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Combinatorics and intersections of Schubert varieties

Howard Hiller

Let G be a semi-simple, simply connected algebraic group over an algebrai-
cally closed field k and Pe a parabolic subgroup of G corresponding to a subset 0

of the simple roots X. The Bruhat décomposition of G/Pe yields a poset
partially ordered set) We of Schubert varieties. Actually, this poset can be defined

group theoretically in terms of the Weyl group W (and more generally for any,
not necessarily finite, Coxeter group). The combinatorial study of We has been
initiated in the work of Verma [26], Deodhar [8] (computation of Môbius
functions), Stanley [23] (Sperner properties, rank unimodality), Proctor [17], and
Bjôrner and Wachs [3] (shellability).

The goal of this paper is to explain an interesting connection between counting
&quot;paths&quot; in the poset W6 and the intersection theory on the variety G/Pe. This
observation is related to récent work of Seshadri [20] describing a standard
monomial theory for représentations of G. Indeed, his work immediately yields an
interprétation of the zêta polynomial of We and intervais contained in it. In
particular, it gives a combinatorial interprétation of Demazure&apos;s Weyl dimension
formula for the Schubert varieties [7].

In section 1, we record some basic combinatorial définitions and introduce
some important lattices. In section 2, the Chow ring of G/B and G/P9 is described
and the poset Wa is introduced. As an example, we indicate how the hook
formula in the représentation theory of symmetric groups makes its appearance in
the Schubert calculus.

In section 3, we discuss the notion of a miniscule weight o)a from several
différent points of view. In particular, we see that this condition implies that the
intersection theory on the corresponding G/Pa is multiplicity-free. We also

explain the connection between Seshadri&apos;s work and the zêta polynomial of Wa.
In section 4, we turn to the analysis of the miniscule weight con in J3n. (In some

sensé, this is the only interesting case). This leads us to a notion of shifted Young
tableaux and we can invoke a formula of Schur to solve our problem. Similarly, in
section 5 we consider the weight eon in Cn and get an analogous resuit.

It is a pleasure to thank Richard Stanley for his helpful correspondence and
Robert Proctor for a copy of his thesis.
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42 HOWARD HILLER

§1. Combinatorics

We recall some basic combinatorial language. A good référence is [1]. Let
(P, &lt;) be a fînite poset. If p,q e P, we say q covers p (notation: p —&gt; q) if p &lt;q and

whenever p &lt; x &lt; q then x q. A chain of length n — \ from p to q is a séquence

p px &lt; • • • &lt; pn q in P. The chain is said to be maximal if pt —» pl+1, 1 &lt; i &lt;

n -1 and we call a maximal chain a path. Suppose our poset has a least élément 0

and a greatest élément 1. We defîne (see [1, p. 143]) the zêta polynomial of P by

Z(P, n) # {chains from 0 to 1 of length n}

where # dénotes cardinality. We also defîne similarly the kappa polynomial

K(P, n) # {paths from 0 to 1 of length n}.

A rank function for a poset p is a function r : P —» N with r(0) 0 and if p —&gt; q
then r(q) r(p) 4-1. Clearly, P admits a rank function if and only if ail maximal
chains from p to q hâve the same length (and that length is r(q)-r(p)). It rules

out subposets of the form

so, in particular, the poset is decomposed into levels Pn={peP: r(p) n}. We call
the formai power séries

I (#pn)r= I r&lt;p)

n=0, peP

the generating function (or Poincaré séries) of the poset P. The height of a ranked

poset P is H(P) maxpeP r(p) r(l). If p &lt; q and [p, q] {x e P : p &lt; x &lt; q} is the
interval between them we defîne

K(p9q) K([p,qlr(q)-r(p)).

Notice that for a ranked poset the kappa polynomial dégénérâtes to a single
number since it only makes sensé at one argument. We abbreviate k(0, q) by
K(q). The following resuit is immédiate.
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LEMMA 1.1. If P is a ranked poset, p, qeP, then

43

In particular, K(q) Y&lt;q&apos;-+q *(&lt;}&apos;)&gt;

An idéal I in a poset F is a subposet satisfying: if p &lt; q e I, then pel. Clearly,
{p:p&lt;q} is an idéal in P and is called the principal idéal generated by q.

