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A splitting theorem for quadratic forms

MANUEL OJANGUREN

1. Introduction

Our main result (Theorem 12) is a quadratic analogue of Serre’s theorem on
projective modules: a locally hyperbolic space over a ring A has a hyperbolic
orthogonal summand if its rank is larger than twice the dimension of A. From this
we deduce that if A is regular of dimension 3 and K is its field of quotients, the
homomorphism W(A) — W(K) of Witt rings is injective (Theorem 24). This
result has also been proved by Pardon [17], using quite different methods.

The validity of a quadratic analogue of Serre’s theorem has been surmised by
Bass [5]. In the proofs we use a patching technique that appears, in various
disguises, in the work of Karoubi [9], Lindel [13], Landsburg [12] and presumably
others.

2. Preliminaries

We recall here a few known theorems that we shall need. A good reference for
standard results and terminology is [10].

Throughout this paper, A denotes a commutative noetherian ring with 1, in
which 2 is invertible. Unless otherwise indicated, tensor products are over A. For
any quadratic space M over A and any A-algebra B, we denote by Mg the
quadratic space BQ M. Similarly, for any s € A, we denote by M, the quadratic
space A[1/s]®M over A,.

For any projective A-module P (of finite rank), H(P) denotes the A-module
P®Hom, (P, A) equipped with the bilinear form (p®f, qDg)={f(q)+g(p).
A quadratic space is said to be hyperbolic if it is isometric to some H(P). For
any A-linear automorphism a of P we define an isometry H(a) of H(P) by
H(a)(p®f)=a(p)®foa". Thus, for P=A", H defines a homomorphism of
GL,(A) into the group O,,(A) of all isometries of H(A"). We denote by E,(A)
the subgroup of GL,(A) generated by the elementary matrices E;(a) =1+ ae;;,
where a € A and, for i#], e; is the n X n matrix with a 1 in the (i, j)th place and

Zeroes elsewhere.
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146 MANUEL OJANGUREN

Let e, ..., e, be the canonical basis of A" and e,.,..., e,, its dual basis.
For any integer i between 1 and 2n puti'=i+nif i<nandi'=i—n if i > n. For
i#j and any a€ A the matrix H;(a) =1+ a(e; —e;;) is orthogonal. Notice that,
for any a,be A, H;(a+b)=H;(a)H;(b). The elementary orthogonal group
EO,,(A) is the subgroup of O,,(A) generated by all the H;(a).

The following theorem is a basic result of Vaserstein.

THEOREM 1. Let A be a commutative ring with noetherian maximal ideal
spectrum of dimension d. Then, for any integer r=d+1, O, (A)=
02d+2(A)EOZr(A)°

Proof. See [19], Theorem 2.8.

If M is a quadratic space of rank r over A, AM can be given a quadratic
structure in a natural way ([10] IV.3). With this structure, AM is called the
(signed) discriminant of M and is denoted by d(M). A space of rank 1 is said to
be trivial if it is isometric to the quadratic space A with the bilinear form
(a, b)=ab. The discriminant of a hyperbolic module is trivial.

THEOREM 2. Assume that A is semilocal and let M be a quadratic space of
rank 2 over A. If the discriminant of M is trivial, M is hyperbolic.

Proof. By [10] I1.3, Cor., M can be diagonalised: M= Au | Av, where
(u, uy=a and (v, v) = b are units of A. If d(M) is trivial, ab = —c? for some c € A,
hence M= Ae® Af, where e=u+cb'v, f=1/(2a)(u—cb™v). Since (e, e)=
(f,f)=0and (e, f)=1, M=H(A).

THEOREM 3. Assume that A is a domain. Let M be a quadratic space of rank
2 over A. If the discriminant of M is trivial, M is hyperbolic.

Proof. Let 4 be any prime ideal of A. By Theorem 2, M, is of the form
A e(n)DA f(#), where (e(£), e(£))=(f(4), f(#)=0 and {(e(f), f(#))=1. In par-
ticular Mg = Ke ® Kf, where e = e((0)), f = f((0)). Since every isotropic vector of
M, is a multiple of e(#) or f(4#), we may assume that (M N Ke), =M, NKe=
A ,e(4) for every £. Hence I =M N Ke is a maximal totally isotropic direct sum-

mand of M and M = H(I).
We recall that, for any quadratic space M of even rank over A, the Witt
invariant of M is the class w(M) of the Clifford algebra of M in the Brauer group

of A.

