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Injectivity of local quasi-isometries

F. W. Gehring{1)

1. Introduction

Suppose that E is a set in Rn, the one point compactification of euclidean

rc-space Rn, n &gt; 2, and suppose that / is a mapping from E into Kn. We say that /
is an L-quasi-isometry in E if

L \x1-x2\

for each pair of points xu x2 e E -{°°} and if /(oo) oo whenever °° e E. We say that

/ is a local L-quasi-isometry in E if for each L&apos;&gt;L each xeE has a neighbor-
hood U such that / is an L&apos;-quasi-isometry in E DU.

Suppose that / is a local L-quasi-isometry in a domain D in Rn. If L 1, then

/ is an isometry in D and hence injective there. (See, for example, Theorem IV in
[11].) Simple examples show that / need not be injective if L &gt; 1. It was F. John
who first noticed that for certain domains D, / will be injective provided L is close

enough to 1.

For each domain D&lt;^Rn we let L(D) dénote the supremum of the numbers

L ^ 1 with the property that each local L-quasi-isometry in D is injective. We say
that D is rigid if L(D)&gt; 1.

John established the following interesting resuit in 1969 (Theorem A in [12]).
See also [7] and [8].

THEOREM l.IfD is an open bail or half space, then L(D)&gt;21/4.

This resuit was generalized by John and then extended recently by Martio and

Sarvas to a very broad class of domains. We say that D c Rn is a uniform domain
if there exist constants a and b with the following property. Each pair of points

1 This researeh was supported in part by grants from the U.S. National Science Foundation (Grant
MCS 79-01713) and the Finnish Ministry of Education.
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Injectivity of local quasi-isometries 203

xl9 x2eD can be joined by a rectifiable arc a in D so that

I(a)&lt;a\x1-x2\ (2)

and so that for each x e a

min/(«,-)&lt;*? d(x,dD), (3)

where al5 a2 dénote the components of a ~{x}. Hère l(a) dénotes the euclidean
length of a and d (x, dD) the distance from x to dD.

Martio and Sarvas showed that uniform domains are rigid by establishing the
following resuit (Theorem 3.8 in [14]).

THEOREM 2. If D is a uniform domain, then L(D)&gt;c&gt;l where c dépends
only on the constants a and b.

The présent paper is concerned with the problem of identifying the domains in
Rn which are rigid. In particular, we characterize in Section 2 the finitely
connected plane domains which hâve this property. It turns out that each
boundary component of such a domain is either a point or a quasicircle, that is,
the image of a circle or a line under a quasiconformal mapping of R2. In Section 3

we establish an extension theorem for quasi-isometries. We then apply this resuit
in Section 4 to show that if D is a simply connected rigid domain in R2 and if / is
a local L-quasi-isometry in D with L &lt; L(D), then / is not only injective in D but
has an extension as a quasi-isometry to ail of R2.

2. Rigid plane domains

Throughout the remainder of this paper we shall use complex notation to
dénote points in R2. For z0eR2 and 0&lt;r&lt;oo We let B(z0, r) dénote the open
disk with center z0 and radius r. Finally for each domain D^R2 we let

In this section we characterize the finitely connected domains in JR2 which are
rigid. We begin with a technical lemma concerning a spécial class of quasi-
isometries.

LEMMA 1. Suppose that &lt;f&gt;(t) is a real valued function defined in (0, oo), that

(4)
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for tu t2e(0,oo) and that

f(z)-
{&quot;&apos;*&quot;&quot;&quot;

&quot; —&quot;&apos;—•
(5)

fze— if 0&lt;|z|&lt;»f

(0 if z=0.

Then f is a (1 + a)-quasi-isometry in R2.

Proof Choose distinct points z1,z2eR2 with |zi|^|z2|. If zx ^ 0, then

i)-f(z2)\ *ki - z2|

^\z1-z2\^\zl\\&lt;f&gt;(\z1\)-d&gt;(\z2\)\

1O8w

&lt;(l + a)|z1-z2|

by (4), while

if Zi 0. Since f~l is given by (5) with — &lt;f&gt; in place of &lt;f&gt;, the above argument can
be applied to /-1 to complète the proof.

