7r&apos;m. Use the construction of section 2 to build

0 &gt;TTm &gt; Cm ^^m-1 *0

Then the m-skeleton &lt;S(£m) is given by

0 &gt;7rfm-^k:Cm-^Cm-1 &gt; &gt;C0 &gt;M &gt;0

where d&apos;m is the composite k&apos;Cm &gt;irm-icl—»Cm_i. This complètes 6.1.

DEFINITION. An élément fcGExtm+1(M, tt&apos;J is called projective if fc can be

realized as the fc-invariant of a truncated projective resolution:

when compared with the base resolution 9(M), The set of projective k-invariants
of Extm+1 (M, tt&apos;J is denoted by 0&gt;(Extm+1 (M, tt&apos;J).

6.2, THEOREM. Let M be any R-module and Tîm be M-realizable for m ^0.
Then

End(7rm)

(b) // B m im {Hom (Cm, irm) -* End (7rm )} is a right idéal, then

Extm+1(M, 7rm) has a ring structure induced from that of End(7rm) such that the

projective k-invariants lie between the units and right units of Extm+1(M, 7rm):

l/(Extm+1 (M, irm)) c ^(Extm+1 (M, irm)) c JRU(Extm+1 (M, irm)).

(c) I/Bm is a right idéal, ^(Extm+1 (M, irm)) l/(Extm+1 (M, irm)), and each Q
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(i 0, 1,..., m + 1) a finitely generated free module, then the fonction

which assigns to each kePthe Euler characteristic xm(0*km)) =IT=o (-l)l[Pje Ko#
of ^(km) is a homomorphism.

Note. (1) Theorem 6.2 is theorem 1.1 in the case R Ztt and M Z. This
follows because Hm+1(^; Ztt) 0 and Cm finitely generated implies that
Hm+l(ir\ Cm) 0. Thus Hm+l(7r; 7?m) is a ring (3.5) and by (5.6) right units are
units because TTm is finitely generated.

(2) It follows from [11, theorem 3.1] that if m ^3, any 7r-module irm
realizable by a truncated free resolution over Z is topologically realizable as well.

(3) It follows from (4.1) that the set 97tm of Trm-projective k-invariants is equal
to the set of right units of Extm+1 (M; 7rm). Furthermore, (4.2) implies that any
unit in Extm+1 (M, 7rm) must be projective. We do not know whether in gênerai 2P

is distinct from U or RU (see 5.4).
The following lemma is useful in the subséquent work:

6.3. LEMMA OF COCKCROFT-SWAN [3, Appendix]. Let £m):0-^7rm-*
£&apos;m-»Pm-i-* &gt;Plo-*M-+0 (i l,2) be resolutions of M with each P) (j
0, 1, m -1) projective. Let / : £im)-* ^2m) be a chain map covering the identity
on M and inducing an isomorphism on irm. Then

Em&lt;B Pm-\ ©Pm-2© * * * — £m©^m-l ©^m-2© &apos; &apos; &apos;

Note the similarity between this and Schanuel&apos;s lemma [11].

6.4. COROLLARY. Let £im) be projective (Le., Elm is projective) and suppose

compared to $. Then

Em©Pm_l©Pm_2© &quot; * * =Em©Pm_i©Pm-2© * * *

and hence £2m) is projective also.

Proof. By standard obstruction arguments, there exists a chain map £im)--&gt;£2m)

inducing the identity on M and rrm. Then apply (6.3).

Proof of 6.2. We will only show that if 3P=U, then x&apos;&amp;-*KoR is a

homomorphism. Let k, k&apos;eEnd(7rm) represent projective k-invariants in
Extm+1(M; 7rm). We will show that

(k&apos; o k)Cm © Cw © Cm+1 kCm © k&apos;Qn © Cm+1.
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Let dk&apos; &lt;EEnd(7rm+1) be any map determined by extending k&apos;:

0—irm+i-*Cm+l-*7rm-+0

The correspondence {k&apos;}—&gt;{dk&apos;} gives the boundary homomorphism

d:Extm+1(M; 7rm)-»Extm+2(M; irm+1).

6.5. LEMMA. Let k&apos;eEnd(7rm) fce projective. Then (dk&apos;)Cm+l®k&apos;Cm

Cm©Cn+i. Hence (dk&apos;)Cm+1 is projective and [(ak&apos;)Cm+i] + [k&apos;Cm] 0 m Ko

Froo/. Consider the resolutions

(a) 0 &gt;Cm+1

dk&apos;

0 &gt;7Tn

dk&apos;

(b) 0

Thèse resolutions (a) and (b) necessarily hâve the same k-invariant, (a) is

projective; hence (b) is also projective by lemma 6.4. (dfc&apos;)Cm+i©k&apos;Cm

Cm+i©Cm follows from (6.4).