The next result is a special case of a classification theorem proved in [11].
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THEOREM 4. Assume that A is a domain. Let M be a quadratic space of rank
4 over A. Assume that d(M) and w(M) are both trivial. Then there exist two
projective modules P, Q of rank 2 over A and an isomorphism ¢ : APRAQ> A
such that M is isometric to the quadratic space PQQ with the bilinear form
(p®q,p'®q)=e(prp'®qnrq’).

Proof. Let N be the reduced norm functor constructed in [11]. By [11],
Theorem 4.6, there are a quaternion A-algebra A, a projective left A-module I’
of rank 1 and a generator u of the rank 1 A-module N¥(I') such that M is
isometric to the A-module I' equipped with the following quadratic form q:I' —
A: identify any ye I’ with the A-homomorphism A — I' that maps 1 to y and
choose q(vy) € A such that ¥¢(y)(x) = q(vy)xu for all xe A =N (A). By [11], Propos-
ition 4.1, w(M) is the class of A in Br (A), hence, by the assumption w(M) =0,
A =End, P for some projective A-module P of rank 2. By Morita theory I' is of
the form P®Q, where Q is also of rank 2. By [11], Theorem 2.1, N(I) = AP®
AQ and for any A-homomorphism ¢ : P* — Q the norm of the A-isomorphism
19¢:A=PQP* >T'=PRQis 1:p®Ad:A > APRAQ. If y=Y p;®qel=
P® Q, the A-homomorphism A — I" that maps 1 to y can be written in the form
1® ¢, where ¢ : P*— Q. It is easily checked by localization that (1® Ad)1) =
Y p: Ap;®q; Ag;; hence, if € APQAQ —> A mapsuto1,q(y) =X pAp;®q Ag;).

THEOREM 5. Let I be an ideal of A and assume that A is I-adically
complete. For every quadratic space M over A/I there exists a quadratic space M,
over A such that A/IQ M, =M. Given two quadratic spaces M;, M, over A, any
isometry ¢ : A/[IQM, > A/I®M, can be lifted to an isometry ¢:M,>M,.

Proof. See [20], Theorem 2.

The next result is certainly well-known, but we did not find a suitable
reference.

THEOREM 6. Let A be a noetherian ring and s an element of A. Let A be the
s-adic completion of A. The dimension of A is not larger than that of A.

Proof. By [8], 7.2.3, the dimension of the power series ring A[[X]] is
dim A + 1. By [14] §23, Cor. 5, A = A[[X])(X —s). Hence, if we show that X —s
is not a zero divisor in A[[X]], we can conclude by [1], Cor. 11.9. Now,
(X—5) Yo X =0 implies sa,, =0, @ = 58m11, Gm+1 = SAme2, €tC. Hence a,, €
Mi=o As' and, by Krull’s intersection theorem, (1+as)a,, =0 for some ac€A.
Thus, since sa,, =0, a,, =0 and, by induction, a, =0 for all n.
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THEOREM 7. Let A be a Dedekind domain, K its field of fractions and M a
quadratic space over A. If My is isotropic, M splits as M' L H(I), where I is a
nonzero ideal of A. If My is hyperbolic, so is M.

Proof. See [12], IV, Corollary 3.3.

3. Patching

Let € : A — B be a homomorphism of noetherian rings and s an element of A
such that e(s) is not a zero divisor in B. Assume that &€ induces an isomorphism
A/As> B/Bg(s). Under these assumptions we call the diagram

A — B

=
As — By

a patching diagram. Since in most applications A is a subring of B, we shall omit ¢
and write a instead of e(a). Let now P be a quadratic space over A, Q a
quadratic space over B and o:Pg — Q, an isometry of Bj-spaces. We put

MP,0,Q)={(x,y)ePXQ|o(x®1)=y/1}.

THEOREM 8. Let P, Q and o be as above and M = M(P, o, Q). If (*) is a
patching diagram, then M is a quadratic space over A and the projections of P X Q
onto its factors induce isometries M;— P and Mg— Q. Furthermore, if N is a
quadratic space over A and x:(N;)g— (Ng), the canonical isometry, then N =

M(N, X, Np).

Proof. The first assertion is proved in [16], Theorem 1. The second one
follows from the fact that a patching diagram is cartesian. It is also worth noticing
that the injectivity of B — B, implies that of A — A,.