We introduce an important lattice. Let À (À1&gt;À2^* • •) dénote an infinité
séquence in N which is eventually zéro. Define A &lt;À&apos; if À, &lt;À, for ail i &gt; 1. We
call the poset of such séquences the Young lattice °U [1, p. 17]. The rank function
is the obvious one r(\) YT=iK In particular, À—» À&apos; if for exactly one i,

à; À, +1; ail other values unchanged. One can view À as a partition of r(À) and

represent it diagrammatically by its shape, e.g. À =(4&gt;3&gt;1) has shape

We will be concerned with certain ideals in &lt;&amp;. Define:

and \t=0,i&gt;k}.

It is easy to see °UKn is the idéal generated by the &quot;rectangular&quot; partition
rc&gt;---&gt;n&gt;:0..., (with fc non-zero terms)

•:•

The generating function of °UKn is the Gaussian polynomial; namely
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Let % dénote the sublattice of strict séquences À =(À1&gt;À2^t • •) satisfying
Aj&gt;Al+1 unless At=0. We also write &lt;%Kn =&lt;%Kn n&lt;&amp;. This is the principal idéal
generated by (n&gt;n-l&gt;n-2&gt;---) with k non-zero entries. In particular,
^n °yn,n îs generated by (n &gt; n — 1 &gt; • • • &gt; 1), so the shape is

for n 5. The generating function of ^n can also be computed

^—-—^^—^— w.t if n ss 0(2)

.3x ,/ .^ « «-K2).

As we will see later, thèse lattices occur naturally in the geometry of certain

homogeneous spaces.

§2. GIB

We recall hère some basic facts about intersection theory on the flag variety
GIB [2], [7]. We begin with a barrage of notation:

G split, simple, simply-connected algebraic group over a field k k
B Borel subgroup
T= maximal torus &lt;=B

X(T) character group on T
V=R®ZX(T)
A root System in V
X {au at} a set of simple roots &lt;=4

4 + positive roots, 4~ —4+.
5V coroots {aï,..., aft where a? 2(a,, a,)&quot;1^

û),= ith fundamental weight, satisfying (cut, a^) ô,,

W- Weyl group generated by simple reflections S {sa : a e X} with length
function l(w) and longest word w0; so that l(w0) - \A+\ and wo(â*) A~.

Al(-) Chow group of codimension î cycles up to rational équivalence.
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It is a conséquence of the Bruhat décomposition for G that G/B possesses a
&quot;cell-decomposition&quot; given by the B-orbits Bw=BwB/B, w€W, where Bw is
isomorphic to an affine variety of dimension l(w). We let Xw dénote the
(Schubert) class in AÎM(G/B) corresponding to the closure BWoW (Schubert
variety). This gives a Z-basis {Xw}weW for the Chow ring A*(G/B). In order to
complète the description of A*(G/B) we must compute intersection multiplicities.
The first réduction is that every Schubert class is a polynomial in the XSa&apos;s, a eX.
For example, if N=l(w0), then

p. 17].

The other polynomials are obtained by applying appropriate polynomial
operators to XWo [2, p. 15]. (Thèse results are like the Giambelli (or determinan-
tal) formula of the Schubert calculus.) The upshot of this is that it suffices to
compute Xw • XSa, a e X, weW. We hâve the following Pieri-type formula.

THEOREM 2.1 (Chevalley [5]). 1/ w g W, a e 2 then

where (5eA+ satisfies Z(ws3) /(w)+l.

This range of summation gives us our définition of the Bruhat order on the

Weyl group W. Namely, the covering relation w —&gt; w&apos; requires that there exist a

reflection s3, |3 g4+, so that w&apos;
ws&amp; and Z(w&apos;) l(w) +1. The Bruhat order &lt; is

the transitive closure of this relation. This algebraic définition is équivalent to the

géométrie condition Bw c Bw&lt;.

Remark [6]. If VZ X(T), then there is a map

C:S(VX)-*A*(GIB)

where S dénotes polynomial ring over Z. This is obtained by taking the first
Chern class of the Une bundle Lx associated to a character \ of T. This map
satisfies

(i) Ker(c) is the idéal generated by the positive W-invariants, i.e.

©,&gt;oS,(Vz)w.

