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Eigenfunctions and Nodal Sets

Shiu-Yuen Cheng

§0. Introduction

The purpose of this paper is to study the nodal sets, i.e. zéro sets of the
eigenfunctions of the Laplacian operator on a Riemannian manifold. We first study it
locally. The resuit of Lipman Bers [2] concerning the local behaviour of solutions
of elliptic équations is our main tool. It tells us that the nodal set locally looks like the
nodal set of a spherical harmonie. Hence, we can prove in §2 that, except on a closed
set of lower dimension, the nodal set is a C°° submanifold. This regularity resuit
enables us to prove in § 1 the well-known Courant&apos;s nodal domain theorem for high
dimensions.

Courant&apos;s nodal domain theorem is the only known global theorem about nodal
sets. We use it in §3 to prove that there is a global restriction to multiplicities of eigen-
values. Specifically, we prove the following theorem: Suppose that M is a Riemann
surface of genus g, the multiplicity of the ï-th eigenvalue is less than or equal to

The results in §3 show that when M is homeomorphic to S2 the multiplicity of the
1-st eigenvalue is at most 3. This phenomenon of relatively low multiplicity makes it
feasible to study the geometry of the nodal Unes of some spécial surfaces. We show
that: If M is homeomorphic to S2 and is isometric to a surface of révolution then

we can find a basis for the space of 1-st eigenfunctions such that the nodal lines of
each eigenfunction in the basis is a line of constant géodésie curvature.

Part of the results in this paper has been announced in [4].

§1. Courant&apos;s Nodal Domain Theorem

Suppose that (M, g) is an «-dimensional C00 Riemannian manifold. The Lap-
lacian operator, denoted by A, acting on functions is locally given by

1 d
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where as usual gtJ îs the fundamental tensor, glJ is îts inverse, and g det(gtJ) We

shall consider two kinds of eigenvalue problems

FIXED MEMBRANE PROBLEM Suppose that D is a compact domain of M
We shall study the following

O, 0 0 on dD

It is well-known that when dD is reasonably regular, e g piecewise Cl, the fixed
membrane problem has discrète eigenvalues and we list them as 0&lt;A1^A2^A3&lt;

Therefore, Àt (D) shall mean the z-th eigenvalue of the domain Dwrt the fixed membrane

problem We shall also show the well-known fact that kx &lt;À2,1 e kt has simple

multiphcity Also the term z-th eigenfunction is a function satisfying the fixed membrane

problem with k Xt(D)

FREE MEMBRANE PROBLEM Suppose that M is a compact Riemannian
mamfold without boundary We shall study the following eigenvalue problem on
M A\j/ + mlj 0

This problem also has discrète eigenvalues and clearly constant functions are eigen-
functions with /x 0 We list the eigenfunctions of the free membrane problem as

O=/io&lt;ju1&lt;^2^^3 Therefore, fit(M) shall mean the z-th eigenvalue of the compact

mamfold M w r t the free membrane problem The term z-th eigenfunction will
be used to mean a function on M satisfying the above differential équation with ju

DEFINITION Suppose that/is a solution of an elhptic équation on a mamfold
M f -1 (0) is called the nodal set of/, when dimM 2 it is also called the nodal lines

Every connected component of M\f~1 (0) is called a nodal domain of/
One should notice immediately that if / is an eigenfunction of the Laplacian

operator then/is the 1-st eigenfunction of each of îts nodal domains This observation
suggests that we can reduce the problems about the z-th eigenvalues to problems
about the 1-st eigenvalue of the fixed membrane problem

Courant&apos;s nodal domain theorem For the fixed membrane problem
# ofnodal domains of the i-th eigenvalue &lt;z

For the free membrane problem
# ofnodal domains of the z-th eigenvalue &lt;z + 1

In [3], this theorem is stated and proved in the two dimensional case Usmg re-
sults m §2 about the regulanty of nodal sets, we can follow the same method to prove
this theorem
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The proof goes as foliows Suppose that 0, îs the i-th eigenfunction of the domain
D9 and Du 9Dl + l, are ali the nodal domains of 0t Defîne functions0-J, Uj^/
on D as

