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Fundamental Groups, I'-groups, and Codimension two Sub-
manifolds

SyLvaIN E. CaprPELL AND JuLiUs L. SHANESON

Introduction and Statement of Results

Let ¢:M" — W"*? be a smooth or piecewise linear (P.L.) embedding (possi-
bly not locally flat) of the connected, compact, oriented smooth or P.L. manifold
M in the compact connected smooth or P.L. manifold W. Assume that a regular
neighborhood of ¢ (M) meets the boundary in a regular neighborhood of ¢(dM) =
oW N ¢(M); possibly aIM = or aW = J. If $(M) is smooth or P.L. locally flat,
the usual geometric procedure, using transversality and counting intersection
points together with orientations and associated elements of = W (see, e.g. [W,
§5]), gives an intersection number x-@x[M], xem,W, with values in
ZQz.,mZmwW. This tensor product is defined using the left Zw;M-module
structure on the integral group ring Zmw, W given by' af = Béx(a), a € Zm M,
B € Zm; W. For the general ¢, x - ¢4 M] is still defined homologically as in §1 or,

alternatively, using geometric intersection numbers defined on the chain level
[ST].

THEOREM 1. Let K be the kernel of the map m,(W — ¢M) — 7, W induced by
inclusion. Then K,;, = K/[K, K], [ K, K] the commutator subgroup, is isomorphic as a
Zmw, W module (7w, W acts by conjugation) to

ZQzmmZmi WHx - px[M]/x € m, W}.

In theorem 1, Z has the trivial Z7; M-module structure. In the non-orientable
case the result is still valid, but the Zm; M-module structure on Z is given by the
difference of the orientation characters of M and W. Theorem 1 also applies to
Poincaré embeddings of Poincaré complexes, and hence to locally flat topological

'In Zm W, (3 0,8)” =Y a,g *. Thus Z®z, v Zm; W is the free abelian group on the left cosets of
éx(m M) in =, W. If we used the module structure af = ¢«(a)B, we would get right cosets,
corresponding to writing covering translations as right rather than left operators.
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438 SYLVAIN E. CAPPELL AND JULIUS L. SHANESON

embeddings. In [CS2, §5], it is shown how a general P.L. embedding, locally flat
or not, induces an underlying Poincaré embedding.

We apply theorem 1 to the codimension two splitting problem. Suppose
¢(M) =P is a smooth, P.L. locally flat or topologically locally flat submanifold of

W. (Again, it suffices to consider Poincaré embeddings of Poincaré complexes.)
Let

f:(Q"*2%,8Q)—> (W, 3W)

be a degree 1 map that induces a (simple) homotopy equivalence® of Q with W.
Assume that f|9Q is transverse to 9P and that f|f '(P):f"'(3P)— 9P is a
(simple) homology equivalence [CS1] over ZmP. In [CS1, §8] we studied the
codimension two splitting problem: when is f homotopic to f;, relative 4Q,
transverse to P, with f,|fi'P:fi'P— P a simple homotopy equivalence. If the
answer is affirmative, f was said to be (simply) splittable along P (relative
boundary.)

Let Y. (f), e=s, h, be the abstract surgery obstruction of f, as defined on page
322 of [CS1] (see also [B1], [W, §11]); i.e. Y.(f) is defined as the surgery
obstruction of the normal map f determines on a transverse inverse image of P. In
8.2 of [CS1], we saw that for n=5 odd, f is simply splittable (splittable) if and
only if )i (f)=0 (resp. 2n (f)=0.) In Thm 8.3 of [CS2], we proved the same
result in even dimensions, under some additional hypotheses. These results were
applied to the study of the existence and uniqueness of invariant spheres of group
actions. In 8.5 of [CS2], we gave a general result on the even dimensional case;
there is a further obstruction, in a quotient of a suitable I'-group, defined if
Y. (f) =0, whose vanishing is necessary and sufficient for f to be (simply) splitta-
ble. The constructions of [CS3] imply that all these obstructions actually arise in
codimension two splitting problems.