(ii) Coker (c) is finite and annihilated by #W. For example, if oia € Si(Vz) is

the fundamental weight dual to av, then c(coa) XSa.
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It is possible to &quot;restrict&quot; this Schubert calculus description of G/B to G/P, P
a parabolic in G. We usually suppose P is a maximal parabolic Pa corresponding
to a fundamental weight &lt;oa. It is helpful to recall the following (see [4]).

LEMMA 2.2. (i) If Wa D^x-m{w &lt;e W: i(ws3) /(w) +1}, then Wa is a set

of minimal length left coset représentatives of Wa in W. (Wa is the subgroup of W
generated by {s^ifieS-{a}}).

(ii) If wsW, then there exist unique éléments wa £ Wa, wa e Wa such that
w w&quot; • wa. Furthermore, l(w) I(wa) + Z(wa).

From this fact and a computation of the action of W on A*(G/B) one finds

A*(G/Pa) is Z-free on {Xw:weWa}. Hence the projection G/B^-+G/Pa
induces an inclusion A*(G/Pa) ^ A*(G/B). Observe that the unique codimen-
sion one class is H XSaeA1(G/Pa).

Remark [2]. Under the map tt* one can actually identify A*(G/Pa) with
A*(G/B)W&lt;*9 where the superscript dénotes invariants.

EXAMPLE. If 0 81^^, a=ek-ek+1e2, then W Xn+k, Wa=2kx2n
and Wa ={ore2:l&lt;cr(l)&lt;- • -&lt;cr(k)&lt;n + fc and or(k + l)&lt;- • -&lt;o-(fc + n)}. As-
sociate to oreWa, the non-increasing k-tuple (a1?..., ak) where at

a(k — i +1) - (fc - i +1). This is a bijection and (al9..., ak) is a partition or, in the
notation of §1, an élément of ^; actually °Ukn as one can check. It is not difficult
to see that this bijection is a poset isomorphism. Hence the Chevalley formula
(2.1) becomes in A*(G/Pa)

Xk&apos;H= X Xy

when one computes the coefficients (|8V, &lt;oa). (It is actually possible to dérive the
full Pieri formula in this framework [14].)

In particular, one gets Hnk ic(n, n,..., n). The number on the right counts
the number of standard Young tableaux on a rectangular shape, so is given by the
hook formula [1, p. 132]. Hence

H 1*22 • • • kk • • • (n + l)^1 • • • (n + k-1)1

a fact that was observed in [13]. This leads one to the following gênerai question.
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PROBLEM. 2.3. If Pa is a maximal parabolic corresponding to a fundamental
weight (oa, HeA1(G/Pol) is the class of the unique codimension one subvariety,
compute the number

where d =dimfc (G/Pa).
In the next section we détermine which weights are reasonable to handle and

in §4 we analyze thèse cases.

§3. Miniscule weights

In this section, we introduce the notion of a miniscule weight. The main fact is

that thèse weights can be characterized abstractly, or from the points of view of
représentation theory or intersection theory.

Let 4, S,... be as in §2. Let Q=XUiZal dénote the lattice of roots and

similarly for Qv. Recall that if A is a lattice in V, then A*
{x g V : (A, x) e Z VA g A} is the dual lattice. The weight lattice P H=i Zû&gt;, is, by
définition, dual to Qv and P^Q. We let C dénote the Weyl chamber {xe
V:(jc, av)&gt;0} and P+ P(1C is the set of dominant weights. The weights are
ordered by A &lt; A&apos; if À&apos; — À is a non-negative sum of simple roots.

DEFINITION 3.1. A set SaP is saturated if whenever A g S, a e 4, 0&lt;i&lt;

(A, av), then also A - ia e S.

A typical saturated set arises in the représentation theory of the complex,
simple Lie algebra g lie(Gc). If AgP+, we let Vk dénote the corresponding
finite-dimensional irreducible représentation with highest weight A and P(A) the
weights that occur in the weight-space décomposition:

Vx= I Vï [15].
ixeP(X)

The set P(A) is saturated.