6.6. LEMMA. k is projective and fc&apos;°fc--leBm implies Cm+i©kCm
(k&apos;ofc)Cm©0k&apos;)Cm+1.

Proof. Realize the fc-invariant {d(fc&apos;° k)} {dk;°dk}eExtm+2(M; 7rm+1) in
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three ways:

0 (k&apos;ok)Cm-

Mk k °k

/

dk&apos;

Ci / *i x-,

7Tm

Cm. &gt;k\kCm)—&gt; 7Tm

It follows that

via a map inducing identity on 7rm_i and 7rm because the k -invariants are the

same. Thus {d(kf ° k)} {dk&apos; ° ^k}. Note that k&apos; ° k is projective because it is a unit.
Furthermore, the following also has k-invariant dk&apos;°dk:

0 0 0

dk

)Cm+i

7Tm

Cm

7Tm

&apos;&quot;&apos;m-l — &apos;&quot;&quot;m
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Thus, by another application of lemma 6.4, we hâve Cm+i©kCm
(k&apos;°fc)Cm©(dfc&apos;)Cm+i. (6.5) and (6.6) taken together prove (c).

CONJECTURE (see [11, lemma 6.1 (c)]).

(k&apos; o k)Cm © Cm s kCm © fc&apos;C».

Let a:Extm+1(M, 7rm)-^Extm+2(M, 7rm+i) be the boundary operator in the
coefficient exact séquence associated with the functor Ext&apos; (M, —) and the exact

séquence

The previous proof shows that d is a ring homomorphism, provided the domain
and range are rings.

Furthermore, we see that because C, is finitely gênerated and free for
i 0,..., m +1, then im \m c im #m+i- This follows from the commutative diagram:

0&gt;(Extm+1(M,7rm))
*&quot;

The conditions of section 3 hâve obvious analogs in this setting:

6.7. (C(m)). The composition in End(7rm) is commutative modulo Br

6.8. (REm). Each map fceEnd(7rm) extends to a map in

End(Cm)&lt;£&gt;a:Extm(M, 7rm_1)-&gt;Extm+1(M, 7rm) is surjective

OExtm+1(M; Cm)-»Extm+1(M; 7rm_i) is monic.

6.9. (Em). Each map feHom(7Tm,Cm) extends to a map in

Again: (Em)^&gt;(REm)=&gt;Bm is a right ideal&lt;£(C(m))

At the présent writing, I know of no examples where C(m) is not satisfied.
We can &quot;dualize&quot; REm as follows:

6.10. (REm). Anymapke End (irm) which coextends to Cm+i extends to Cm

Thus, in the following diagram,

3a y&apos;
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the existence of a such that j ° a k implies the existence of a /3 such that
(3° i k. The converse is always true because Cm is projective.

6.11. PROPOSITION. Any map keEnd(7rm) which coextends to Cm+1 ex-
tends to Cm iff d:Extm+1(M, 7rm)-&gt;Extm+2(M, 7rm+1) is a monomorphism iff
i*:Extm+1(M, 7rm+1)-^Extm+I(M, Cm+1) is surjective.

6.12, PROPOSITION. // each keEnd(&lt;7Tm) which coextends to Cm+1 also

extends to Cm, then Extm+1 (M; 7rm) is a ring.

Proof. Let k, keEnd(7rm), let k extend to Cm. We must show that fc°k
extends to Cm. But k extends to Cm implies that k coextends to Cm+i by (6.10).
Thus k° k&apos; coextends to Cm+i. But condition .REm implies that k° k&apos; extends to
Cm. This proves (6.12).

Note that (REm)&lt;p(Em)^&gt;(REm).

Notice that it follows from (6.6) that if {fc}eExtm(M, 7rm_i) is projective and
{k&apos;o k}= 1, then {dk&apos;}eExtm+l (M; irm) is projective. Also, (6.5) implies that d{k}
is projective if {k} is.

6.13. COROLLARY. // d:Extm+1(M; irm)-*Extm+2(M; 7rm+i) is a mono-
morphism (condition REm), then each projective k-invariant is a unit.