&lt;t&gt;\ — &lt;l&gt;i on Dj an&lt;i 0&quot;! O outside Dj

We can find real numbers au at not ail zéro such that &lt;t&gt; Ylj 1 û/^î-L tne space
generated by 0l5 0,-i Then, we hâve

J

However, &lt;j)l is the i-th eigenfunction and ît satisfies J(^l + AI(/))0I O Theresults
in §2 shows that except on a closed set of lower dimension the nodal sets of (j)l form a

C00 manifold Thus, we hâve

r r r
J J J
Dj Dj Dj

Conséquent ly,

J

I
Then (/&gt; is C00 and satisfies ^&lt;/&gt; + Ar(/)) 0 0 However, the fact that $ 0 on an open
set of D implies 0 0, a contradiction This complètes the proof of the theorem for
fixed membrane problems The proof for free membrane problem is the same.

Notice that we hâve 4&gt;2^(i&gt;i and ^x J_^o, where xj/q is a constant function. Hence

02 and \J/1 must change sign. This proves the following well-known proposition.

PROPOSITION 1.1. For the case offixed membrane problems

# of nodal domains of &lt;j)2 2.

For the case offree membrane problems
# ofnodal domains of\//1==2.
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§2. Local Behaviour of Nodal Sets

The nodal sets are a very &quot;unstable&quot; object Slight changes of the metric or the

domain would resuit in a violent change of the nodal sets, (see [6]) Therefore, the

global behavior of the nodal sets îs a quite difficuit subject We shall use a theorem of
Lipman Bers [2] concerning the local behaviour of solutions of elliptic équations to

study the nodal sets

THEOREM 2 1 (Lipman Bers [2]) Suppose that

is an elliptic équation with C00 coefficient defined in a neighborhood of the ongin

If a solution (j) (x) L&lt;/&gt; 0, \anishes at the ongin, but not of infinité order then there

exists a homogeneous polynomial of degree N, pN(x)^0 such that

dlpN(x)
Sx1!1 dxlnn dx\l dxlnn

for 1 0, m, / /i + +/„, where s is any number in the open interval (0, 1) Also,

pN(x) satisfies the &quot;osculating équation&quot; with constant coefficients

When we are deahng with Laplacian operator on a manifold, we shall pull back
the équation to the tangent space and apply Theorem 2 1

THEOREM 2 2 Suppose that M is an n-dimC™ Riemanman manifold without
boundary (not necessanly compact) Iffe C °° A/ satisfies (A + h (x)) f=0, h e C °° (M
then except on a closedset oflower dimension (i e dim &lt;n— \) the nodal set offforms
an (n—\)-dimC°° manifold

Proof Let xoeM, and/(jco) 0 It is clear that we can assume M is within a very
small neighborhood of x0 We use normal coordinates around x0 and hence we can
assume we are working in a small open set of the ongin in Rn The équation
(A + A (*))/= 0 pulls back to a second order elliptic équation in a small neighborhood
ofOeR&quot; BytheresultsofN Aronsajn [l],/can vanishonly up tofinite order around
the ongin Hence we can apply Theorem 2 1 It tells us that

where pN is a homogeneous polynomial of degree Nand ee(0, 1).
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Also, pN satisfies the osculating équation at the ongin Since we are using normal
coordmates, the osculating équation îs the usual Laplace équation in Euclidean space,

îe,

Thus, pN îs a sphencal harmonie of degree N
If TV 1, pN (x) îs a hnear polynomial and this shows that df (0) # 0, then the nodal

set around 0 îs a very nice pièce of C00 manifold
When JV&gt; 1, the situation îs more compheated We shall extend the method of

T C Kuo [5] in Lemma 2 4 to prove thatf(x) pN(&lt;P(x)) where &lt;P îs a C1 diffeo-
morphism between two small neighborhoods of OeR&quot; and &lt;P(0) 0 Thus, the nodal
set of/around the ongin îs C1 diffeomorphic to the nodal set of a sphencal harmonie
around the ongin However, there îs not much information about nodal sets of
sphereical harmonies The following simple observation will be useful