PROPOSITION-DEFINITION 3.2. A dominant weight A is miniscule if one
of the following équivalent conditions hold:

(i) The W-orbit WA is saturated
(ii) A is minimal, i.e. if /ul g P+ and /ut &lt; A then \x A

(iii) P(A)=WA
(iv) (|3V, A) 0 or 1, for ail 0 g 4+.
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Remark. According to the formula of Chevalley (2.1), condition (iv) precisely
says that intersections with H in A*(G/Pa) are multiplicity-free. (see [20]).

We call P/Q the fundamental group of G. It is a finite group of order equal to
the déterminant of the Cartan matrix. Every non-zero coset contains a non-zero
miniscule weight. Hence the number of non-zero miniscule weights is \P/Q\-1. If
à is the highest root of A and àv £ n,a^ then the number of miniscule weights is

#{i : n, 1}. The following table lists ail miniscule weights and information about
the associated poset Wa.

Miniscule weights

Dynkin diagram
Miniscule
weights #|Wa| dimc(G/PJ

E7

w,

o)1,w6

cu7

2n

27

56

kn

2n + l

16

27

Remark. The vertex représentations of the affine Lie algebras [9] play a rôle

analogous to that of the miniscule représentations in the classical theory. One new
feature is that the action of the Weyl group must be replaced by that of that of the

affine Weyl group plus an appropriate infinite-dimensional Heisenberg sub-

algebra.

The following resuit combines the ideas of §§1 and 2.

COROLLARY 3.3. If wa is a miniscule weight then in A*(G/Pa)

w&apos;eW&quot;
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Proof. According to (3.2iv) we need only check: if (3eA+ 3
and w g W&quot;, wsp e Wa then (pv, &lt;oj f 0. This is a conséquence of the following
more gênerai resuit.

PROPOSITION 3,4. If we Wa and !(w%) l(w) + l then ws^e Wa if and
only if (|8V, wa)^0. (We are no longer assuming û)a is miniscule.)

Froo/. Suppose ws3 € W&quot; and (|3V, o)a) 0. Then if |8 is written as a

non-negative sum of simple roots, a does not appear. Hence s3 g Wa. Since
vveW&quot;, by (2.2ii) /(wsp) /(w) + /(se), so J(%) 1. Then 0 e5-{a} and this
contradicts ws3 € W&quot;.

The other direction is a conséquence of (2.1) and the fact that A*(G/Pa) is a

subalgebra of A*(G/B), (see also [23, 2.2] or construct an elementary argument).

Concretely, (3.4) says that any class that can occur in the intersection with H
does occur. We now hâve:

COROLLARY 3.5. If ioa is a miniscule weight, then in A*(G/Pa)

Xw-Hd ^ ic(w, w&apos;)Xw, weWa

where the summation ranges over w&apos; e Wa, w &lt; w&apos;, Z(w&apos;) l(w) + d. In particular, if
d dimk (G/PJ HiW&quot;) and w 1, then

where wg is ffie longest word in Wa.

Proof. Combine (3.3), (1.1) and an induction argument,
We can now use Poincaré duality on GIPa to write k(w, w&apos;) as a triple

intersection product.

COROLLARY 3.6. If &lt;oa is a miniscule weight then in A*(G/PJ

K(w, w&apos;) XWoW&apos;WgWo- Xw • Hd

under the usual identification.

Proof. One need only check that the map w -» wowwq w0 on W* induces the
Poincaré duality map.
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Miniscule weights also appear naturally in the work of Seshadri [20]. He shows
that if o&gt;a is miniscule weight then the induced représentation H™

H0(GIPa, L®am) admits a fc-basis of &quot;standard monomials&quot; parametrized by chains
0 wx &lt; w2 ^ • • • ^ wm+2 ^ 1 in Wa of length m +1. In characteristic zéro, H™ is

the irreducible G-module with highest weight mi(o)a) where î is the Weyl
involution. This implies, in the language of §1,

PROPOSITION 3.7. If coa is a miniscule weight

Z(Wa, m+ l) dimfc (H™).

In particular, dimk (Vi(&lt;Uot))

It is now possible to use the Weyl dimension formula to get a product
expansion for this zêta polynomial. Notice also that the graded object ©mH™ can
be interpreted as the coordinate algebra of G/P under an appropriate projective
embedding. Hence, its Poincaré séries can be described by the Weyl character
formula. (See final comment before remarks in §4).