We next use Lemma 1 to obtain a géométrie property of plane domains D
with L(D)&gt;1.

LEMMA 2. Suppose that D is a domain in R2 with L(D)&gt;c&gt; 1. Then there

exists a constant b, depending only on c, such that for each z0eR2 and 0&lt;r&lt;o°,

D ndB(z0, r) lies in component of

G=Dn(B(zo,fcr)-B(zo,r/6)).

Proof. Choose be(l,oo) so that

and suppose there exist points z1} z2eDndB(z0,r) which belong to différent
components Gx, G2 of G. By making a change of variable we may assume that
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zo 0. Choose 0e[-7r, tt] so that z2 z1e10 and let / be as in (5) with

(0 if 0&lt;t&lt;f or br&lt;f&lt;oo,
b

log —

rj-6 if {^*&lt;r,
log o fe

log y
,- -6 if r&lt;f&lt;br.
Wogfc

Then &lt;£ satisfles (4) with a 7r/logfe and f is a (l-ha)-quasi-isometry in R2 by
Lemma 1. Set

if zeD-Gx,
if z g Gx.

If U is any open disk in D, then either U^D-Gl5 in which case g(z) z in 17,

or (7c:G1U(D-G), in which case g(z) /(z) in U. Hence g is a local (1 + a)-
quasi-isometry in D. Since z2£Gx,

and g is not injective in D. Thus c &lt; 1 + a. This contradicts (6) and establishes the
desired conclusion.

We say that C &lt;= JR2 is a K-quasicircle if it is the image of a circle or line under
a K-quasiconformal mapping f:R2-&gt;R2. Similarly D&lt;^R2 is said to be a

K-quasidisk if dD is a K-quasiciricle.
We hâve next the following information about the boundary of a rigid plane

domain.

LEMMA 3. Suppose that D is a domain in R2 with L(D)&gt;c&gt;l. Then each

component C of dD is either a point or a K-quasicircle where K dépends only on c.

Moreover if Ci and C2 are components of dD, then

min dia (Ç) &lt; a d (d, C2) (8)

where a is a constant which dépends only on c.
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Hère dia(CJ) dénotes the diameter of C} and d (C1? C2) the distance between
Cx and C2.

Proof. Choose be(l,°°) so that (6) holds and suppose that z0eR2, 0&lt;r&lt;oo

and zu z2eD(lB(z0, r). Let a be any arc joining zx and z2 in D. If a does not lie
in B(z0, r), then a nË(z0, r) contains two components &lt;xu a2 which join z1? z2 to

wu w2edB(z0, r), respectively. Lemma 2 implies that wx and w2 can be joined by
an arc /3 in D C\B(z0, br) and hence ax U /3 U a2 joins Zx and z2 in D DB(20, br).
A similar argument shows that any pair of points z1? z2eD-B(z0,r) can be

joined in D — B(z0, r/b). Hence D is b-locally connectée and by Lemma 5 in [3],
each component C of dD is either a point or a K-quasicircle where K dépends
only on b.

Suppose next that Cx and C2 are distinct components of dD, choose zxeCx
and z2 g C2 so that

\zi-z2\ â(Cl,C2) 2r

and let zo f(z14-z2). We shall use Lemma 2 to show that Cx or C2 lies in
B(z0, b2r) and hence that

mindia(CJ)&lt;2b2r.

This will establish (8) with a b2.