LEMMA 2 3 Suppose that pN is a sphencal harmonie of degree N N&gt;\ Then,
the nodal set ofpN around the ongin has a singulanty at 0

Proof Notice that if Sn 1
is the sphère of radius 1 in R&quot; then pN\sn 1 is an eigen-

function of Sn~l Since N&gt;\,pN\sn 1 is not the 1-set eigenfunction pN\st 1 must hâve

zéros on S&quot;&quot;1 and the homogeneity of pN shows that if xeS&quot;&apos;1 with pN (x) 0 then

pN (/x) 0 for ail t &gt;0 The only case where the nodal sets of pN around the ongin is a

smooth manifoid is when the nodal set ofpN\sn 1 lies on a great circle of Sn l Since

great circles are nodal sets of 1-st eigenfunctions on S&quot;1&quot;1 andN&gt; 1, the assertion of
the lemma is immediately seen to be true

We now prove the theorem by induction on the dimension n

If n= 1, ît is trivial
Suppose that ît is true for n — 1

We now prove ît for n
We shall show that the nodal set of/around the ongin is C1 diffeomorphic to

the nodal set of a sphencal harmonie pN of degree N around the ongin in R&quot; However,

the nodal set of pN around the ongin is equal to {tx t&gt;0, pN\sn i(x) 0}
Remember that pN\Sn 1 is an eigenfunction on the (n— l)-dim sphère S&quot;&apos;1 Our în-
ductive assumption then applies and shows that Theorem 2 2 is true for the nodal set

of pN Now recall that we hâve the relation f(x) pN(&lt;P(x)), where &lt;P is a C1 dif-
feomorphism keepmg the ongin fixed Suppose that pul (O)\tt Mo around the

ongm, where n is a closed set of lower dimension and Mo is an (n— l)-dimC°° manifold

Then/~1(0)\^&quot;1(7r) ^-1(M0) Thus &lt;P~l{MQ) is a C1 manifold We now
want to show further that &lt;P~l(M0) is C00 Indeed, let ye$~1(M0) Then/(}&gt;) 0,

and &lt;P(y)eM0 Apply our previous argument to a small neighborhood of y, we hâve
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f(x)~pN&gt;(x), near y, where/v is a spherical harmonie of degree N&apos; in Rn. We ciaim
that N&apos; \. If this is true, then an open set of &lt;P~l (Mo) around &gt;&gt; is a pièce of smooth
manifold. N&apos;&gt; 1 would lead to a contradiction. Note that a smali neighborhood of
&lt;P~1(M0) around y is C1 diffeomorphic to the nodal set of pN&gt; around the origin.
Lemma 2.3 shows that if N&apos; &gt; 1, p^1 (0) has a singularity at 0. The C1 diffeomorphism
transfers this singularity to 4*&quot;1 (Mo) and hence results in a contradiction. This
complètes the proof of Theorem 2.2.

We now follow the method of T. C. Kuo [5] to prove the following lemma.

LEMMA 2.4. Suppose that ffp are smooth fonctions in Rn

Xi dxt

dv
p(0)

exists a local C1 diffeomorphism &lt;P fixing the origin such that

Proof. We may suppose N&gt;\.

Set F(jc, a)=(l-a)/(x) + flJp(jc), aeR. Notice that

x (ôF ÔF dF\
gradF(0,a) (_,...,_,— =0 for ail a.

\ox1 oxn oaj
Define

wY ,_ f |gradfr2(p(x)-/(x))(gradF) when
X(x&gt;a)-\0 whenx=0.

Outside (0, a), aeR, X(x, a) is a C°° vector field. Jr(jc, a) is C1 at (0, a). Indeed,

|(p(*)-/(*)) gradF|=0(Ww+&apos;) |gradF|

Note that

&gt;const.
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So |gradF|2^|gradF|const. M&quot;&quot;1. Thus, X(x, a) (O\x\l + e). This shows that
X(xy a) is a C1 vector field.

Define v(x, a) (0,..., 0, 1) — X(x, a). v(x, a) is also C1 and we can assert that
local solutions of v(x9 a) exist and are unique and dépend in a C1 way on the initial
value and time.