Proof. Let {fc}eExtm+1(M; irm) be projective. By (5.3), there is a k&apos;e

End(irm) such that k&apos;°k&apos;-leJBm. Thus dk&apos;°ôk-le£m+1. By (6.6), {dkr} is

projective. By (5.3) again, {dk°dk&apos;}= 1 ={dk&apos;°dk}. Since a is a monomorphism,
ima a ring, and d{fc° k&apos;} {dfc °dfc&apos;}, then {k° k&apos;}= 1 ={fc&apos;° k}. This complètes
(6.13).

The proof of the following corollary is similar to 6.13.

6.14. COROLLARY. If d|» :0&gt;(Extm (M, îrm_i)-^^(Extm+1(M, irm)) is

surjective, then each projective k-invariant in Extm+1(M, 7rm) is a unit.

Questions, (a) If M Z, is Bm always a right idéal? For example, if A(tt) is

the augmentation idéal in Ztt, is H1^; A(tt)) a ring?
(b) If Bm is a right idéal, is 9&gt;(Extm+1(M; irm)) a semigroup under composition?
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Appendix: Groups Having H1(tt;Ztt) 0

We will give some results that show that the hypothesis of theorem 1.1 is often
satisfied.

(a) If tt is a finite group, then H1(tt; Zit) 0 (i &gt;0). This follows because any
projective 7r-module is weakly injective.

(b) If tt is a (Poincare) duality group with cohomological dimension m, then
H1(tt\Ztt) 0 (iVm) [1].

(c) If F is a free abelian group of countable rank, then H1 (F; ZF) 0 for ail

(d) [1, Proposition 3.1] If S is a subgroup of G with finite index (not necessarily
normal), then Hl(S; ZS) Hl(G; ZG) as right S-modules. Thus if S&lt;G such

that [G:S]&lt;oo, then Hk(S; ZS) 0e&gt;Hk(G; ZG) 0.

For example, if 0-&gt; C—» G—» T—»0 is an exact séquence of groups where C is

a group of cohomological dimension n and T is finite, then HI(G;ZG) 0 for
i&gt;n. Thus, any finitely generated abelian group A of rank n has H1 (A; ZA) 0

for i / n.

(e) The following theorem is an easy conséquence of the spectral séquence of
a group extension: Let 1-»N—&gt;tt —»G-»1 be an exacf séquence of groups. Let N
be finite. Then H1(tt; Ztt) H1(G; ZG) for ail i&gt;0.

For example, if tt is an extension of a finite group by a duality group of
cohomological dimension n, then H1(tt; Ztt) 0 for iVn. Also any one relator

group G [8] is such that H1 (G; ZG) 0 for i&gt;3.

(f) We say that a group tt has property 0&gt;n if H1(tt; Ztt) 0, 0&lt;i&lt;n. The
functor H*(7r, —) is strongly additive if it commutes with arbitrary direct sums. For
example, if tt admits a projective resolution of finite type

of the trivial 7r-module Z (Le., each P, is a finitely generated projective tt-
module), then H*(tt; -) is strongly additive. The following is then true: Let
X-&gt;a-&gt;it^B-&gt;1 be an exact séquence of groups such that H*(A\ -) is strongly
additive. Then A has 3&gt;l and B has 0&gt;] implies that tt has 0&gt;\ where k min (i, /).

(g) Let n(G) dénote the smallest integer &lt;oo Such that Hl(G; ZG) 0 for ail
i&gt;n(G). Let SB be the class of ail groups G such that n(G) is finite. It follows
easily from (d) and (e) that X contains ail polycyclic (=soluble with maximum
condition on subgroups) groups. More generally, if si is a class of groups, we say
that a group G is poly (si) if there exists a finite séquence of subgroups

such that G,+i&lt;G, and G,/G,+i is a member of si. Let fcd dénote the class of
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groups of finite cohomological dimension By the use of (d) and (e) one may show
the followmg

THEOREM // G is poly (finitely generated abehan) or poly (finite or fcd) then

G is a member of 56

Furthermore, ît follows from [13, page 138] that ££ is closed under finite sums

It is closed under infinité sums provided that each of the summands G, has

n(Gt)&lt;k, k being independent of i if is closed under amalgamated sums by
[2] If G= UiezG, is a countable union of subgroups G, such that n(G,)&lt;M&lt;œ

for ail ie&lt;*&gt;, then n(G)&lt;M+l (R Bien) Thus any countable torsion group G
has n(G)&lt;l, because G is the countable union of finite subgroups There are

simple examples to show that ££ is not closed under arbitrary direct limits
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