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The extremum problem for analytic functions with finite area
integral

by J. M. ANDERSON

§1. Introduction

Let D ={z:|z| <1} denote the open unit disc and let I denote the Banach
space of functions f(z), analytic in |z|<1 for which the norm

== | [ )] dx ay

D

is finite. If «(z) is a function in L*(D), the space of complex-valued bounded
measurable functions in D with

lcll. = ess sup [k (2)l,  zeD,

then we may associate with « a linear functional L, on I defined by

L =— | [ x@)(a) axay.

D

Clearly

Il =<l (1)

and some importance attaches to the question of when equality holds in (1). This
is shown by the following theorem:

THEOREM A. A function x(z)e L*(D) with |k|l.<1 is the complex di-
latation of an extremal quasi-conformal mapping of D onto itself if and only if
equality holds in (1.1).
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88 J. M. ANDERSON

The necessity part of this theorem was established in [3] and the sufficiency in
[10]. If ¢ is a quasi-conformal mapping of D onto itself, then ¢ induces a
homeomorphism of the boundary D onto itself. A quasi-conformal mapping 6 of
D onto itself is called extremal if it has the smallest maximal dilatation in the class
Q(¢) of all quasi-conformal mappings of D onto D which coincide with ¢ on oD
i.e.,

K(@)=minK(¢y), ¢ eQ(q),

where K(0) denotes the maximal dilatation of 6. An argument involving normal
families (see e.g. [6] p. 75) shows that the minimum is always attained, though the
extremal mapping 6 need not be unique.

It is frequently difficult to determine, for a given function x(z) whether or not
equality holds in (1.1). Although the above considerations permit of a geometric
approach to this problem, there have also been several attempts [4], [5], [7], [9]
by analytic methods to gain some insight into the problem, and the present note is
also in this spirit. We define

f={k:keL”(D), |LJ=lxlk}

o f(z)
If(z)

R(T)={K:K= fel, aeC}.

Obviously &(T)c®. The extremal quasi-conformal mappings associated with
dilatations in $(T) are called Teichmiiller extremals. It is only for functions « in
K(T) that there exists an f, in I with L, (f,)=||L.|| (see [9] Lemma 0.3). However
it was first shown by Strebel [11], see also [9] example 0.1, that there are
functions « € ® which do not belong to K(T).

Given « € L”(D) we shall say that a sequence {¢, } in I is an extremal sequence
for « if ||p.l|=1, n=1,2,3,... and

L.(¢.)=|ILll (n—> ).

The condition that ||¢,||=1, n=1, 2, 3,... shows that the family of functions
{$.(2)} is uniformly bounded on compact subsets of D and so, by the usual
argument involving normal families we may assume, by passing to a subsequence
if necessary, that

bu(2) > do(z) (n—>x),
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locally uniformly in D. If the limit function ¢¢(z) vanishes identically the extremal
sequence {¢,} is said to degenerate. This terminology is due to Strebel. We
require the following theorem of Reich ([9]), p. 433; see also [4] Proposition 1.2).

THEOREM B. Suppose that k € L™ (D). Then either every extremal sequence
{$.(2)} for k degenerates, or

L.(f=|Ld Hﬁﬁ—% f(2) dx dy

D

for all fe I, where ¢y(z) =lim,,_,., ¢, (z). In particular, if k € K then every extremal
sequence for k degenerates or k € ®(T) (or possibly both)

§2. An analytic approach

Leaving the applications aside for the moment, the question of when equality
holds in (1) is an interesting extremal problem for analytic functions. One of the
difficulties is that in attempting to identify the dual space of I as a quotient space
the annihilator subspace

I'={k:L.(f)=0 forall fel}

plays a role. Yet it is known that I*, the dual space of I, can be identified,
unfortunately not isometrically, with another space of analytic functions, and this
quite often yields some information. We now describe this in detail, though it is
similar to [1] p. 17.

A function f(z), analytic in D and with f(0) =0 is called a Bloch function if the
norm

Ifle =sup 1-{zP) |f'(z)l, zeD,

is finite. The set of all such functions, denoted by B, is a Banach space with the
norm indicated. For information on B see [1] or [2].
We now fix x(z)e L*(D) and, for n=0 we set

b,=(n+2)L, (z"),
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i.e., we take moments of the function «(z). Note that b, depends on k, but for
notational convenience we suppress this. We set

g = Zo b.L"

and note that g(¢) is analytic for [{|<1, in fact b, =0(n), (n — ). Suppose now
that f(z) =) -0 a,z" belongs to I and fix p, 0<p <1. Then

L.(f(p2)) = Z a.p"L, (2“)— 2 p".

