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On the quantitative boundary behavior of conformai maps

Ch. Pommerenke* and S. E. Warschawski*

1. Introduction

Let F be a closed Jordan curve in C and let / map the unit disk D conformally
onto the inner domain of F For o)l9 a)2 e F, let F(col5 &lt;o2) dénote the arc (of smaller
diameter) of F between o)x and co2. We shall study the relation between the
géométrie quantity

\ù)2~~ù)l

and the analytic quantity

no
sup (1.2)

The relation between rj(ô) and other properties of / has been investigated in two
papers by F. D. Lesley and the second author [4] [5], and our main theorem is

based in part on thèse results.
The curve F (which need not be rectifiable) is called asymptotically conformai

if v(s) -* 0 as 8 -» 0; this holds [7, Th. 1] if and only if p(8) -&gt; 0 as 8 -» 0. The
connection with quasiconformal mappings was studied in a paper with J. Becker
[2].

THEOREM 1. Let f map D conformally onto the inner domain of the

asymptotically conformai curve F Then, for 0&lt;e&lt;l/2, there exists 80(e)&gt;0 such that

] (0&lt;8&lt;80(e)) (1.3)

where c &gt;0 and M dépend only on f.

*This research was in part supported by the National Science Foundation.
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108 CH POMMERENKE AND S. E. WARSCHAWSKI

This theorem gives the best resuit if F is &quot;not too smooth.&quot; For instance, if
c1(logl/Ô)~a&lt;îî(ô)&lt;M1(logl/ô)~a for 0&lt;8&lt;81 and some a&gt;0 then Theorem
1 (with e 1/4) shows that

c2y](S)&lt;p(ô)&lt;M2r)(Ô) (0&lt;8&lt;82). (1.4)

We shall study |3(ô) and r}(8) in Section 2 and prove the lower estimate
(1.3). The much more difficult proof of the upper estimate (1.3) will be given in
Section 3.

In the last section, we dérive some conséquences of Theorem 1 and construct
examples (using lacunary séries):

(a) The curve F is smooth if [4, Prop. 3]

(1.5)

and we shall see that this condition is best possible and that it does not imply that
F is Dini-smooth. It follows from (1.5) that

f ^y-dt + M38 f ^dt (0&lt;8&lt;83), (1.6)

and this estimate is better than (1.3) if r}(8) behaves like 8a. It also follows [4, Th.
3] from (1.5) that log/&apos; is continuous in D, and we shall improve the estimate for
the modulus of continuity.

(b) The curve F is rectifiable and even asymptotically smooth if

f t
(1.7)

and this condition is again best possible. Hence log/&apos;e VMOA [7, Th. 2], and we
shall show that

logfeBMCWp)

for a certain p(8); see Sarason&apos;s lecture notes [11, Chapter 5] for a discussion of
thèse function classes.

Throughout the paper, we dénote by 80,8l9..., by c, cl9... and by M, Ml5...
positive constants that dépend only on the function / and possibly on displayed
parameters, while K, Kl9... will dénote absolute constants.
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2. The lower estimate

109

2.1. Some properties of p. let (3(5) be defined by (1.2). The maximum principle
shows that

Hence 8fi(t
that

no

+ 8)

~ 8

i(r + ô)/3(ô) &lt;

for l-t-
and similarly t|3(f + 8)g(t + 8)/3(t), and it follows

for

Thus (î is increasing and subadditive.
It follows from (1.2) by intégration that

log
f(pe&quot;)

log
1-p

for l-8âp&lt;l.

If /3(ô) -»¦ 0 as 8 -» 0 we conclude that, for e &gt;0,

(2.1)

(2.2)

THEOREM 2.1. Lc( / map D conformally onto the inner domain of an
asymptoticalîy conformai curve. If |f| 1 -8&lt; 1 and agi tfien

(3 (S)
max

f(z)-f(O
(z-Of(O -1 S60a3j8(5) (2.3)

/or 0&lt;Ô&lt;Ô2(a).