THEOREM 9. Let (*) be a patching diagram and P, Q as in Theorem 8.
Suppose that there are isometries ¢:P— H(AY) and ¢:Q,— H(B}). For any
o€ 0,,(B;) and any €€ EO,,(B,) the quadratic spaces M(P, ¢ 'adg, Q) and
M(P, § 'oedy, Q) are isometric.

Proof. It suffices to prove the theorem for € = H;;(b), where b € B,. The fact
that A/As= B/Bs implies that, for any integer k, b can be written as a +s*c,
where ac A; and ceB. Then, ¢ =H;(s*c)H;(a). If k is large enough, p=
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(Y 'o)H;(s*c)(¥~'o) ™" is an isometry of Q. On the other hand 7= ¢ 'Hj;(a)¢ is
an isometry of P and it is easy to check that 7Xp~! induces an isometry of
-/“(P’ (p—_lohed)B, Q) onto J“(Pa ¢~10¢B9 Q)-

COROLLARY 10. Suppose that P=P' 1 HLA*™), Q=Q' L H(B"™) and
that there are isometries ¢':P' > H(AY) and ¢': Q.= H(BY"). Let x : Pg = Q, be
any isometry. If every o € O,, (B,) can be written as o'e, where € € EO,,(B,) and
o' € O0,,,(B;) (embedded in O,,(B;) as O,,.(B,) Lid), then M(P, x, Q) is of the
form N1 H(A™™).

Proof. If we put ¢ =¢' Lid: P> H(AY) and ¢ =¢'1id: Q.= H(B}), we get
M(P, x, Q) =M(P, ¢ ‘odg, Q) for some oeO0,,(B,). By assumption o =0's,
where €€ EO,,(B,) and ¢'€O,,(B,). By Theorem 9, M(P, ¢ 'o¢g, Q)=
MP, ¢ 'o'ds, Q)=MP', (W) 'o'¢p, Q)LMHAT™), id, H(B"™))=
NLH(A"™).

THEOREM 11. Suppose that (*) is a patching diagram and that the maximal
spectrum of B, has dimension d. Let Q= Q' L H(B"™™) be a quadratic space over
B, P=H(A?) and x:Pg= Q, an isometry. Suppose that Q;=H(B;"), where
m=d+1. Then M(P, x, Q) is of the form N L H(A"™™).

Proof. By Theorem 1, O,,(B,) = O,,.(B,)EO,, (B;). Hence the assumptions of
Corollary 10 are satisfied.

4. A splitting theorem

Let M be a quadratic space over A. We say that M is locally hyperbolic if, for
any maximal ideal » of A, the localization M, is hyperbolic over A,

THEOREM 12. Let A be a noetherian ring of Krull dimension d and M a
locally hyperbolic quadratic space of rank 2n=2d over A. Then M is of the form
N1 HA").

Proof. We prove the theorem by induction on d. By Theorem 5 we may
assume that A is reduced. If d =0, A is a product of fields and the assertion is
true. Suppose that d>0. Since A is reduced, (0) =4, N N4, where 4,,..., 4
are the minimal primes of A. Let S denote the multiplicative set A\ U #;. Then
S'A =[] A, where each A, is a field. By assumption M, is hyperbolic for any
maximal sz, hence M, is hyperbolic. This is clearly the same as saying that S™'M
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is hyperbolic and hence, for some s € S there is an isometry ¢ : M; = H(A?Y). Since
the zero ideal of A has no embedded components the set of zero divisors of A is
U #:, hence s is not a zero divisor. Let A be the s-adic completion of A. Since A
is A-flat, s is not a zero divisor of A. Furthermore, A/As = A/As, hence

A —>A

) L
AS - AS

is a patching diagram. The quadratic space M/sM is locally hyperbolic and
dim A/As<d-1. By the induction assumption M/sM splits as
N L H(A/As)"4*Y). Since M = A ® , M is s-adically complete, by Theorem 5 we
can lift the decomposition of M/Ms to M =N L H(A" ¢*'). Writing P’ = H(A9)
and Q'=N L H(A), from (M),=(M,)s we get Pi L HAA? %) =Q, 1 H(Ar ™).
By Theorem 6, the dimension of A is not larger than that of A and serad A;
hence the dimension of A, is less then the hyperbolic rank of P5. By a well known
cancellation theorem (see for instance [18], Theorem 7.2), the isomorphism above
implies that Q’=H(A?Y). Thus we are in the situation of Theorem 11 and we
conclude that M=N 1 H(A"™9).