Suppose that C\ and C2 do not lie in B(z0, b2r) and let Do dénote the

component of JR2-(C1UC2) which contains D. Then

F1 R2-(D0nB(z0, b2r)\ F2 É(z0, r)

are continua with

{z1,z2}. (9)

Hence by Theorem V.11.5 in [15], there exist points wl5 w2 which lie in différent
components Gt, G2 of

Don(B(zO9b2r)-B(zo,r))

but which can be joined by an arc a in
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Next (9) and Theorem V.16.2 in [15] imply that wl5 w2 are not separated by
Cx U C2UB(z0, r) and hence can be joined by an arc |3 in D0 — B(z0, r). Thus for
/ 1, 2, a U |8 contains a curve which joins dB(zih r) to dB(z0, b2r) in G, ; hence

H, 0,033(20,6^^=0.

Since each component of H, is an open arc in Do with endpoints in C\ U C2,

DflHj/0 and we conclude that D ndB(z0, br) does not lie in a component of
Dn(B(z0, b2r)-B(z0, r)). This contradicts Lemma 2 and thus establishes the
desired conclusion.

Finally we hâve the following relations between quasidisks and rigid plane
domains.

THEOREM 3. IfDis a K-quasidisk in R2, then L(D) &gt; c &gt; 1 where c dépends
only on K. Conversely if D is a simply connected proper subdomain of R2 with
L(D)&gt;c&gt;l, then D is a K-quasidisk where K dépends only on c.

Proof If D is a K-quasidisk in jR2, then by Corollary 2.33 in [14], D is a

uniform domain where the constants a and b in (2) and (3) dépend only on K.

(For an alternative proof see Theorem III.2.3 in [4].) Hence L(D)&gt;c&gt; 1 where

c c(K) by Theorem 2. The converse is a conséquence of Lemma 3.

THEOREM 4. A finitely connected domain D in R2 is rigid if and only if each

component of dD is either a point or a quasicircle.

Proof. If D is bounded by a fînite number of points or quasicircles, then D is

uniform by Theorem 5 in [16] and Theorem 5 in [6]; hence D is rigid by Theorem
2. The converse follows from Lemma 3.

The problem of characterizing rigid plane domains D is more difficult when D
is infinitely connected. For example, if % dénotes the collection of boundary
components of a rigid domain D in R2, then

min (dia (C), dia (C))
SUD

ccl« d (C, C)

by Lemma 3. Hence one must take into account not only the shape but the
relative size and position of the boundary components when D has infinité
connectivity.

We conclude this section by exhibiting a plane domain D which is rigid but not
uniform; thus the converse of Theorem 2 does not hold. The existence of such a

domain is an immédiate conséquence of the following resuit.
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THEOREM 5. If D is a rigid domain in R2 and if E is a discrète subset of D,
then D-E is a rigid domain.

Proof Suppose that U is an open disk with center at z0 and let Uo= U-{z0}.
Then since L(D) is invariant under similarity mappings, Theorem 4 implies that
L(U0) is an absolute constant c which exceeds 1.

Suppose next that / is a local L-quasi-isometry in D-E with L&lt;
min (L(D),c). Given zoeE we can choose an open disk U centered at z0 such
that

U0=U-{z0}czD-E.

If z1? z2e Uo, then for each e&gt;0 we can find an arc a joining zt and z2 in Uo
with

Since / is a local L-quasi-isometry in Uo,

and letting e —&gt; 0 yields

\f(z1)-f(z2)\^L\z1-z2\. (10)

Then (10) implies that / has a continuous extension in U which satisfles (10) for
zx, z2e U. Next since L&lt;c, / is injective in Uo, and it follows that / is injective
and hence a homeomorphism in U. Choose an open disk V about /(z0) with
Vczf(U). Then g (/| U)~l is a local L-quasi-isometry in Vo= V-{/(z0)}, and
the above argument applied to g shows that / is an L-quasi-isometry in g(V).
Thus / has an extension to D which is a local L-quasi-isometry in a neighborhood
of each point of E and hence in D. Then since L&lt;L(D), f is injective in D.
Hence / is injective in D-E,

L(D-E)&gt; min (L(D), c) &gt; 1

and D — E is a rigid domain.
Now let B dénote the unit disk and let
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Then D B -E is rigid by Theorem 5. On the other hand if zx 0 and if z2€ D
with |z2|&gt; 1-1/2/ and /^2, then each rectifiable arc a joining zx and z2 in D
must contain a point z with \z\ 1 -1// and

where au a2 dénote the components of a -{z}. Hence there exists no constant b

for which D satisfies condition (3) and D is not a uniform domain.