Proof. (a) Since

the left-hand inequality (2.3) follows from a well-known coefficient estimate

applied to{|z-£| 8}.
(b) Let zeD and \z-(\Za6. We see from (2.1) that 0((a + l)8)S
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(a+ 2)0(6)^30(0). Hence, by définition (1.2),

log f(Û

1-s

where we integrated along the non-euclidean segment from £ to z and where
s (z-£)/(l-£z). Writing /3 /3(ô) we deduce that

no
Since

-1 ^exp log

|l-£z|2/(l-|£l2) 5a2ô we obtain by another intégration that

f(z)-f(O
iz-ono -i

\s\

[(1-1 l]dcr

for 0 &lt; 8 ^ So if So is chosen so small that 6a0(ô) &lt; 1/2. This proves the right-hand
inequality (2.3).

2.2. Géométrie properties of t). By elementary geometry, the définition (1.1) of
t] means that r(&lt;ou o)2) lies in an ellipse with loci a&gt;x and &lt;o2 and with minor half
axis (2 + tî(Ô)2)1/2t](ô)ô/2; this is &lt;r)(8)8 for small 8. We need a somewhat
différent description in terms of the width of a strip; this resuit was independently
proved by C. FitzGerald.

LEMMA 2.1. If tï(Ô) -&gt; 0 (8 -&gt; 0) then, for 0&lt;8&lt;80,

&lt; sup sup Im
(O —

ù)2~&lt;*)i
&lt;Tï(S). (2.5)

Proof. The right-hand inequality follows at once from the remark about the
enclosing ellipse. We prove now that tî(ô)&lt;3t}*(ô) where tj*(ô) dénotes the
middle term in (2.5).

Let wl9&lt;û2sr with \(o1-ù)2\^8 and let û)er(&lt;ol9 w2). We may assume that

rcos (2.6)



On the quantitative boundary behavior of conformai maps 111

If 8 is sufficiently small then tj*(ô)&lt; 7)(8)&lt; 1/2. Hence r sin 6 ^ 8tj*(8)&lt; 8/2 which,
together with rcos 0^8/2, shows that r&lt;8lj2. Since yfxTy-yfx^yl(2y/x) for
x &gt; 0, y &gt; 0, we conclude that

icos-ûjl + lco-tOil [(5-r)2 + 4rôsin2(fl/2)]1/2-(S--r)|l 8

2rôsin2(0/2) 2ôtï*(5)2

Ô-r ~Ô(1

and thus that t)*(ô)2&lt;8tî(Ô)2 for small 8.

Remark 2.1. The last resuit implies that r\(28)^Ky}(8). We only indicate the
proof. With the convention (2.6), choose &lt;ù\, iù2 g F(0, 8) such that |&lt;oi -&lt;o£| 6/2,
eu 6 F(coi, co&apos;2) and [w;, co^] is parallel to [0, S]. Let co g r(o&gt;i, cdJ) be a point on the

perpendicular bisector of [coi, co^]. We consider now the pairs {0, &lt;o}, {co, 6},
{coi, ^2} a^d see by elementary geometry that

ôt)*(8) max |Im

for small ô. Applying this twice we obtain tî*(ô)&lt;9tï*(ô/3)&lt;9tî*(Ô/2).

2.3. Proof of the lower estimate (1.3). Let zuz2€dD, \zl-z2\ 8 and choose

(eDon the perpendicular bisector of [zu z2] such that |£| 1 -8. It follows from
Theorem 2.1 with a 2 that, for 2 on dD between zx and z2,

with |6|^X^(8). (2.7)
no

Writing b, instead of b for the cases z z,, we thus see that

?4. (2.8)
f(z2)-f(zi) (z2

Since llmKz-ZjXza-z^HêS3 we deduce from (2.7) and (2.8) that

SM2j3(Ô) (2.9)
7(z2)-/(zi)

for sufficiently small 8 because Ô^M1p(8) by (2.1).
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Since F is a quasieonformal curve it follows [6, p. 315] that

L diamr(/(z1),/(z2))^
=Cl (îifi)if(fli =C2&apos; u &apos;

a-\c\)\no\

Hence (2.2) with e/2 instead of e shows that

l/(zi)-/fe)l^c2(l~|^|)1+e/2 c2Ô1+e/2^Ô1+e (2.11)

if 0&lt;8 &lt;80(e), and the lower estimate (1.3) follows from (2.9) and Lemma 2.1.