Let &lt;j)(t; x0, a0) dénote the solution with initial condition &lt;/&gt;(0; x0, ao) (xo, a0).
Observe that, the dot product

(v(x9a),(09...,09 l))=l~|gradF|-2(/7(x)-/(x))2
^i-o(w2+2£)
&gt;0 when x is small.

So the a-component of any solution &lt;£(f ; x, 0) increases monotonically with /.
Hence &lt;j)(t; x, 0) meets the hyperplane a=\, when x is small, at a unique point

&lt;P(x). The mapping x -» 4&gt; (x) is a C1 local diffeomorphism. Moreover, as &lt;P(t; 0, 0)
(0, t) we hâve &lt;£(0) 0.

Now the dot product

(i&gt;(x, a), gradF) ((0, 0,..., 0, l)-Z(x, a), gradF)
(p(x)-f(x))-(X(x,a)iëTaâF)
0.

This shows that Fis constant along the trajectories of v(x, a). Hence

/(x) F(x,O) F(0(/;x,O)) for ail/.

As (&lt;Ê(x), 1) 0(r&apos;; x, 0) for certain f&apos; we hâve

\)) p(*(x)).

This complètes the proof of Lemma 2.4.

One readily sees that the topology of the nodal sets will be very complicated. In
order to say more, we assume the dimension of M is two. The nodal set is then a set of
lines. This becomes more manageable.

THEOREM 2.5. Suppose that M is a 2-dim manifold. Then, for any solution of
the équation (A+h(x))f=09 heC&lt;X)(M), thefollowing are true:

i) The critical points on the nodal lines are isolated.

ii) When the nodal lines meet, theyform an equiangular system.

iii) The nodal lines consist of a number ofC2-immersed one dimensional closed sub-

manifolds. Therefore, when M is compact, they are a number of C2-immersed circles.

{A C2-immersed circle means &lt;P(Sl), where &lt;P:Sl -&gt;M is a C2 immersion).
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iv) When the nodal lines meet, the géodésie curvatures are zéro there.

Proof. i) is obvious from Theorem 2.2.

ii) is clearly true when the nodal Unes are free of critical points. Around a critical

point on the nodal lines, the nodal lines are C1 diffeomorphic to the nodal lines of
a spherical harmonie in R2. The nodal lines of a spherical harmonie in R2 are

quite simple. IfpN is a spherical harmonie in R2, then pN\si is an eigenfunction. The

zeroes ofpN\si on S1 are isolated and they divide S1 into 2N arcs with equal length.
Remember that if pN\si (x) 0 then pN (tx) 0 for ail t &gt;0. Thus, the nodal lines of
pN consist of2N straight lines passing through the origin. Moreover, the straight lines

from an equiangular System at the origin. Observe that straight Unes passing through
the origin of the tangent plane map to géodésie lines under the exponential map. The

deiivative of the exponential map at the origin is the identity map. Thèse observations
show that ii) is valid.

To prove iii) and iv), we first recall that at a critical point x0 on the nodal lines, the

spherical harmonie describing the local behaviour of the eigenfunction around x0 has

degree greater than or equal to 2. The error term is O(\x\N+e), ee(0, 1), N^2. So

the order of contact of the nodal lines around x0 and an equiangular system of geo-
desics is equal to 2. This observation proves iv) immediately. iii) also follows imme-

diately because the nodal lines of a spherical harmonie in R2 are a set of straight lines

through the origin.

§3. Global Restrictions to Eigenfunctions

We hâve studied the local behaviour of the nodal lines in §2. The nodal lines are
also subject to a global restriction, namely, Courant&apos;s nodal domain theorem. If we
hâve many closed curves on a surface, we can disconnect the surface into many
components by deleting thèse curves.

We need the following topological lemma :

LEMMA 3.1. Suppose that M is a compact Riemann surface with genus g, and
cfrj&apos;.S1 -&gt;M l^j^2g+k, k^l, is an injectivepiece-wise C1 map such that (^(S^n
r\(j)j(S1)9 i ^j, consists of afinite number ofpoints. Then, M\(f)l (S1)u...^j(f)2g+k(Si)
has at least k+l connected components.