Seshardri has a relative version of his resuit. If Xw is a Schubert variety one
can compute the character of H°(XW, L®am | Xm). The dimension of this représentation

is now related, as in (3.7) to the zêta polynomial of the interval [1, w] in
Wa. Demazure [7] also has an abstract Weyl dimension formula for the Schubert

variety that one can invoke in this situation.
The picture that émerges is that chains in Wa are connected to the représentation

theory of G, while in a similar way the paths in Wa are tied to the
intersection theory of G/Pa. Can one explain this relation between représentations
and intersections in an intrinsic way? Finally, we remark that Proctor [17] has

proven the persuasive resuit that W0 is a distributive lattice precisely when (oa is a.
miniscule weights and W0 Wa (excluding the trivial case of G2).

Let us look at what the table of miniscule weights tells us about the problem
(2.3). The case An is a classical and analyzed in §2. The poset corresponding to
the pair (Cn, o^) is a simple chain, so Hd 1. The poset corresponding to (Dn, coi)

is only slightly more complicated, e.g. n 4 is
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so Hd=2. The posets of (D^a)^^ or (Dn, &lt;on) are both actually identical to
(jBn_i, (On^). The cases of E6 and E7 are covered in the penultimate remark of §4.
So it remains to consider the case (Bn, con) which we turn to now.

§4. Orthogonal groups

Let V dénote a real vector space of dimension n equipped with the standard
Euclidean inner product We recall the usual realization of the root System of
type Bn [4]. If {et,..., en} dénotes the standard basis of V, then A is the set of
vectors

{±et ± e} : 1 &lt; i &lt; / &lt; n) U {±et : 1 &lt; i &lt; n}.

a basis S ={al5..., an} of simple roots is obtained by letting

{et-el+1
l&lt;i&lt;n

en i=n

so that the positive roots â+ are

{ex -e] : 1 &lt;i&lt;/&lt;n}U{et +e, : 1 &lt;i&lt;/&lt;njUje, : 1 &lt;i &lt;n}.

The Weyl group W is the semi-direct product £« x Z^ where the symmetric group
Xn acts in the obvious way. W has a natural intégral représentation as signed

permutation matrices; it is the symmetry group of an n-dimensional cube (the
hyperoctahedral group). We write a typical élément w g W as a pair (a, e), cr e £n&gt;

e gZ^. It is not hard to show, by induction on /(w), that

LEMMA 4.1. 1/ w (cr, e) g W, then

l(w)=f(&lt;r)+ I (24 + 1)

where d, =d,(cr) #{x&gt;/:cr(x)&lt;o-(/)} and f is the length fonction on £n with

respect to su sn_!.

We also recall that f(cr) Z,n=i eP where ^ =eJ(cr) {x&gt;/:cr(x)&lt;cr(/)}. This
yields

COROLLARY 4.2. 1/ w (cr, e) e W, fhen

e,=-l
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Proof. Clearly d, + e, n — 1 so

f(w)=f(7T)+ 2 (24 + 1)

iV X 4+ I 4+ I i
j=l e,=-l e,=-l e,=-l

e,=-l ef l e,=-l

Our first task is to explicitly identify Wa, where a an (see also [23]). We
begin with

COROLLARY 4.3. 1/ w (a, s) g W, î &lt; n, s, sai, then l(wSl) l(w) +1 i/
and on/y i/ e1+1o-(0&lt;elcr(i + l).

Proo/. The length goes up by one if and only if w(el-el+1)
ele(r(l) — el+1e(ril+1yGA+. The argument is finished by checking the four possible
cases.

If {x1 &lt; • • - &lt;xk} is a subset of {1,2,..., n} arranged in increasing order, let
{y1&gt;-•-&gt;yn_k} be the complementary subset arranged in decreasing order.
Define an élément (xu xk) of W by

x, i&lt;fc fl

We now hâve

PROPOSITION 4.4. The set Wa ={(xl9... ,xk» where x1&lt;--&lt;xk varies

over the 2n subsets of {1, 2,..., n}.

Proo/. Each (xl9..., xk&gt;€ Wa by (2.2i) and (4.3). But \W*\ 2n and the resuit
follows.

We now compute the length function restricted to W&quot;.