3. The upper estimate

3.1. Connection with conformai mapping of strips. To obtain an upper bound
for (5(8) we map D and the inner domain of F conformally onto infinité strips.
Let, as above, / dénote a univalent function in D, as well as its continuous
extension to dD, which maps D onto il, and let /(£0)= ^o(l^ol !)• The functions

z =x + iy h(£) Log-^ and w u + iv H(û&gt;) — log(a&gt; — coo), (3.1)

where Log dénotes the principal value for £ e D and log is a détermination of the

logarithm for (oeO obtained by fixing a branch at a point of û — {o&gt;0}, map D
onto the strip 2={z|-o°&lt;jc&lt;4-oo? ly^Tr/2} and il onto a striplike domain S,

depending on û&gt;0. Its boundary is a closed Jordan curve C with a point, wM, at

w oo. Then F h of^H&quot;1 is a conformai map of S onto X. Let /(- £0) &lt;»b and

Wo H(û&gt;o); then limw_Woo Re F(w) oo and limw_*W£ Re F(w) -oo. The points
wf0 and Woo décompose C into two subarcs C+ and CL, where the notation is so

chosen that, under the mapping F, C+ corresponds to {y tt/2} and C_ to

A simple calculation leads to the équation (w — log (/(£)—f(Co)))

3.2. A comparison strip, Let 0&lt;e&lt;l/10. We assume in the following that F
is an asymptotically conformai curve and use the notations of Section 3.1;
K9 Ku K2,... dénote absolute constants, M, Mu M2,... dépend only on / and
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parameters. We write

fj(u) T,(2e-M) + 2e-ue. (3.3)

LEMMA 3.1. There exists a constant ax which dépends only on f (but not on
(o0) and a strip

Sx {w u + iv | v &gt; al5 cp-(w) &lt; v &lt; &lt;p+(u)} c S

where &lt;p_ and &lt;p+ are continuous, piecewise linear functions in [al9&lt;x&gt;) with the

following properties:
(i) The corners of both curves {v &lt;p±(u)} occur at most at points u un

(n l,2,...) with
(ii) If for u^a

then

l). (3.4)

(iii) For u&gt;au let 6U dénote the crosscut {Rew u,&lt;p-(u)&lt;v&lt;ç+(u)} of Sx

and 0(u) &lt;p+(u)-&lt;p_(u) its length. Then there exists exactly one crosscut 0U of S

which contains 0u and joins a point of C+ to one on C_. If &amp;(u) is the length of 0U

then

2)(l) (ui^ + 1) (3.5)

and

\e(u)-ir\^K3r)(u-l) (u^ax + 1). (3.6)

It should be noted that, while S and So change with cooGr, ax is independent

of o&gt;o.

The proof of this lemma is contained in Section 2.2 of [4]. Note the différence

in the définition of fj(u) hère in (3.3) and in [4]. The strip So constructed there is

denoted hère by St. The fact that for u&gt;ax the région S has one and only one

crosscut 0U is stated in Section 1.2 of [4] which is referred to in 2.2.
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LEMMA 3.2. There exists an a&gt;a1 + l which dépends only on f which the

following properties. Let So {w u + iv \ u &gt; a, &lt;p_(u) &lt; v &lt; &lt;p+(u)} where &lt;p+ and
&lt;p_ are the functions in the définition of St of Lemma 1 ; thus So c S. Let
F0 X0 + iY0:S0-*2 dénote the one-to-one conformai map of So onto X such

that, for weS0, limu_*+0O Re F0(w) =+&lt;*&gt; and F0(a + i(p±(a)) ± m/2. Then for
Y(w) ImF(w)

for weS0, u&lt;M2(e). (3.7)

Again we note that our constants are independent of o&gt;0.