5. Rings of dimension 2

The following result is a special case of a theorem of Bialynicki-Birula ([6],
Theorem 1).

THEOREM 13. Let A be a semilocal 1-dimensional domain, K its field of
quotients and M a quadratic space over A. Assume that M has trivial discriminant,
that My is hyperbolic and that M/.»M is hyperbolic for every maximal ideal  of A.
Then M is hyperbolic.

Proof. We translate the proof of [6] into our lingo. Let s be a nonzero element
of rad A and A the s-adic completion of A. By assumption M/rad A - M is
hyperbolic. The kernel of A/As — A/rad A is nilpotent, hence, by Theorem 5,
M/sM is also hyperbolic and, again by the same theorem, this implies that M is
hyperbolic. Observing that dim A, =0, from Theorem 11 applied to (%), we get
M =N 1 H(A" "), where N is of rank 2 (or zero). By assumption the discriminant
of M and, hence, that of N, is trivial. By Theorem 3, N= H(A).

THEOREM 14. Let A be a semilocal normal domain of dimension 2, K its
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field of quotients and M a quadratic space over A. Assume that Mg is hyperbolic
and that M/,xM is hyperbolic for every singular maximal ideal ». of A. Then M is
of the form N L H(A*), where N is of rank<4. If the Witt invariant of M is zero, M

is hyperbolic.

Proof. It is known (see [7], Proposition 2.1) that if » is a regular maximal ideal
and Mg is hyperbolic, then M/»:M is hyperbolic. Hence we may assume that
M/:xM is hyperbolic for every maximal ideal of A. The discriminant of My is
locally trivial because K is integrally closed. By a result of Bass ([4], Proposition
2.6.2), this implies that the discriminant of M is trivial. Let s be a nonzero
element of rad A. The ring A, is a Dedeking domain and therefore, by Theorem
7, M, is hyperbolic. We claim that M/Ms is hyperbolic. Let 4,,..., # be the
minimal associated primes of As. By Krull’s theorem they are of height one and,
A being normal, for every f£=4;, A, is a discrete valuation ring. Again by
Theorem 7, M, is hyperbolic. Put A = A/s, K=A,/#A, and M= M/sM. Mg =
M,®K is hyperbolic and M/»M is hyperbolic for any maximal ideal  of A. By
Theorem 13, M is hyperbolic. To show that M/sM is hyperbolic it suffices to show
that Mg is hyperbolic, where B = A/ #; is the quotient of A/As by its nilpotent
radical. Consider the cartesian diagram

B — B

L]

B/c — B/c

where B =II(A/#;) and ¢ is the conductor of B in B. Mj is hyperbolic because
every M/ £,M is hyperbolic. The conductor contains all the intersections g£; N -+ - N
£i_10 A 1N+ =N 4,; hence its image in any A/#; is not zero. This shows that B¢
and Bfc are artinian. In particular, B/c is complete and therefore (B/c)®M is
hyperbolic. By the quadratic version of Milnor’s construction of projective
modules ([3], Theorem 2.2), Mg = M(H(B/c)"), o, H(B™)), where o € O,,(B/c).
Since B/c is zero-dimensional, o can be written as eo,;, where € € EO,,(B/ ) and
o, € O,(B/c). The isometry £ can be lifted to € EO,,(B). The map idx &~ of
H(B/c)")x H(B") into itself induces an isometry of Mg onto
MH((B/c)"), o, HB™))=N L H(B"™"), where N is of rank 2. But the discrimin-
ant of N is trivial, hence, by Theorem 2, N = H(B). We have thus proved that
M/sM is hyperbolic and this implies that the s-adic completion M of M is also
hyperbolic. Let ¢ : M, H(A") and ¢ : M= H(A™) be isometries, @ and ¥ their
-extension to M, and xy = ¥® . Then M=M(H(AD), x, H (A™) and by Theorem
11, M= N 1 H(A™?). This proves the first assertion of the theorem.
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Assume now that the Witt invariant of M, and, hence, of N, is zero. We may
use Theorem 4 because, as already remarked, the discriminant of N is trivial.
Since A is semilocal, projective modules of constant rank (2 in our case) are free
and it is easily checked that, in this situation, the quadratic space PQQ of
Theorem 4 is isometric to H(A?).