PROPOSITION 4.5. If (xl9..., xk)e Wa, then
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Proof. By (4.2), we hâve

l(xu...,xk)= £ £
j=k+l }=k+l

J + 0+

and the resuit follows.

We would like a notation for the éléments of Wa so that the length fonction
has a simpler form. Associate to the symbol (*i &gt; • * • &gt; xk) the élément (y, &lt; • • • &lt;

yn-k)e Wa, where yl9..., yn_fc is an ordered enumeration of the complément to
the set {(n + l)-x, : 1 &lt;i&lt;fc}. Then we get

PROPOSITION 4.6. If n &gt; xx &gt; • • • &gt; xk &gt; 1,

k

I(x1,...,xfc)= X^-
i=i

Proo/. By (4.5) and the définition of

l(n + lx,) +fe(n +
z

Hence we view (x1&gt;---&gt;xk) as a natural notation for éléments of Wa.

Clearly, (n, n-1,..., 1) is the unique élément of maximal length V It

remains to understand the Bruhat order restricted to W. If we view {xx &gt; • • • &gt; xk)
as a strict partition in the sensé of §1, we get:

PROPOSITION 4.7. There is an isomorphism of posets Wa&lt;-&gt;lfn, where the

latter poset is the idéal of (n, n -1,..., 1) in % (as in §1).
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Hère is a picture of the Hasse diagram of ^4.

(321)

(21)

In order to understand the intersection multiplicities in the d-fold self-
intersection of H XSn, we must compute the fonction (x1&gt;--&gt;xk). Fortu-
nately, this combinatorial problem has been solved by Schur (see also Thrall [25]).
We record the resuit:

PROPOSITION 4.8. (Schur [19]). The number of paths from &lt;t&gt; to (x1 &gt; • • • &gt;

xk) in &lt;&amp; is given by

-&gt;xk)
1

&apos; &quot;

n

Remark. According to Schur [19] the irreducible projective characters of Xn

are parametrized by the n* level of (3/, but there are two corresponding irreducible

projective characters if £ik=i(Xi~l) is odd, in the notation of (4.8). The
formula of Schur above can be thought of a projective version of the hook
formula discussed in §2.

We can now solve the remaining case of problem (2.3) for miniscule weights.

COROLLARY 4.9. The intersection Hd Kn- X^n_u ,x) m Ad(GIPa) where

n 0(2)

K

d\ 2! 4! • • •

d!2!4!---(n
n!(n + 2)!-- • C

(n-2)!

i-l)!
2n-l)!
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So, for example, in A*(SO13/l/6), H21 33,592 times the class XwS.

Remark. We use the notation of the remark following (2.1). If G is the group
of type Bn, a an, there is a map

It is possible to compute this map explicitly; namely

where (/) sn+1_J • • • sn_iSn in terms of the fundamental reflections. (The coefficient

2 arises because the index of torsion for G is 2 [6].) Thèse Schubert classes

X(]) play the same rôle as the spécial Schubert cycles in the classical Schubert
calculus (see [14]). We hope to write down a Pieri formula for /&gt;1 in a future
paper (y 1 is (3.3)); the resuit is complicated by the multiplicities.

In the case of groups of type An, a path in Wa admitted an interprétation as a

standard Young tableaux. We give a similar notion for the poset &lt;&amp;n.

DEFINITION 4.10. A Strict Young tableau on a strict partition x
(*x &gt; • • • &gt; xk) is an assignment of the numbers 1,..., r(x) xx + • • • + xk to the
boxes of the shape of x so that entries in each row and antidiagonal increase.

For example, \2 is a strict Young tableau, but \3 is not. Notice the définition
forces that the entries increase in each column so a strict Young tableau is a

standard Young tableau, but not conversely as our example shows. It is trivial to
check

PROPOSITION 4.11. There is a bijection:

{paths
in Wa (strict Young tableaux)

from &lt;j&gt; to x (*i &gt; • • • &gt; xk)J \on the shape of x J

Now suppose we take a strict shape and shift each row over to the right by one
box relative to the row above it. For example, the shape of (4&gt;3&gt; 1) corresponds
to the shifted shape
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We now observe

PROPOSITION 4.12. There is a bijection

(strict Young tableaux) (standard Young tableaux)