Proof. We refer to the proof of Lemma 2 in Section 2.6 of [4] up to and

including équation (2.6.14). There an a is determined such that So satisfies the

hypothèses (a) and (b) of Theorem 2 of [5] with L 2tt, l 1/8, c replaced by c0,

an absolute constant defined in ([4], (2.6.13)), jll 1/2, a+(u) a_(w)
2n/2 tj(m)/it, and, by ([4], (2.6.14)),

Note that a dépends only on tj and thus on /, but not on e. Furthermore, in the
notation of this theorem, e(M)^e1(u) e(w) + 2e~ue ^K^iu — 1) by (3.4) and

8(u)^ô1(u) 8(u) + 2e~~ue ^K2tj(w-1) by (3.5). (Theorem 2 of [5] assumes that
e(u)=^2e~~pu and 8(u)^e~pu for some p&gt;0. However, if this condition is not
satisfied for any p&gt;0, e(u) and 8(u) may be replaced by e1(u) e(u) + 2e~pu and

ô1(M) Ô(u) + e~pu for some p&gt;0.) Hence we can apply the resuit of Part (i) of
the proof of Theorem 2 in [5], namely, the inequality (4.5). Hère we take p e,

px SelA, vx 1 + 2 • 5e/4 1 + 5e/2 and we obtain for w e So

| Y(w) - Yo(w)| ^ M3[fj(u/v, -
for u^q3v1 (see [5], (4.5)). We now détermine M2&gt;q3&gt;v1 such that

and ^i(T-^-)&lt;e-1 for u&gt;M2(e).\l43e/

Since [tj(m)]x(u) increases with decreasing m, the factor of M3 is

2\/2
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For u&gt;M2(e) we hâve rj(u/(l + 3e))&lt;e-1 and, therefore [1/ij]** ^exp(2V2/7re).
Hence we obtain (3.7) with M1 M3exp(2y/2/7re).

3.3. Estimâtes for Fq(vv) and F£(w). The following Lemma is in part a

quantative version of a known resuit on L-strips [13, Theorem X] adapted to our
spécial situation.

We choose an absolute constant a with 3/4&lt;a3&lt;l, say

a=(4/5)1/3

and use the notation of Lemma 3.3. Let «Mm) |[&lt;p+(u) + (p_(m)] and A={u^a,
v

LEMMA 3.3. There exists a (e) and xo(e) depending only on e andfsuch thaty

with S(a)

for w*gA, Rew*^a(e), (3.8)

for weS(a), (3.9)

(3.11)

Proo/. Let {i^} be the séquence of points, Un+1-1^ 1/2, wn^a, at which

possible corners of the graphs represented by &lt;p+ and (p_ occur. By considering the

module of the quadrilatéral formed by the crosscuts 0^ and flMn+l and the arcs

{lin ^ w ^ u^i, u cp±(w)} with respect to the family of curves joining thèse arcs,

we obtain by a known argument (see e.g. [8, pp. 598-599]) that, for wM

and

^-[&lt;r(n,) + &lt;r(^+1)]. (3.12)
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Hère

ct(u) Max Re (F0(w2) -F0(Wl)),
w,eOu

the oscillation of Re F0(w) on 0U. We note that (using

J^ 6(u) 2tt 4

Now, integrating along A, we hâve

X0(wn+1)-X0(wn)= I
It&quot;2^&quot;^&quot;2 ^u^

and by use of the (generalized) mean value theorem we obtain

+^ ilf\u)0(wn)=e(wn) px0p
&quot;- du TT idU dV

since i/»&apos;(&quot;) is continuous (even constant) on (u,,, Un+1); !&lt;„ &lt;u&apos;n&lt;un+1. If we write
A(w) ArgF&apos;0(w), we obtain

n). (3.14)
7T

We now use estimâtes from [5] for |Arg Fq(w)| in the Remark to Theorem 1 (at
the end of its proof) and for cr(w) in [5], (2.3). We apply thèse inequalities with
L 2tt, p e,p&apos; 5e/4 and obtain using (3.4) in Lemma 3.1 of the présent paper

for u^4()2()
(3.15)