Proof. It suffices to prove that when fc=l, M\&lt;/&gt;1(S1)u...u02g+1(S1) is not
connected. Note that

2gtimes

where Z is the ring of integers. Each ^ : S1 -» M defines a cycle in M. Therefore, there
exists nx,..., n2g+k Z not ail zéro such that the homology class represented by Yj
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is zéro Observe that n^j can be représentée by (j),°pnj where Pnj S1 -? S1 îs defined by

Pnj(el0) etnje Thu$,&lt;t)Jopnj(Sï) &lt;l)(S1) Since np \^j ^2g+ k, are not ail zéro, we

may assume that nv ^0 We can assume there exists xoe0i (S1) such that 0x is a C1

diffeomorphism in a neighborhood of ^j&quot;1 (xo)and Xo^^S^u ^Ûig+iiS1)- Let
a (—1, 1)-*M be an injective C1 map such that

a((-l, l^niMS1)^ u&lt;t&gt;2g+l(Sl))={x(0)} {xo}

and the tangent vector of a at x0 is perpendicular to the tangent vector of &lt;pl at x0
Suppose M\(f)l (5J)u u&lt;£2g+1 (S1) is not disconnected Since ît is an open set, we

can finda C1 curve p [-1, 1]-&gt;M\&lt;£1(Sl)u Kj(j)2g+l(S1) with P(- l) a(~i)
and /?(l) a(^) This implies that there exists an injective C1 map &lt;2&gt; (-1, IJxjS1-^
-&gt;M\(/&gt;2(S1)u u&lt;/)2g+1(51) and that 4&gt;((-l, l)xS1)n(t)i(S1) is a small
neighborhood of &lt;pi(Sl) around x0

Let f be a non-trivial non-negative function belonging to C^((— 1, 1)) such

that 1*^/(0^ 1 Then/(0 A is a closed form in (-1, lJxS1. Therefore,

{$~l)*(f(t)dt) is a C1 ciosed form of M Now since the homology class repre-
sented by £,£*1 n^j is zéro, we hâve

However,

/2g+l2g+l \ /.

à contradiction
Thus, M\(f)l(Si)u u(/)2g+1(5&apos;1) has more than one component
Remark We can relax the condition &lt;f)l(Sl)n(t)J(Sl),i¥:j, has only a finite

number of points The condition can be replaced by

DEFINITION Suppose that \jj satisfies (A+h(x))^ 09 /?eC°°(M). We say
that the order of vanishing of ij/ at x0e M is equal to AT îff when we pull back \j/ to the

tangent space at x0 via the exponential map there is a homogeneous polynomial pN
of degree N such that \j/ ~pN near the ongin

THEOREM 3 2 Suppose that M is a compact Riemann surface ofgenus g, and \jj

is the i-th eigenfunction Let xoeM and i^(xo) 0 Then, the order of vanishing ofif/
at x0 is less than or equal to 2g+i.
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Proof The proof is an immédiate conséquence of Lemma 3.1, the following lemma,
and the observation that an eigenfunction changes sign around any of its zeroes.

LEMMA 3.3. Suppose that M is a compact Riemann surface, and \// is an

eigenfunction. Let xoeM and the order of vanishing of\j/ at x0 is k. Then, we canfind 0,- : S1 -»

-?M, K/ ^k, satisfying the assumption of Lemma 3.1 and 01(S1)Ç^~1 (0).

Proof This follows from the observation that the set of nodal lines of a spherical
harmonie of order k in R2 consist of k straight lines passing through the origin.

Theorem 3.2 shows that there is a topological restriction to the order of vanishing
of an eigenfunction. We then dérive in the following theorem that there is a topological
restriction to multiplicities of eigenfunction.