If M is closed, ¢ps[M], [M]e H,(M, Z) the orientation, can be considered® as
an element of H,(W, A), A=Z Qz,mZmW. Let 7p =140 Ho(W, Z7) = A,
=, W, be given by evaluation (Kronecker product) of the image in H*(W, A)
of the Poincaré dual in H*(W,o9W; A) of oéx[M]. If aM# ¢, P«[M] is in
H,(W,aW; A); again let 7p be the evaluation of its Poincaré dual.

THEOREM 2. Suppose n=6 is even and 7p is surjective. Suppose also that

2By Poincaré duality, it therefore induces a (simple) homology equivalence of (Q,8Q) and
(W, aW), with coefficients in Zmw. W.

> This assumes base points chosen, so that a lift of P to the covering space of W with fundamental
group ¢xm M is determined.
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K =ker (m(W—P)— 7 W) is finitely generated. Then f is (simply) splittable if
and only if Y. (f)=0, e =5 or h as appropriate.

Note that if 7, W is finite, K is automatically finitely presented. (For example,
consider the covering space with 7; = K.)

For example, the hypotheses of theorem 2 are satisfied in the following special
cases:

2a. ¢4 surjective on fundamental groups, H,(m; W) =0, K finitely presented,
and ¢x(M)e H,(W, Z) a primitive class. (e.g. m, W ={e} and ¢x[M] primitive.
Recall that primitive means of infinite order and indivisible.)

2b. miM={e}, K finitely presented, there exists £e€ H"(W;Zm) or
H"(W,dW; Zm) if IM# ¢, with (&, ¢p[M])=1€ Zm.

To prove theorem 2, a result of independent interest on I'-groups is also
needed. Let G — 7w be a surjective homomorphism with kernel K, and let
F:ZG — Zn be the map induced on integral group rings. Let I'7 (%), e=s, h be
the homology surgery groups of [CS1], and let

ja: T'(F) — Lu(m)

always denote the natural map. The next result can be found in a paper of
Hausmann [H1].

THEOREM 3. Suppose K is normally generated in G by a finitely generated
subgroup N with N,, =0. Then

jae: (%) = Li(m)

is an isomorphism.

A purely algebraic proof of this result has been given recently by Justin Smith.

Using similar ideas, we also derive a new result on geometrically realizing
codimension two Poincaré embeddings by P.L. embeddings (not necessarily
locally flat.) Let @ be a Poincaré or h-Poincaré embedding (see [CS2, §5] for the
definitions) of the compact oriented closed P.L. manifold M" in the compact P.L.
manifold W"*2. In [CS2] it was shown that if n=3 is odd or if 7, W ={e} and @
is cyclic, then @ can be realized by a P.L. embedding. Let

Ae = Z®zﬂ-,MZ7Tl W/{x . [M]/x € ﬂzW}.
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THEOREM 4. Suppose that Ag =0. Let n=4 be even. Assume that the kernel
of the natural map 7w, E¢ — wm, W, Eg the Poincaré complement [ CS2], is finitely
generated. Then @ can be realized by a P.L. embedding of M" in W"*?,

Under the hypotheses of Theorem 4, the theory of [CS2] applies to study the
singularities of embeddings realizing @. In particular, the singularities will carry
the Poincaré duals of the total L-class L(®) (see [CS2, §6]).

The same assumptions as in special case 2a and 2b of theorem 2 also
guarantee that the hypotheses of theorem 4 are satisfied. For example, essentially
as a special case of Theorem 4, we have

THEOREM 5. (Compare [CS3], [CS1, §6]). Let h:M" — W"*?, n=4 even,
be a homotopy equivalence, M™ a closed oriented P.L. manifold, W a compact
oriented P.L. manifold. Suppose Hy(7wW; Z)=0. Assume that the Euler class
x(W)e H*(M) is a primitive generator. Then h is homotopic to a P.L. embedding.

Recall that y(W) is defined in [CS2] as follows: restrict the Poincaré dual of
he[M] to H*(W) =+ H*(M).
In an appendix, we use Theorem 1 to give the proof of Theorem 5.1 of [CS2].