We can also choose M4(e) so large that, by [5], (2.3),

(3.16)
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Furthermore |^/(u)|^e(M)^K1ri(u-l)^K1Ti(w/(H-3e)) for u^M2(e). Writing
cos A 1 — 2 sin2 (A/2) we obtain

1-KsV2 (j^j^cos A«)-sin

We can détermine M5(s)&gt;M4(e) such that

^ for w~Ms-

From (3.11), (3.12), and (3.13) we hâve

and using (3.16), (3.17), and (3.18) we obtain for Un^

and we may assume l-*T6TJ(K/(l + 3e))&gt;0 for u&gt;M5. Finally, by (3.6) we find

or

for un&gt;M5(e). (3.19)

Now we corne to the proof of (3.8) and (3.9). Hère we make use of Lemma 2

in [5]. According to this lemma we can détermine an M6&gt;M5 + tt such that for
any w* u* + n;*eA with w*^M6 there is an r=r(u*) such that the disk
{|w-w*|&lt;r}c:So. Moreover, we can, because of (3.4) and (3.6) and the expression

for r(u*), assume that

r(u*)i^0 ro for u*&gt;M6(e).

Thus the disk {|w-w*|^ 6ttI2}c:S0 for w*eA, u*^
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We consider now g(w)
A, u*&gt;M6(e). By(3.15),

CH POMMERENKE AND S E WARSCHAWSKI

*)|) with Im g(w) w*e

for |w-w*|^h

and, therefore, we hâve in |w —

log (3.20)

Given w*eA we can find a u&apos;n in the séquence determined above such that

|u^-u*|âf. Since |i/&gt;&apos;(w)| i in the interval between u&apos;n and u* (except when u is

a corner-point), we hâve \w&apos;n—w*\&lt;yj5/4&lt;ar0 for a&gt;3/4. Hence we may apply
(3.20) for w w&apos;n and obtain thus

log FJML4 ,/h*-it (321)

From (3.20) and (3.21) we hâve for |w-w*|^ar0, |w;-w*|^V5/4:

Ilog

Hence

F&apos;(wn

lH-3e/*

We use (3.19) to estimate |Fo(w^)|. We hâve i^ ^ u*-|&gt; m*-tt. We choose now
M7(e)&gt;M6(e) so large that K7îj(i4*-7r/(l + 3e))&lt;l for w*&gt;M7. Then we hâve

|Fo(w^)|^2 and therefore

(3.22)

We take now Re w Re w* u. Writing

(3.23)
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we have by (3.22) and (3.19)

i(w)| -1| S |lFo(w)| - |Fi(wO|| + \H(w&apos;n)\ -

Using this in conjunction with (3.15) we obtain

for weS(o) and u^Ms(e). If we now set a(e) max(M7(e), M8(e)) we obtain
(3.9).

To prove (3.10) note that for \w-w*\Sar0, u*&gt;a(e)

Max f}()7ra(l-ar U+4e/—

by (3.15). Taking hère Re w u m* we obtain the inequality (3.10).
Let A±=--{u&gt;a(e)9 v il/(u)±a27r/2}. For w w + iu+eA+ and w

A_ we have

0(u, v+) - Y0(u, ,_)

I |Fi(u + îu)| cos A(u + it;) du.

By the first inequality in (3.9) and (3.15) the integrand

for u^M9 for a sufficiently large M9&gt;a(e). Hence for u^M9

Y0(u, v+) - Y0(u, vJ) ^(v+ - vJ)a &gt;wa2-a ira3.