THEOREM 15. Let A be a normal domain of dimension 2, K its field of
quotients and M a quadratic space over A. Assume that M is hyperbolic and that,
for every singular maximal ideal » of A, M/»M is hyperbolic. Then, if the Witt
invariant of M is zero, M is stably hyperbolic.

Proof. We may assume that the rank of M is at least 4. By Theorem 14, M is
locally hyperbolic. By Theorem 12, M =N 1 H(A"?), where N is of rank 4.
Since the discriminant of N is trivial, Theorem 4 tells us that there are two
projective A-modules P, Q of rank 2 and an isomorphism ¢ : AP® AQ> A such
that N=(P®Q),, the quadratic structure on (P®Q), being defined by (p®
a,p'®q)=e(prp'®qAq’). It is enough to show that (P®Q), is stably hyper-
bolic. To do this, we define, for any projective A-module T of rank 4 and any
isomorphism ¢ : ATS A, a quadratic space (/2\ T)s by (x, y)=d(x Ay). We then
need the following results.

THEOREM 16. Let P, Q and R be projective A-modules of rank, respectively,
2, 2 and 3. Suppose that there are isomorphisms ¢: APRAQ>A and
é:A(RDA)> A. Then

(PRQ)_, L HAAP)=(A(P®Q)),
and

(A(RDA)), =H(R).
Proof. the obvious maps are isometries.

We now finish the proof of Theorem 15. By Serre’s theorem, P@Q = R® A.
By Theorem 16, (A(R @D A)). is hyperbolic. Hence, by the first isomorphism of
Theorem 16, (P® Q)_, is stably hyperbolic and so is N.

As an immediate corollary of Theorem 15, we obtain the following result,
proved by Pardon ([17], Theorem 5) with different methods.

THEOREM 17. Let A be a regular domain of dimension 2 and K its field of
quotients. The homomorphism of Witt rings W(A) — W(K) is injective.
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Proof. Let M be a quadratic space over A such that Mg is hyperbolic. The
Witt invariant of M is zero because, by [2], Theorem 7.2, Br(A)— Br(K) is
injective. By Theorem 15, M is stably hyperbolic.

6. Some cohomological results

In this section all quadratic spaces are assumed to have trivial discriminant. A
reference for unexplained terms is [4].
The sequence of Z[3]-group schemes

1 — w, — Spin,,, — SO,, — 1 (6.1)

is known to be exact in the étale topology. We shall use some properties of the
corresponding €tale cohomology sequence

Hl(As Spin2n) - Hl(A, SOZn) _Q> HZ(A9 “’2)'

We state them in the next four theorems. For any quadratic space M of rank 2n
over A (with trivial discriminant), we shall denote by [M] its class in
H'(A, SO,,).

THEOREM 18. Let M and N be quadratic spaces over A, of rank 2m and 2n
respectively. Then o[M L N]=9[M] - o[N].

THEOREM 19. For any invertible A-module I, {H(I)]}= 8[I], where [I] is the
class of I in H'(A, G,,) =Pic A and 6 : H'(A, G,,) = H*(A, w,) is the coboundary
map corresponding to the exact sequence of Z[3]-group schemes

1->u,—G,>G,—1. (6.2)

THEOREM 20. The diagram

Hl(Ay SOZn) - HZ(Aa “’2)

N

H*(A, G,),
where w is the Witt invariant, commutes.

Let e, e,, e;, e, be the canonical basis of A* and let ¢ :AA%*= A be the
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isomorphism that maps e;Ae,Aesnes to 1. We denote by (AAY), the quadratic
space defined by (x, y)=¢e{xAy), x,y € AA*. This space is nothing but H(A?>) and
we can map SL, to SO, by sending any a € SL,(A) to its second exterior power
2

Aa.

THEOREM 21. There is an isomorphism of group schemes ¢ :SL,— Sping
such that

Sping — SO

¢\ /}\

SL,

commautes.