THEOREM 3.4. Suppose that M is a compact Riemann surface of genus g, and

is the /-th. eigenvalue. Then, the multiplicity of fit(M) is less than or equal to

Proof We first indicate the proof when g 0 and / 1. Then the order of vanishing
on the nodal lines is less than or equal to 1. If the multiplicity of /^ (M 4, then we
hâve 0i,..., #4 linearly independent and /40f + jX\{M) 0* O, l^/^4. We can find

a^b^R, l&lt;i&lt;3, such that af + èf^O and («40^+1-^00 (xo) 0,/ 1, 2, 3. See

that fl/0I+i — bi(j)l are again linearly independent. Then consider ^/(af0/+1 — è,-0i) (xo).
The dimension of the tangent space is equal to 2. Hence, we hâve Ct,..., C3 not ail
zéro such that

Since we also hâve

the order of vanishing of this non-trivial 1-st eigenfunction at x0 is greater than or
equal to 2. This contradicts the resuit of Theorem 3.2.

The gênerai case goes the same by noting that on R2 the dimension of the space of
constant coefficient partial differential operator of order less than or equal to k is

equal to £**} i.

COROLLARY 3.5. Suppose that M is homeomorphic to S2, i.e., g 0. Then, the
nodal Une of a 1-st eigenfunction is a C00 simple closed curve and the multiplicity of
jUj (M) is less than or equal to 3.

Remarks, (i) The bound of the multiplicity \iY (M) in Corollary 3.5 is sharp be-
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cause the coordinate function of sphères in R3 with center at the origin are 1-st
eigenfunctions. However, when g&gt;0 we don&apos;t know whether (2g + 2) (2g + 3)/2 is a sharp
bound for the multiplicity pLx (M) or not.

(ii) The Almgren-Calabi theorem states that every minimal immersion of S2 into
S3 must lie on a great circle. Therefore, if we know that every minimal immersion of
S2 into S3 is by the 1-st eigenfunctions then we can obtain the Almgren-Calabi theorem

by Corollary 3.5.

§4. Geometry of Nodal Lines

One of the difficultés in studying the nodal sets is the présence of multiple eigen-
values. This is in some sensé a singular case and non-generic. The results of K. Uhlen-
beck [6] show that generically ail eigenvalues hâve simple multiplicity. We gave an

upper bound of the multiplicity of fit (M), when M is a compact Riemann surface of
genus g. In gênerai the multiplicities can be pretty big. We shall study the case when

g=0 and / 1.

THEOREM 4.1. Suppose that M is homeomorphic to S2, and is isometric to a
surface of révolution in R3. Then, we can find a basis {i/^,} of the space of l-st

eigenfunctions such that the nodal Une ofeach \l/tis a curve with constant géodésie curvature.

Proof Corollary 3.5 shows that the multiplicity of fil (M)&lt;3 and that the nodal
line of a 1-st eigenfunction is a C00 simple closed curve. Let El dénote the linear space
of 1-st eigenfunction endowed with the usual L2 inner product.

Note that S1 acts on El as a group of isometry and préserves the orientation.
When dim£&apos;1= 1, we hâve a non-trivial \\f\LeEi such that it is invariant under S1.

The famous theorem of H. Hopf on vector fields shows that there are only two fixed
points under the action of S1. Then we can find a point x0 which is not a fixed point
and that ^i(xo) 0. Therefore, \j/1 also vanishes on the orbit of xo under S1. The
orbit of x0 is a C00 simple closed curve. Thus, we must hâve t/^1 (0) is equal to the
orbit of x0. Moreover, S1 acts as isometry implies the orbit of x0 has a constant
géodésie curvature.

Suppose that dimi^ 3. Results from linear algebra supply us with an orthonormal
basis {ij/iLi \j/2, \//3} of E1 such that \jfi is invariant under S1 and S1 rotâtes on the space
spanned by {^2, i^3}. Consequently i/^1 (0) is a simple closed curve of constant geo-
desic curvature. Notice that once we prove the theorem for ij/^1 (0) and i/^^&quot;1 (0), we
also settle that case when dim£1=2. This is seen from results in linear algebra that
we can find an orthonormal basis of Ex such that S1 acts as the usual rotation.

Now let us study ^J1 (0) and ^3 l (0).
We claim that ij/^l (O)n^J1 (O)#0. This is a spécial case of the following lemma.
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LEMMA 4.2. Suppose that M is a compact Riemannian manifold, fand h are iwo

linearly independent eigenfunctions ofthe same eigenvalue fi. Ifeitherf~l (0) or h~l (0)
is connected then f ~ * (0) n h~* (0) # 0.