3. Extension of quasi-isometries

We establish hère some extension theorems for plane quasi-isometries. Our

arguments are based on a reflection principle for quasidisks due to Ahlfors [1] and

estimâtes for the hyperbolic distance.

If D is a simply connected proper subdomain of R2, then the hyperbolic metric

with curvature —1 in D is given by

where g is any conformai mapping of D onto the upper half plane H. From
standard distortion theorems it follows that

where d (z, dD) dénotes the distance from z to dD, and hence that

(See, for example, p. 22 in [17].) Next the hyperbolic distance between points
is given by

hD(zu z2) inf pD(z) \dz\,
a 4

where the infimum is taken over ail rectifiable arcs a joining zx and z2 in D. From



210 F W GEHRING

(12) and Lemma 2.1 in [5] it follows that

log
d(zlfôD)
d(z2,dD)

(13)

for zl5 z2g D. Next if D is a K-quasidisk, then by (12), Corollary 2.33 in [14] and
Theorem 1 in [6],

for zuz2eD, where c and d are constants which dépend only on K. (Cf. pp.
42-44 in [13].)

We begin with a resuit on a spécial class of quasi-isometries.

LEMMA 4. If D is a Jordan domain in R2 and if zx, z2eD with hD(zu z2) &lt;

a, then there exists an L-quasi-isometry f:D-&gt;D such that f is the identity on dD,

f(zi) z2 and L dépends only on a.

Proof. Choose a conformai mapping g:D-&gt;H normalized so that g(z1) i
and g(z2) bi where b &gt; 1. Then

and g extends to a homeomorphism which maps D onto H. Set

f u + ibv if
h(w)

* &quot; W

IV =co.

Then h is continuously differentiable with

hH(h(w), w)=logb&lt;a, T

1 \dw\ _ \dh(w)\ _ \dw\ &gt; (15)

b Im (w)
&quot;

Im (h(w)) ~ Im (w) J

in H and /= g~loh°g is a homeomorphism of D onto D which is the identity on
dD and maps zx onto z2.
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Fix zeD and set w g(z). Then

\df(z)\ Jdh(w)\ \g&apos;(z)\

\dz\ \dw\ \g&apos;(f(z))\&apos;

while we obtain

from (11). Next by (13) and (15),

log
d(/(z),dD)
d(z,dD)

whence

^

211

(16)

(17)

(18)
â(z,dD)

Combining (15), (16), (17) and (18) yields

1 J&lt;*/(z)|

L~ \dz\ ~

where L 4e3a, and hence f is a local L-quasi-isometry in D. (Cf. p. 395 in [10].)
The desired conclusion is now a conséquence of the following elementary resuit.

LEMMA 5. Suppose that Dx and D2 are domains in R2, thaï f:Dx-&gt; D2 is a

homeomorphism and that f is an L^quasi-isometry in dDt and a local L2-quasi-
isometry in Dx. Then f is an L-quasi-isometry in Dt where L =max (Ll9 L2).

Proof. Fix zu z2£Dt and let a be the open segment joining thèse points in
R2. If acDb then
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Otherwise for j 1,2 let a} dénote the component of a nDt which has z, as an

endpoint and let w, dénote the other endpoint of &lt;xv Then w] edDu a} c Dt and

&lt;L \zx-wx\ + Lx |w1-w2| + L |w2-z2|

Applying this argument to f&apos;1 shows that / is an L-quasi-isometry in Db and
hence in Dx by continuity.

Lemma 5 shows that a bijective local quasi-isometry between two domains is a

quasi-isometry if the induced boundary correspondence is a quasi-isometry. We
can also draw this conclusion without knowledge of the boundary correspondence
when the two domains hâve sufficiently regular boundaries.