Since a3 f this implies that, for w^M9, F0(m4-îi;+) lies above the Une y

- ir/2 + 4tt/5 3tt/10 and F0(w + iv_) lies below the Une y tt/2 - 4tt/5 - 3tt/10.

By Lemma 3.2 we can détermine an MiO(e)^M9(e) so large that



120 CH POMMERENKE AND S E WARSCHAWSKI

|Y(w)-Yo(w)|&lt;7r/20 for Rew&gt;M10(e) (weS). If w u + it;x, u&gt;M10(e), then
F(u + iv+) lies above the line y (37r/10)-7r/20 7r/4 and F(w + it;_) lies below
the line y -7r/4. Hence the substrip {u&gt;Ml0(e), il/(u) — a27r/2&lt;v&lt;il/(u) +
a27r/2} of S(a) œntains the image Co of a part of the real axis {x^xo(s)9 y =0}
under the mapping z »—» F~1(z). That this xo(e) can be determined uniformly for
ail &lt;o0er and dépends only M10(e) and / follows from the uniform continuity of

/ on dD and the application of the mappings (3.1).

3.4. Proof of the upper estimate (1.3). We consider F(w)-F0(w) in the disk
{\w — w*l ^ air/2 r0}, where w* e A and Re w* &gt; a(e) so that this disk is in So. By
Lemma 3.2, if weS0 and u&gt;M2(e), then |Im(F(w)-F0(w))|^M1T}(M/(l + 3e)).
Hence by the Schwarz-Poisson représentation we hâve in the disk {|w-w*|^=
arx a2&lt;rr/2}

^ ,27ra(l — a)

and

(3.24)

We set S1(e) 2e~x°&lt;e)/(l + c&quot;Xo&lt;e)). Substracting from and adding to the left-
hand side of (3.2) the term

ï+r
x

and using (3.24), (3.25) and (3.9) we obtain for £ p£0, 0&lt;p&lt;l,

1-p

Hère M dépends only on the function % Since e~u =|/(£)-7(fo)|S|(l-p)1~e
l-pëôo(e)SS1(e) by (2.2) we hâve

_p)i-5e for i-p^80(e).
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(Note that ôo(e) is independent of £0, &lt;*&gt;o-) Hence, for l-p ô,

5e/6] for ô^ôo(e),

because e(l - e)&gt; 5e/6. If we replace now s by e/5 we obtain the upper estimate.

4. Conséquences and examples

4.1. Smooth curves. We dérive now some results of Lesley and the second
author [4] from Theorem 1.

THEOREM 4.1. Let f map D conformally onto the inner domain ofF and let

(4.1)

Then F is smooth, log f has a continuous extension to D and

max Ilog/&apos;C^-log/&apos;C^lâMp ^df + M(e)5e/6 (4.2)

for 0&lt;£&lt;! and

As Rubel, Shields and Taylor hâve shown [9], it does not matter whether the
maximum is taken for f^^edD or for fi^&amp;eD. The upper bound in [4,
Application 1] is, instead of (4.2),

Intégration of (1.6) gives the same bound with S1&quot;6 replaced by Ô. The estimate

(4.2) is still better for &quot;not too smooth&quot; curves.

Proof. It follows from (1.2) that, for dedD and 0&lt;6&lt;l,

f
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By Theorem 1, this is

1J0 t 1-e

Hence (4.1) implies that logf is continuous in D so that F is smooth. If
and |£i —£2! ^, a similar argument shows that

1
l-6Kr

Adding thèse two estimâtes we obtain (4.2); the range 80(e)^8&lt;l is trivial.
We prove now that (1.5) implies (1.6). Since c^lf^l^Mi for £€D by

Theorem 4.1, it follows (see (2.10)) that

M28 for |z1-z2| S,z1,z2€dD. (4.3)

The lower estimate (1.6) is proved as in 2.3 with (2.11) replaced by (4.3).
Furthermore, it was shown in [4, Cor. 1] that

larg fUi) ~ arg f(Q\ ^ M3 £^ A + 8 ; (4.4)

we hâve used Remark 2.1 to bring that resuit to this form. Now the upper
estimate (1.6) follows by applying (4.4) to the derivative of the Poisson-Schwarz

formula; see [14, Lemma 3].