Since |f(pz)—f(z)|l;—=0 as p—1— we obtain that, for each fel,

n

L.(f)= lim

p-—)l"" n-——

But also
&%(‘g(‘”: BO+E'(0)= L (n+ Db
- L

and so, for fixed ¢, |¢|<1,

(n +1)(n+2)¢",

4 (e(0)=L Y. (n+1)n+2)0"2")

174
=L ((1 —zcz)3)‘

We now let G({)={g({) and note that G(0)=0. Then

IG'(DI=2IL|l - 11 = £2)lle

2" rdrdé
L[ [

=L [ i ar L T )

rdr
-4 | i e
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since the inner integral above is just the Poisson kernel. Now, for 0<r<1,
0<|¢|<1, we have r/1+|¢{|r<1/1+|¢{| and so

AL (* dr 4L
1+lgl b (-lgn? 11

IG'())=

Hence G(¢) is a Bloch function with Bloch norm at most 4||L,|l.
More accurately, we have

J'Ol J'2*f _rdrdg Z Ian|2|€|2", (2)

o |1—¢gre®|? n-o h+1

by Parseval’s formula, where the a, =(2n+1)!/(4"(n')*) are the Taylor coeffi-
cients of the function ¢(x)=(1-x)"*?. An application of Stirling’s formula to (2)
now yields

lim (1”‘C|2)L 2™ rdrde

-1~ |1 C’C'GP

so that

lim sup (1-{¢*) |G’ ({)|<—|IL Il

lel>1-

The inequality in the other direction is more relevant for our purposes. If
|£]<1 we obtain, from Parseval’s formula,

1 2 ) )
. L f(re®)G'(Lre™) do
2ar et ] o0
=__1.._. ( Z anrneine)( Z (n+1)b"£nrne—in6) d0= Z a"bngn(n_*_l)an.
277 n=0 n=0 n=0
Thus we obtain
1 1 2% . .
oy L J f(re®)G'(Zre™®)(1 —r*)rdrdo
0

_ i 1 n b ! 2n+1(1_ 2)d _l i a"»bn cn (3)
*n=0(n+ ) (a, nL r r r—znzo————n+2 .
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Since this latter expression is just 1L, (f) as {—1, it follows that

L.l = {sup (1-1zP) G2 |

zi<1

and so |IL.||=|Glls
Summing up, we have proved

THEOREM 1. For a given k(z)e L” (D) we have
IL N =<|Gllz = 4l|L.[l,

where

e 2 k(z) dx dy
G(c)“w” (1-¢2)*

D

Theorem 1 asserts that the Banach space B and the dual space I'* are isomorphic
as Banach spaces, i.e., that norms are preserved up to certain multiplicative
constants which are bounded away from zero and infinity. In order to apply
Theorem A directly, however, we require to identify I* isometrically as a Banach
space, i.e., without change of norm. I do not know of any space of analytic
functions which achieves this.

§3. Further estimates

A closer examination of (3) shows that somewhat more precise estimates can
be obtained. If x(z) is such that some extremal sequence {¢,} for « degenerates
then we obtain that there is a sequence {r,}, 0<r, <1, r, > 1— as n — o with the
following property: given £ >0 there is an n, such that, for all n > n,,

L@l=elGls+| sup (1=1zP) |G |l

rnsizi<

THEOREM 2. If k€& admits a degenerate extremal sequence then

lim sup (1—-|z]») |G'(z)|=|IL.]|,

lz}—1
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where G(2) is defined in §2. In particular, if

K(z)dxdy= Iyt i
| J“‘“—”a—gz)s o(1-lZp)"  (gl—>1-), (@)

D

then k cannot belong to & unless it belongs to S(T).

Condition (4) is to be thought of as a smoothness condition on k(z). For any
k € L*(D) we always have that the above integral is 0(1 —|{|*) as |{|—1—. Various
other smoothness conditions on «(z), yielding the same conclusion have been
discussed in [7] and [4], but they are different from Theorem 2.

However, a more far-reaching deduction can be made from (3) by “completing
the kernel,” the method one usually adopts in dealing with problems involving
annihilator subspaces. We obtain from (3) that

v by . _1 (7
) c—w[}

—n+2 sz f(re”®)G'(Lre )+ H(gre)](1—r?)r dr d6, (5)

0

where H(z) is any function analytic in |z|<1 with H(0)=0. This may substan-
tially reduce the Bloch norm, as we shall see below and so give a better upper
bound for |L.|. In particular, if G'(0)=0 we may take H(z)=G'(z) or H(z)=
iG'(z) to obtain a variant of Theorem 2 involving only the real or imaginary part
of G'(2).