The first three theorem are easily proved by an explicit computation with
cocycles. We leave the details to the readers (if any). To prove Theorem 21, it is
necessary to describe ¢ explicitly. To do this, we identify the Clifford algebra
C(A) of H(A?) with Mg(A), the gradation being given by

CO:(M4(§A) M:zA))’ Cl:(M:zA) M4(§A))'

0
H(A?) can then be identified with the submodule of all matrices ( £* f)) where

X y z 0 c -y -z 0
a c 0 =z -a x 0 -z
¢ -b 0 ¢ -y an b 0 x 'y
0O -b —-a «x 0O b a c

The canonical involution on C(A) is then given by

r 3 r - - ~ - Y
a1 Q1 013 Oy (s ¥V Q34 —Qq Q4
Oz1 Q3 Qz3 0Opy 043 33 —0p3 —a43

¢ > —> < _ . - =
33 Q33 33 A3y —Q4y T3 (450 a2
Qg1 Qyy Qy3 Oy, —0l4; a3 (¢ 531 a1y

. 4 \ 4
-
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where, for any

() = (5 )
«©= c d/)’ « —c a/’

For o€ M,(A), let ‘o be the transpose of o.
The map ¢ is defined by

s@=(7" ),

0 wow~

where
W= ("X 0 and x= 1 o)

A computation shows that ¢(o) e Sping (A). Clearly ¢ is an isomorphism of SL,
onto a closed subscheme of Sping. Since Sping is irreducible and of the same
dimension as SL,, ¢ is surjective. But SL, is reduced, hence ¢ is an isomorphism.

The pointed set H'(A, SL,) classifies pairs (T, &) where T is a projective
module of rank 4 over A and € is an isomorphism ATS A. Hence, by the
theorem above, the map H'(A, SL,) — H'(A, SOg) induced by ¢ associates to
(T, &) the quadratic space (/2\ T), defined by (x, y)=e(x Ay). This proves the next
theorem.

THEOREM 22. If N is a quadratic space of rank 6 over A such that d(N) is
trivial and 3[N]=1, then N is of the form (AT)..

7. Rings of dimension 3

THEOREM 23. Let A be a local 3-dimensional regular domain, K its field of
quotients and M a quadratic space over A. If My is hyperbolic, M is hyperbolic.

Proof. By Witt’s cancellation theorem we may assume that M is of rank =6.
Let ,» be the maximal ideal of A and s a regular parameter of ».. Then A/As is a
regular local ring of dimension 2. Put S=A\As. Then S™'A is a Dedekind
domain and, by Theorem 7, S™'M is hyperbolic. This implies that S™'(M/sM) is
hyperbolic and therefore, by Theorem 17, M/sM is hyperbolic. On the other
hand, A, is regular and 2-dimensional, hence M; is stably hyperbolic. By the
cancellation theorem already quoted ([18], Theorem 7.2), M; is hyperbolic, i.e. of
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the form H(P) where P is a projective module of rank 3. Since A is regular,
Ky(A) — Ky(A,) is surjective. But A is local, hence Ky(A,)=Ky(A)=Z. This
shows that P is stably free and, since rank P>dim A,, P is free by the well-known
cancellation theorem of Bass-Schanuel. Hence, M,=H(A?) and, applying
Theorem 11 to (**), we obtain that M =N 1 H(A"), where N is of rank 6. The
discriminant of N is trivial, hence N is represented by an element [ N] of the étale
cohomology set H(A, SOq). To simplify the notations, we write H'(G) instead of
H'(A, G). The exact sequences (6.1) and (6.2) give, respectively, the horizontal
and the vertical exact sequence of the diagram

H'(G,,)

lz

H'(G,,)

l

H'(SL,) — H'(SO¢) > H*(1)

l

H*G,,).

Since the homomorphism of Brauer groups Br(A)— Br(K) is injective ([2],
Theorem 7.2), [N] maps to zero in H*(G,,). But H'(G,,) =Pic A =0 because A is
local, hence [N] maps to zero in H?*(u,) and is, therefore, in the image of
H'(SL,). Since A is local, H'(SL,)=0. Hence [N]=0 and N is hyperbolic.

THEOREM 24. Let A be a regular 3-dimensional domain, K its fields of
quotients, M a quadratic space over A such that My is hyperbolic. Then M is stably
hyperbolic.