1. Proof of Theorem 1.

Let R be a regular neighborhood of ¢(M) that meets the boundary regularly
[H3]. Let m =, W. Then

NS
Kap = Hi(W—=R; Zm)= H(W-R)

V/V}f{ the covering space associated to K. The following sequence is exact:
W =Hy(W; Zw) —> H,(W, W—R; Zn) > Hi(W~—R; Znw) — H(W; Zm),
and H,(W; Z#)=H{(W)=0, W the universal cover of W.
By excision Hy(W, W~ R; Zw)= H,(R, R; Zw), R=dR—Int (RN3dW). Here
Zw is a m R = m;M module via the inclusion induced map. By Poincaré duality

H,(R,R; Zw)=H"(R, RNaW,; Z).
But the inclusion (M,dM)< (R, RNaW) is a (simple) homotopy equivalence.

Therefore, applying Poincaré duality of M, we finally get an isomorphism
H>(W, W—=R; Zzw)= Ho(M, Zm).
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Now, Ho(M; Zm) = Ho(M), where M is the covering space induced via ¢ from
the universal covering space of W. From this, it is not hard to see that
HoM; Z7w)=ZQz,,mZm W, as Zm modules. Further, well known standard
arguments show that if ¢(M) is a smooth or P.L. locally flat submanifold, (so that
R is the total space of a bundle over M), then the map w,W—
H>(W, W—R; Zw)=Z Q2. mZm is given by taking the (geometric) intersection
number with ¢4[M]. In general, we take this as the definition of xo¢4[M],
x € m,W. Theorem 1 now follows. .

Clearly a similar argument works for a Poincaré embedding ® of M in W.
More generally, suppose M =Ji—-; M;, M; components of M, but W still con-

nected. Dropping orientability hypotheses, let Z4, be the Z7r; M; module consisting
of the integers with

g ' 1= ow(Px8)om (8)1,

where gem M, teZ, and ww:m W — {1}, wy :7m M, — {£1} are the orien-

tation characters. Let K be as in Theorem 1. Then one easily extends the above
argument to show

PROPOSITION 1. K,, =®}-1(Ze ®zm,m Zw1 W/(, W)o b4 M;]).

Some examples: 1. M a point in a 2-manifold W other than S* or P?. Then
m(W—M) is a free group F, and 7, W =0. Hence we have the presentation

1> K—>F->nm-1,

with K, = Zm.
2. If W is a prime orientable 3-manifold (so that m,W =0 by the sphere
theorem), and if S' < W represents a € m; W, then

Koy = Z®Z[a] Zm W,

K the kernel of (W —S")— m,W. In particular, if a =0, Ko, =Zm W.

3. Let k be a smooth knotted circle in S°, and let | be a longitude and m a
meridian; e.g. [ is obtained by pushing k off itself slightly and links it with linking
number zero. Let W be obtained from S’ by zero-framed surgery on k, i.e.
surgery killing I. Let G = m,(S>—k), and let N(I) be the normal subgroup of G
generated by the class of I Since ! lies on a Seifert surface of k and near its
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boundary, N(I)= G' =[G, G]. Clearly m;W = G/N(l). Thus if m;W=2Z, N(I)= G’
and so G"=G'= N(l)= N(l)'.

Conversely suppose N()N(l)). Then by Theorem 1, 0=
ZQzim1ZmwiW/mw,W -[m], [m]e m; W represented by m. Applying the sphere
theorem, it follows that W= S'x S*# Q. Since G, and hence m, W, is normally
generated by [m], we must have #; Q ={e}. Thus we have the following (possibly
known) result

PROPOSITION. Let k<S> be a knot. Then the following are equivalent:
1. mW=2Z, W obtained by framed (necessarily zero-) surgery on k.

2. N(I)=N()', I a longitude.

3. NO)=G', G=m(S’—k).

From this proposition it follows in particular that if W=S"xS? then the
Alexander polynomial of k is identically 1. (See [Mo].)

2. Proof of Theorems 2, 4, and 5.
First consider theorem 2. It is known and not hard to prove that if h is

(simply) splittable, then ). (h) =0, e = s or h as appropriate. (See e.g. [B1], [CS1])
Conversely suppose Y. (h)=0. Let @ be the diagram

Zm (W= P)—25 Zm, W

Z7T1W'—>Z77'1W,

consisting of identities and inclusion induced maps. According to Theorem 8.5 of
[CS1], h is splittable if and only if an obstruction in a quotient of I';.3(P)
vanishes.”