Remark 4.1. The condition that logf is continuous in D does not conversely
imply (4.1). To see this, let h be analytic in D and continuous in D with h(D) &lt;=D

such that

f (4.5)

The function / defined by logf 2+ h satisfies |argf (z)|&lt; ir/4 for zeD. Hence /
is one-to-one in D and F is a Jordan curve. The proof of Theorem 4.1 shows that
(4.1) does not hold because of (4.5).

4.2. Asymptotically smooth curves. The Jordan curve F is called asymptotically
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smooth if it is rectifiable and if

sup &apos;&lt;ft&quot;**»»-»i as «-0 (4.6)

where / dénotes the length. This is équivalent [7, Th. 2] to logf €VMOA
(vanishing mean oscillation [10]). If p is a positive increasing function with
p(Ô) -&gt; 0 as 8 -» +0, let BMOaD (p) dénote the space of ail g g L\dD) such that

j^jj \g(z)-gl\\dz\^Mp(ô), &amp;-^|g(f)|*:| (4.7)

for ail arcs JcdD with 1(1)^8. The space HlnLl(dD) is a subspace of VMOA.
See [11, Chapter 5] for a discussion of thèse concepts.

THEOREM 4.2. Let f map D conformally onto the inner domain of F. If

(4.8)

then F is asymptotically smooth and

logfeBMCWft) (4.9)

for 0&lt;e&lt;5 where

(4.10)

We need a lemma on functions of bounded mean oscillation.

LEMMA 4.1. Let g be analytic in D and let

\g\z)\*q&gt;(8) (\z\^l-8) (4.1D

for 0&lt;Ô&lt;l. If

)1/2 (4.12)
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then g€BMOaD(p) and moreover, for 1-Ô^|£|&lt;1,

^^ (4.13)

Proof. For f eD, let

(4.14)

It easily follows from Parseval&apos;s formula that

llgtlgS^ Jj(l-|Z|2)|g£(z)|2&lt;ixdy. (4.15)

D

Substituting z»-&gt;(z —f)/(l — Çz) we therefore obtain from (4.14) that

by (4.11). Hence it follows from the Poisson intégral formula that, for |£| ^ 1 - ô,

Another substitution shows that this estimate is équivalent to (4.13).
Given an arc JcaDwe choose £€dD such that l-|f| 2/(f) and £/\£\ is the

midpoint of I. Then we obtain from (4.13) that

Jfô[ \g(z)-g(Q\2\dz\SK2[

for |f| ^ 1 - S. Since the left-hand side is not increased if we replace g(£) by the
mean value gr we see that (4.7) holds.

Proof of Theorem 4.2. Let g logf. It follows from Theorem 1 that, for
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f&apos;(z) .M(e)
10 &apos;

f&apos;(z)

Hence the function defined in (4.12) satisfies

p(ô)2S2M(e)2

Writing t 81~*13 we deduce that

Since (l-e/3)(l-e)&gt;l-4e/3 we obtain (4.10) replacing e by 3e/4.

Remark 4.2. We mention that (4.8) implies

sup
— Û)2\

We shall not give the proof; it is purely géométrie and proceeds by successive
subdivisions of r(a&gt;l9â&gt;2).

4.3. A class of examples. We show now that ($ can be prescribed up to
multiplicative bounds and that the assumptions (4.1) of Theorem 4.1 and (4.8) of
Theorem 4.2 cannot be replaced by weaker conditions of the same gênerai type.
Note that j3 is subadditive, by (2.1).