LEMMA 6. Suppose that Dx and D2 are Kx- and K2-quasidisks in R2 and that

f:Dl-&gt;D2 is a bijective local Lx-quasi-isometry. Then f extends to an L-quasi-
isometry of D1 onto D2 where L dépends only on Ku K2 and Lx.

Proof. Fix zu z2eDl. By Corollary 2.33 in [14], there exists a rectifiable arc a
joining zx and z2 in Dx such that

where ax dépends only on Kx. Thus

Next since / is injective, / l is a local L-quasi-isometry in D2 and arguing as

above yields

|zl-z2|&lt;L1o2|/(z1)-/(z2)|,

where a2 dépends only on K2. Hence / is an L-quasi-isometry in Dx where

L =max {Lxau Lxa2), and we can extend / to Dl by continuity.
We will require the following version of Lemma 4 for the case where D is a

quasidisk.

LEMMA 7. Suppose that D is a K-quasidisk in R2, that zuz2eD and that

b \z2-z\
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for ail z edD —{o°} where b is a constant. Then there exists an L-quasi-isometry
f:D-~&gt;D such that f is the identity on dD, f(zi) z2 and L dépends only on K
and b.

Proof. For / 1, 2 choose w] e dD -{°°} so that

Then by (19),

\zl-z2\&lt;\z1-wi\ + \z2-w}\

and hence

hD(zuz2)&lt;2c\og(b + 2) + d a

by (14), where c and d dépend only on K. The desired conclusion now follows
directly from Lemma 4.

We dérive now an extension of Ahlfors&apos; reflection principle for quasidisks.
(See, for example, Lemma 3 on p. 80 in [2].)

THEOREM 6. Suppose that Dx is a Kx-quasidisk with (x&gt;GdDl, that D2 is a
Jordan domain in R2 with °°edD2 and that &lt;f&gt;:dDx-^dD2 is an Lx-quasi-
isometry. Then there exists an L -quasi- isometry f: Dx -» D2 such thatf=&lt;f&gt; on dDA

and L dépends only on Kx and Lx. Suppose further that z]eDl, z2gD2 and

b \z2-&lt;t&gt;(z)\

for ail z e dD} — {°°} where b is a constant. Then we can choose f so that, in addition,
f(z1) z2 and L dépends only on Kx, Lx and b.

If we choose D2^D\ and &lt;f&gt;(z) z, then the first part of Theorem 6 yields the
above mentioned resuit of Ahlfors.

Proof. For / 1,2 let g, map D; conformally onto the upper half plane H.
Then g, extends to a homeomorphism of D, onto H and by performing an

additional Môbius transformation we may assume that gJ((X&gt;) œ. Hence i/r(x)
g2°&lt;f&gt;°gïl(x) is a homeomorphism of dH onto itself with i/f(oo) œ.

Choose -oo&lt;x&lt;oo and t&gt;0, let a[ (x,x + t) and Pi (-&lt;»,x-f), and let
aua2,a&apos;2 and pl9 j32, p&apos;2 dénote the images of a[ and |8i under gï\ &lt;j&gt;ogï\ ^
respectively. If J\ is the family of arcs joining ax to jSj in Dl9 then the extremal
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length A(rt) of I\ is equal to 1. Moreover since Dx is a JKVquasidisk,

\zl-z2\&lt;cl\zl-z3\ (21)

for each ordered triple of points z1,z2,z3e dDx -{°°} where cx is a constant which
dépends only on Kx. In particular if we let z1 gï1(x) and wx g^ix + t), then
the argument on pp. 82-83 in [2] shows that

«ic B(wu r), r cx \zx - wx\

and that

Since &lt;f&gt; is an I^-quasi-isometry,

a2c: B(w2, Lxr), d (a2, &amp;2)&gt;j-

where w2 &lt;/&gt;(w1), and arguing again as on p. 83 in [2] we see that

where F2 is the family of arcs joining a2 to |32 in D2. This implies that

where c2 is a constant which dépends only on K\ and Lx. From (22) and the above

argument with ai (x -1, x) and /3i (x +1, °o) we conclude that

for ail such x and t. Set
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for z =x + iy g H-{00} and h(oo) oo. Then h maps H homeomorphically onto H
and h is continuously difïerentiable and K-quasiconformal in H with