Proof. We may assume that M is of rank =6. By Theorem 23, M is locally
hyperbolic. By Theorem 12, M is of the form N L H(A*), where N is of rank 6.
Using the diagram above we see, as in the proof of Theorem 23, that [ N] maps to
zero in H*(G,,). Hence 3[N]= 8[I] for some [I]ePic A. By Theorem 19, §[I]=
o[H(I)] and, by Theorem 18, o[N L H(I)]=1. By Theorem 12, N1 H(I)=
N'1 H(A) and, by Theorem 18 again, o[N']=1. It suffices to show that N’ is
stably hyperbolic. By the horizontal exact sequence of the diagram above, [N’]
comes from H'(SL,), hence, by Theorem 22, N' = (AT).. By Serre’s theorem on
projective modules, T=R® A and, by Theorem 16, N is hyperbolic.

Remark. Theorem 24 is false for 4-dimensional regular rings. In fact, as
noticed by M.-A. Knus, replacing A by R[x, y, z]/(x*+ y*>+z*—1) in the example
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of [11], §5, yields an example of a regular 4-dimensional affine R-algebra
A =A Qg A for which the homomorphism W(A)— W(K) is not injective.

Acknowledgement. The author thanks Inta Bertuccioni for her keen interest in
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Theorem 12.

REFERENCES

[1] M. F. AtivaH and 1. C. MACDONALD. Introduction to commutative algebra, Addison-Wesley,
London, 1969.
[2] M. AusLANDER and O. GOLDMAN, The Brauer group of a commutative ring. Trans. Amer. Math.
Soc. 97 (1960), 367-409.
[3] H. Bass, Unitary algebraic K-Theory, in Algebraic K-Theory III, Lecture Notes in Math. 343,
Springer, Berlin—-Heidelberg-New York, 1973.
[4] H. Bass, Clifford Algebras and spinor norms over a commutative ring, Amer. J. of Math. 96
(1974), 156-206.
[5] H. Bass, Quadratic Modules over Polynomial Rings, Contributions to Algebra, a collection of
papers dedicated to Ellis Kolchin, London-New York, 1977.
[6] A. BIALYNICKI-BIRULA, Rationally Trivial Homogeneous Principal Fibrations of Schemes. Inven-
tiones Math. 11 (1970), 259-262.
[7] T. CrRAVEN, A. ROSENBERG and R. WARE, The map of the Witt ring of a domain into the Witt ring
of its field of fractions. Proc. Amer. Math. Soc. 51 (1975), 25-30.
[8] A. V. GERaMITA and C. SMALL, Introduction to homological methods in commutative rings,
Queen’s papers in pure and appl. maths. no 43, Kingston, Ontario, 1976.
[9] M. KARouUBI, Localisation de formes quadratiques I. Ann. scient. Ec. Norm. Sup. 7 (1974),
359-404.
[10] M. KNEBUSCH, Symmetric bilinear forms over algebraic varieties. Conference on Quadratic Forms,
Queen’s University, Kingston, 1977.
[11] M.-A. Knus, M. OJANGUREN and R. SRIDHARAN, Quadratic forms and Azumaya algebras. J.
Reine u. Angew. Math. 303/304 (1978), 231-248.
[12] S. E. LANDSBURG, Patching Theorems for Projective Modules. J. Pure Appl. Algebra 21 (1981),
261-2717.
[13] H. LINDEL, Projektive Moduln iiber Polynomringe A[T,, ..., T,.] mit einem reguliren Grundring
A. Manuscripta math. 23 (1978), 143-154.
[14] H. MAaTsUMURA, Commutative algebra (2nd ed.), Benjamin/Cummings, Reading Mass., 1980.
[15] J. MiLNOR and D. HUSEMOLLER, Symmetric Bilinear Form. Springer-Verlag, Berlin-Heidelberg-
New York 1973.
[16] M. OJANGUREN, Quadratic forms over regular rings, J. Indian Math. Soc., to appear.
[17] W. PARDON, A “Gersten Conjecture” for Witt groups. Preprint.
[18] A. Roy, Cancellation of quadratic forms over commutative rings. J. of Algebra 10 (1968),
286-298.
[19] L. N. VASERSTEIN, Stabilization of unitary and orthogonal groups over a ring with involution, Mat.
Sbornik 81 328-351.
[20] C. T. C. WaALL, On the classification of hermitian forms, Compositio Math. 22 (1970), 425-451.

Institut de Mathématique
Université de Lausanne
CH1015 Lausanne-Dorigny

Received Jan. 19, 1982



	A splitting theorem for quadratic forms.