THEOREM 4.3. For every increasing subadditive function &lt;p(Ô) (0&lt;ô^l), a
univalent function f(z) (zgD) can be constructed such that

(i) c&lt;p(ô)^j8(Ô)^Mp(ô) for

(ii) [ — dt&lt;oo o rsmooth O logf continuous in D;

(iii) f HW_dr&lt;oo « rrectifiable O logf eVMOA.
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Proof. Let b be a positive constant to be chosen later. We define

(k i929...y9 • (4.17)

it foliows from the subadditivity that bk ^0. Induction shows that

t 2k~nbk b&lt;p{2-n) (n =0,1,.. .)• (4.1Ô)
k=0

We define now / by /(0) 0 and

logf(z) g(2) î fekz2k (2€D); (4.19)
k=0

this is a lacunary séries with Hadamard gaps. If 0&lt;r&lt;l then

max
Izl-r k=O

Let 2-&quot;-1âl-r&lt;2-&quot; (nêl). We see from (4.20) and (4.18) that

-r)rg&apos;(r)ë £ 2fc-&quot;6k(l-2—T&quot;

k=O
oo

S 6^(2-&quot;)+ X 2k-nbfcexp(-2k-n-1).
k=n+l

Since bfcë6&lt;p(2&quot;fc)ëb&lt;p(l-r) for fcën + 1, we conclude that

î 2&apos;+1exp(-2&apos;)l v(l-r).

(4.20)

(4.21)

Hence we see from (4.20) that (l-|z|2) If(z)/f(z)|&lt;è for z€D if 5 is chosen

sufficiently small, and Becker&apos;s criterion [2] shows that / maps D conformally onto
the inner domain of a quasiconformal Jordan curve F. We verify now that this
function / satisfies (i)-(iii).

(i) It follows from (4.20) and (4.21) that

sup (l-r)g&apos;(r)^M sup
8
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Furthermore we see from (4.20) that, if 2~n~1&lt;l-r^2~n (n^l),

fc=O

Hence the lower estimate (i) also holds.

(ii) In view of Theorem 4.1, it is sufficient to show that the smoothness of F
implies (4.1). If F is smooth then, by Lindelôf&apos;s theorem [6, p. 295],

arg f{z) t bkr2k sin (2k0) (z reie)
k=0

is continuous in D. Hence Szidon&apos;s theorem [1, p. 246] shows that X 6fc &lt;°°. Since

(r1/2) by Theorem 1 and by (i), we see from (4.17) that

4M2 y
k=0

(iii) Because of Theorem 4.2 and the remarks preceding it, we hâve only to
show that the rectifiability of F implies (4.8). If F is rectifiable then log f(reie) has

a limit as r -&gt; 1 -0 for almost ail 0 [6, p. 320]. Hence it follows from Zygmund&apos;s

theorem [1, p. 237] applied to the lacunary séries (4.19) that X b\&lt;o°. As above

we deduce that

and, by (4.18) and Schwarz&apos;s inequality, this is

:&lt;oo.
— &quot;Kl J hmé «

n=0 xk=0 &apos; k=0

Remark 4.3. A smooth curve F is called Dini-smooth if the modulus of

continuity &lt;o(Ô) of the tangent angle (as a function of arc length) satisfies

f (4-22)
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It is easy to see that tï(ô)^K1û&gt;(ô). Hence (4.22) implies (4.1). This gives a new
proof of the well-known fact [12] that log/&apos; is continuous in D if F is Dini-
smooth.

We show now that (4.1) does not conversely imply (4.22). Let / again be

defined by (4.19) where bk&gt;0 and

Ë ikbk=™. (4.23)
k l k l

The proof of Theorem 4.3(ii) shows that (4.1) holds. If &lt;o*(t) dénotes the modulus
of continuity of argf(eie), it follows from Theorem 4.1 that ^(O^co*^!^). By
Szidon&apos;s theorem [1, p. 246],

û&gt;*(0 sup |Im [log f (eie+tt/2) -log f (e&apos;e&quot;lt/2)]|

2sup bkcos (2k»)sin(2fc-1r)
k=i

bk|sin
k=i

Hence

1o&gt;*(0,&gt; f f1lsin(2k-1Q| ^ f.
* k l h * k l

because of (4.23), so that (4.22) does not hold.
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