§4. The Reich example

The following example has been suggested by Reich as a prototype:

a(z)=+1, Imz=0, |z|<],
=-1, Imz<0, |z|<1.

There now exist several proofs, both of a geometric and analytic nature, [8], [9],
[7], of the fact that |L_||<1=|la|l. It is instructive for us to consider this example
also. In this case.

4
b,=—~. n odd

nm

=0, n even,
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so that
4i gm0 2i 1+¢
8(()—7'_ Z=:0 2m+1 ——'n'l (1—-5)'
Hence
ooy 2l 1+¢ 2{
G(‘:)_w[k’g(1—g) 1— gz]
and thus

Jim (1-1¢P) IG'(I)I——“
(Note that, in fact, |G|z > (4/7)). This does not yield a contradiction to Theorem
2, but a suitable use of (5) will yield some information.

Since L, (z)=4i/3m and ||z||; =2/3 we see that

"L uzlLa(Z)l ____2_
‘a Tr'

=]l

In fact it has been shown that ||L_||>0.779 ([5] p. 167).

The estimates required for the upper bound are somewhat more delicate. We
suppose, first of all, that an extremal sequence, {¢,} for a degenerates. In (5) we
take H(z)= —uG'(z) where 0<<u=<1. We then see that

IL.DI=Ifll; - lim (1-r*) sup [G'(re™®)—uG'(re®)|.

r—1— 0=60=<2n

In this particular case the term involving log (1+re®/1—re®) yields zero on
passing to the limit and we obtain

L= IS )

where

reiO re——-io

—u -
1 r2 eZlO 1 r2 e 2i6

S(u)=1lim sup{(l -r?)

r—1-

}

{[(1 —u)?(1— r?)?+4(sin® 9)(1 + ur?)(u + r2)]”2}
(1-r?) +4r%(sin? 0) :

= lim (1-r?) max

r—l1-—
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Some elementary but tiresome calculations yield the following values for S(u)

=1-— =u<
S(uy=1-u, 0 u<7é—+—l,

(1+u)? Jz-—1<<
“awr vk

Hence, with the assumption that L, has an extremal sequence {¢,} which
degenerates, we obtain

ILl=2 min S

O=u=1

It is interesting, and somewhat unexpected, to note that this minimum does not
occur for u =0 or u = 1, where S(u) takes the value 1, but for u =3. We obtain

4 16
— =—-=0. ves %L
o, S0 =3 3098014 . <1

This is not as good a result as Theroem 4.1 of [5] where it is shown, under the
assumption that L, has a degenerate extremal sequence, that ||L || <2/w. Sum-
ming up, therefore, we obtain for the Reich example that either ||L_| is attained,
in which case ||L,||<1, or ||L.|| is approached through a degenerate extremal
sequence, in which case ||L,||=16/3wv3<1. It seems quite likely that this latter
estimate is an upper bound for ||L,_||, but I am unable to verify this. The difficulty
arises in the presence of the logarithmic term in the expression for G'({).

§5. Concluding remarks

For applications it is the inequality ||L. ||<||Glls of Theorem 1 that is impor-
tant. For that reason it is important in (5) to choose the function H(z) so as to
minimize the Bloch norm of G(z)+ H(z). Unfortunately it is a feature of the
method of “completing the kernel” that no indication is given of how to choose
the function H(z) in (5) in the general case. Although in the Reich example it was
reasonable to choose H(z)= —uG’'(z) for some u>0 since G'(z) was real and
large for z real, there was no reason to expect that u =3 was the correct value to
choose. Even after the fact it is difficult to know what importance to attach to this.
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The question of which other spaces are isomorphic to the dual space I* is
considered in [2]. We mention only, for n=1, the spaces B, of functions

g(Z) = Z akzk)
k=n
analytic for |z|] <1 and such that the norm
lgll. = sup (1- 1z[*)" |g" (2)]

is finite. With suitable adjustments for the values of the functions at the origin all
of these spaces are isomorphic, but again not isometric, to I'*.

It seems reasonable, in conclusion, to enquire whether smoothness conditions
like (4) can have a geometrical meaning in this problem. The Bloch condition (4)
gives us information about the image of |z| <1 under the mapping w = G(z), but
this is already several stages removed from information about x(x, y).

It is a pleasure to thank Professors E. Reich and A. Pfluger for their kind help
and suggestions in the preparation of this note.
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