Proo/. Suppose that/&quot;1 (O)nZi&quot;1 (O) 0. Assume h~l (0) is connected.

Note that {x:/ (x)&gt;0} n {x:/ (x)&lt;0} 0. We can assume h&quot;1 (0)s {*:/(jc)&gt;0}.
One immediately sees that one ofthe nodal domains of h is contained in {x:/(jc)&gt;0}.

Courant&apos;s minimum pfinciple immediately shows that n Xx of a nodal domain

ofh&gt;Xl({x:f(x)&gt;0}) fi.
This is a contradiction and the proof of the lemma is completed.
Now il/ï&apos;(OWJ^O)^- Let xoe^2-1(0)niA3-1(0). Then, &lt;M*o) iM*o) 0.

Note that if aeS1, then there exists real numbers a, b such that

x) for ail xeM.

This shows that ^2(a(-x:o)) #2(;co) + ^3(^o) 0- since a is arbitrary, \jj2 vanishes

on the orbit of jc0 and so does \J/3. This forces x0 to be a fixed point of S1. We claim

that\j/2 * (0)n^1 (0)hasmorethan twopoints. This is proved in the following lemma.

LEMMA 4.3. Suppose that M is the same as Theorem 4A,fandg are two linearly
independent \-st eigenfunctions. Then f -1 (O)n/?&quot;1 (0) has more than two points.

Proof. Lemma 4.2 shows that f~1(0)nh~1 (O)#0. We flrst observe that when

/ -1 (0) and h&quot;1 (0) meet at x0 they must be transversal to each other at x0. Suppose
the contrary. If/ -1 (0) and h&apos;1 (0) are tangent to each other at x0, then there exist

a, b not ail zéro such that d(af+bh) (xo) 0. Recall that (af+bh) (xo) 0, x0 is then

a critical point along the nodal line ofthe non-trivial eigenfunction af+bh, a
contradiction. Now the lemma is a conséquence ofthe Jordan curve theorem in R2.

Actually, xj/^1 (0)n i/^J1 (0) has exactly two points. This follows from the observation

that xj/2
* (0) n xj/ï1 (0) is a fixed point set of S1 acting on M.

Let {p, q} ^2 1(®)n{l/31(0)- The nodal lines of i^2 and \j/3 are simple closed

curves passing through/? and q. Note that any two points on an orbit of S1 hâve the

same distance to p and q. Gauss&apos;s lemma implies immediately that the orthogonal
trajectories of orbits of S1 are closed géodésie loops passing through/? and q. f&apos;1 (0)
and h&apos;1 (0) are also orthogonal to the orbits of S1 because the existence of involutive
isometries fixing p and q and the resuit of Lemma 4.3. This shows that xj/^1 (0) and
i/^J1 (0) are closed géodésie loops. Thus the proof of Theorem 4.1 is complète.

REFERENCES

[1] Aronsajn, N., A unique continuation theorem for solution ofelliptic partial differential équations or
inequalities of second order, J. Math. Pure Appl. 36 (1957), 235-249.

[2] Bers, L., Local behaviour ofsolution ofgênerai linear elliptic équations, Comm. Pure Appl. Math.,
8 (1955), 473-496.



Eigenfunctions and Nodal Sets 55

[3] Courant R. and Hilbert, D. Methods of MathematicalPhysics, Vol. 1, New York, Interscience,
1953.

[4] Cheng, S. Y., Eigenvalue and eigenfunctions ofthe Laplacian (to appear in the Proceedings of the
Symposium on Differential geometry.)

[5] Kuo, T. C. On C^-sufficiency of sets ofpotential functions, Topology, 8 (1969), 167-171.
[6] Uhlenbeck, K. Generic properties of eigenfunctions, (to appear.)

Courant Institute of Mathematical Sciences
251 Mercer Street
New York, N. Y. 10012

Received January 15, 1975




	Eigenfunctions and Nodal Sets