We have the exact sequence [CS1, §3]:

Iyi3(F)— Ly s(miW) > Iy 3(P) = ThioF) = Lio(m W)

* Actually in §8 of [CS1] we supposed h induces a (simple) homotopy equivalence of boundaries
dQ and aW. However, everything in §8 goes through without change if h induces a (simple)
Zn, W-homology equivalence of boundaries.
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Let K be the kernel of 7 (W —P)— 7(W). By hypothesis, K is finitely pre-
sented. By Theorem 1,

Koo =ZQznpZmWHx-[P]/x€ m,W}; e
K., = coker 7p.

(Here [P]= ¢x[M].) Thus K,, =0. Therefore, by Theorem 3, the two extreme
maps in the above sequence are isomorphisms, and hence I'i,;(®) vanishes.
Therefore, by 8.5 of [CS1], h is (simply) splittable.

The special case 2a. follows easily. For if w;P — m; W is surjective, then
ZQzmpZmiW=Z. If [P]=¢4[M] is primitive, then by Poincaré duality and
universal coefficients, there is a class X € H,W with X - [P]=1. Since Hy(m, W)=
0, the Hurewicz homomorphism #,W — H,W is surjective. Therefore 7p is
surjective in this case.

For 2b., ZQz.,pZm W = Zm W, and £ is Poincaré dual to x € Hy(W, Z7w) =
7, W. By definition,

x - dx[M]=(§ du[M]) = 1;

so again 7p will be surjective.

Theorem 4 is proven using Theorems 1 and 3 and the same method as for
Theorem 5.3 of [CS2]. Given a Poincaré embedding @, one obtains, as in the
section of §5 of [CS2] just preceding lemma 5.5, an element 3 € I'},,»(%e), where
Fe is the natural map Zm;Eg¢ — Zm; W. Using the result from Theorem 3 that
Jjx:I'ni3(Fe) = Ly is(m W) is surjective, one shows that the vanishing of 2, implies
the existence of the desired P.L. embedding (actually with any regular neighbor-
hood with the correct normal invariant and associated bundle). This is proven
using same argument as for the proof of Lemma 5.5d of [CS2]. Theorem 3 applies
in present case because, by Theorem 1 (for a Poincaré embedding) and the
hypothesis Ag =0, the kernel of m{Eg — ;W has trivial abelianization.

However, lemma 5.5a of [CS2] is also valid in the present situation, by the
same proof. Thus js3 =0. Hence, by theorem 3 again, %=0. Therefore the
desired P.L. embedding exists. If ® was only a h-Poincaré embedding to begin
with, this argument only leads to an embedding of M in a manifold h-cobordant
to W. As in [CS2], one then uses the same type argument as in 8.1 of [CS1] to
correct the torsion, in the complement of M, to obtain the desired embedding of
M in (a manifold s-cobordant to) W.

Finally, to prove Theorem 5, recall that in 6.1 of [CS2] we saw that, under the
hypotheses of Theorem 5, there is an h-Poincaré embedding ® of M in W whose
underlying map M — W is precisely h. Further, the natural map jy:m(Ee)—
m1(W) is in this case just the composition with (hg)™' on m; of ps:mi(S(§)) —
m M, p the projection of an orientable circle bundle over M with Euler class
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x(W)e H*(M). In particular, the kernel K of ix is a cyclic group. Therefore, by
Theorem 1,

K =Ku =Z/{x - he{M]/x € m, W}.

For xe H,W, the evaluation (x(W)mx) is just the intersection number
X o hy[M]. Hence, if x(W) is primitive, it follows by universal coefficients
that 3x with x - hg[M]=1. Since H,(mw, W)=0 by assumption, x is the image of
x € m; W under the Hurewicz map. Thus K =0, and the result now follows from
Theorem 5.3 of [CS2].