\on the shape of x J \on the shifted shape of x

The objects on the right-hand side of the bijection of (4.12) are called shifted
Young tableaux and hâve been studied extensively by students of R. Stanley [11],
[12], [18]. Schur&apos;s formula (4.9) counts thèse objects. Indeed, it possible to assign

a shifted hook-length to each box of the shifted shape, so that (4.9) has the form
of the usual Frame-Robinson-Thrall hook formula (see [16, p. 135]). For example,

the shifted hook-lengths for (4&gt;3&gt;1) are indicated

7 5

4

4

3

1

2

1

It seems to be an open problem to compute the relative function k(w, w&apos;) in
this case. In the case of the lattice °Uk n (i.e. groups of type An) such a skew-hook
formula is known. Indeed, it made its first appearance in an 1891 computation of
H. Schubert in enumerative geometry and was rediscovered in this century by W.
Feit in the context of représentations of Xn.

According to Seshadri&apos;s theory (see the end of §3) the chains of length m +1
in Wa will parametrize a fc-basis of the représentation VrmOa. Observe that m 1

is the spinor représentation of dimension 2n. A chain in W détermines a shifted
plane partition. But Stanley [24] shows that such an object is équivalent to a

column strict plane partition (see [21] for définitions). By writing down a speciali-
zation of the Weyl character formula one can dérive the generating function for
thèse objects (see [17,4.2]).

We conclude with two remarks. The first complètes the solution of problem
(2.3) for the remaining exceptional groups. The second gives an interprétation of
Xw • Hd in terms of the degree of a Schubert variety.

Remarks. 1. In the Chow ring of the homogeneous varieties E7/E6 and EJD5
one can try to compute the multiplicity of the highest self-intersection of H(2.3).
Fortunately, there is a picture of the respective Bruhat orders in [17]. So we can
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just count and get

H16 78 in A*(E6/D5)
H27 =13,188 in A%E7/E6).

2. (Géométrie application) There is a projective embedding of G/P^ into a

large enough projective space PN (coming from the ample line bundle L^J. For
G GLn+k this is the classical Plùcker embedding of the Grassmannian into VN9

N={ )~~ 1* ^e s^ow h°w to compute the classical degree of Schubert

varieties in G/P^, with o)a a miniscule weight. This amounts to successively cutting
Xw with a hyperplane until one is reduced to counting points. By (3.5)

Xw • Hd~lM k(w, wg)• Xw« w e Wa

where d dimc (G/Ptt). So if &amp;a dénotes Poincaré duality for G/Pa9 then

For example, referring to the Hasse diagram of ^4 for SO9IU4

deg(X(3)) K(421) 7

since Poincaré duality is given by complémentation.

§5. Sympletic groups

Let a)a o)n dénote the &quot;right-most&quot; fundamental weight in the root System of
type Cn. The corresponding homogeneous space G/Pa is homeomorphic to
SpJUn. Let HeA1(SpJUn) dénote the unique codimension one class. We show
how to solve problem (2.3) for this non-miniscule weight by extending the
technique of §4.

Since Weyl(Bn) Weyl (CJ, the relevant poset Wa is identical to ^n of §4.

But by Computing inner products Ov, &lt;on) [4, p. 254] one gets

X. +KX,.]

Let us write x for (xl5..., xk) and define k(x) by the équation

H&apos;= I K(x)(xl9...,xk). (5.0)
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The k-fonction can easily be computed in terms of the K-function of §4. We hâve

PROPOSITION 5.1. If x e wa, then k(x) 2i(s)k(x), where I(x) Lk=1 (x, -1).

First we leave it as an exercise to check

LEMMA 5.2. I(x(i)) I(x)-1 + ôX|olôljk where x(i) (xl9..., xt -1,... xk) if

Proof of (5.1). We induct on l(x).

2 S 2I(£(l))K(x(i)) + 21-\.+r(ï(fc))K(x(fe))

k(jc(î)) + K(

by (5.0), (5.2) and (1.1).

COROLLARY 5.3. If HeA\SpJUn), then H(n&quot;} 2®Kn, where Kn is as in
(4.9).

EXAMPLE. For Sp5/U5, H15 210 • 286 292864, so the degree of the sym-
plectic variety grows much faster than its orthogonal counterpart.
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