Note: Under the hypotheses of Theorem 5, one can use the methods of [CS2]
to try to find a locally flat spine of W; i.e. a locally flat embedding h':M' — W
that is a homotopy equivalence. It can be shown that it is possible if and only if
the normal invariant n(®) in [M; G/PL] has trivial surgery obstruction in
L,(7mM) (Compare [CS2, h. 2]). If n(@) has trivial surgery obstruction in the
reduced Wall group L.(w M), then there exists an almost locally flat spine (i.e.
locally flat except at one point.) This assertions can also be derived from Theorem
2, and should be compared to the results of [CS3] on the existence of totally
spinless manifolds, as well as [Ma] and the exposition [Sh2]. For the case
m M ={e}, results on the existence of locally flat spines were obtained in [KM], by
different methods.

Appendix

The next result was given without proof in [CS2]. It is proven using Theorem
1

THEOREM (5.1 of [CS2]). Let ® be an (oriented) Poincaré or h-Poincaré
embedding of (M",0M) in (W""?,dW), W connected, M=M;U---UM, M,
connected. Then there is an (oriented) cyclic Poincaré or h-Poincaré embedding of
(M, dM) in (W,0W), @' say, and a map © — @', if and only if

Aeg = é (Ze; X Z7T1W)/772W : [Mu])

i=1 ZmM;
is a cyclic abelian group.
Recall that @' is be definition [CS2, §5] cyclic if and only if the kernel of

m1(Ee’) = m1(W), Ee the Poincaré ‘“‘complement”, is cyclic. Also, see [CS2, §5]
for the definition of a map @ — @'.
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To prove this result, let K be the kernel of m,E® — 7w;W. A map © — 0/, if it
exists, restricts to a homology equivalence Eg — Eg' with coefficients in Zm, W.
Therefore

Ko = Hi(Ee, Zm, W) = HI(E6'7 2, W) = Kbp.

Therefore, Theorem 1, applied to Poincaré embeddings shows that a cyclic @' and
a map O — O’ exist only if Ag is cyclic.
Suppose that Ag is cyclic. Let G = m;Ee. The sequence

1- K, — G/[K,K]—> G/IK=m,W—>1

is exact. (That G — ;W is surjective follows either by general position or an
argument using Van Kampen’s theorem and the exact homotopy sequence of a
circle bundle.) Hence, as K, is cyclic by Theorem 1 and the hypothesis on A,
G/[K, K] is finitely presented. Therefore [K, K] is normally generated by a finite
number of elements, «a;, ..., a, say.

Let Yo Ee be obtained by attaching 2-cells along circles representing
ay, ..., a. Then we may identify 7, Y with G/[K, K]. Let = G/K. We have the
exact sequence

H(Ee; Zw)— Hi(Y, Zw)— Hi(Y, E¢; Zmw) — H;_1(Ee; Z),
and

0, i#2

‘Hi(Y; Eg; Z?T)={
Z7®- - -® Zn(r summands), i

2.

Further, the connecting homomorphism
HZ( Ys E@, Z7T) - HI(E@9 Z’IT) = Kab

is trivial. Hence
H)Y; Z,)=Hy(Ee; Zm)+(Zm),
and the inclusion Eg < Y induces isomorphisms of homology groups in other

dimensions over Z, and is in fact a simple equivalence over Zm with respect to
the basis of H,(Y; Ee; Zm) determined by the 2-cells attached.
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We assert that the Hurewicz homomorphism m, Y — H,(Y; Zw) is surjective.
In fact H,(Y; Zw)=H,Y, Y the covering space of Y with m Y = K,;, and one
has the (Hopf) exact sequence

’)T2Y= 17'2Y~v'—> H2?—'> Hz(Kab, Z)=O

Now let Eg-> Y be obtained by attaching 3 cells along two-spheres represent-
ing the elements of the obvious basis of Z# @ - - Z=n. The inclusion Eg¢ — Eg
will be a (simple) homology equivalence over Zw, mEe—> m W is just
G/[K, K]— m, W, with kernel K,,. Let Fg = Fg< Eg (this is the Poincaré comple-
ment of dM in dW; see [CS2]) and let he' be the composite of hg: W — E(&) U
se) Ee and the union of the identity on E(&e) and the inclusion Eg¢ < Eg¢.. Let
(o= £o. Then hg is a (simple) homotopy equivalence, and it is not hard to see
that @' =(&e', (Ee', Fe'), he') is a cyclic Poincaré or h-Poincaré embedding, as
appropriate, with a map ® — @' defined by the inclusion Eg < Eg-.
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