1 Jdz\ ^ \dh(z)\
^^ JdzJ

c3 Im (z) Im (h(z)) 3 Im (z)
&apos;

where K and c3 dépend only on c2, and hence on Kl and Lt. (See pp. 69-74 in [2]
for the case where if/(x) is increasing in x.) Thus /t g2loh°gi is a homeomorph-
ism of £&gt;! onto D2, /=&lt;/&gt; on 3DX, /j is K-quasiconformal in Dx and

\dz\ \dv&gt;\ \

for zeDu w g,(z). From (11) applied to g! and g2 we obtain

Thus

.dffi^ wf£ï dffibigJ
4c3 d(z,ôD!) \i

and it remains to bound the ratio on the left and right sides of (23).

If wl5 w2, w3 is an ordered triple of points in dD2-{&lt;»}, then

|w1-w2|&lt;c1L?|w1-w3|

by (21) and D2 is a K2-quasidisk where K2 dépends only on Kt and Lx. Hence fx

can be extended by quasiconformal reflection in dDl and 3D2 to yield a K3-
quasiconformal mapping of jR2 onto itself with K3 KK\K\. Fix zxeDx and

z^dDx-foo}, and choose z3edDt so that |z3-z2| |z1-z2|. Since fx is X3-
quasiconformal in R2 with /i(°°) °°,

l/lUi)-/i(Z2)Nc|/1(z3)-/1(z2)|&lt;C4|Z3-22| C4|z1-Z2|
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where c and c4 cL1 dépend only on Kx and Lx. We thus obtain

- \zx - z2\ &lt; \f1(z1)-fl(z^)\ &lt; c4 \zx - z2\ (24)
c4

for ail zleD1 and z2edD1-{x&gt;}. In particular, (24) implies that

— d (z, dDt) &lt; d (/t(z), dD2) &lt; c4 d (z, dDt)
c4

for ail zeDb and we conclude from (23) that fx is a local L2-quasi-isometry in Dx
with L2 4c3c4. Lemma 5 then implies that ^ is an L3-quasi-isometry in Dx
where L3 max (Ll5 L2), and choosing / /i complètes the proof of the first part
of Theorem 6.

Finally suppose that ZieDt, z2eD2 and that (20) holds for ail z g ^-{oo}. If
wedD2-{œ}, then z =fï\w)edD1-{™} and

|z2-w| \zt~z\ \z2-&lt;f&gt;(z)\

lies between (bc4)~~1 and fcc4 by (20) and (24). By Lemma 7 there exists an L4-
quasi-isometry /2:D2-&gt; D2 such that /2 is the identity on dD2, /2(/i(zx)) z2 and

L4 dépends only on K2 and 6. Thus f f2ofi has ail the properties required in the
second part of Theorem 6.

Finally we require the following resuit which shows that a certain class of
quasi-isometries is invariant under conjugation by inversion.

LEMMA 8. Suppose that f is an L-quasi-isometry in E&lt;^R2, that

IJ&amp;&gt;U (25)
L \z\

for z€E-{0, 00} and that /(0) 0 if QeE. Then g^T^foT&apos;1 is an L3-quasi-
isometry in T(E) where T(z) 1/z.

Proof. Choose distinct points wu w2e T(E) — {°o\ and let zf llwr If
then zl9

|g(&gt;V1)-g(w2)| 1/(20-/(Z2&gt;| \ZX\ \Z2\

\zx-z2\
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and hence

(26)

by (25) If W!=0, then g(wx) 0,

\g(w1)-g(wj\ \z2\

|w1-w2| |/(z2)|

and agam (26) holds Finally if &lt;»e T(JE) then g(oo) oc and thus g îs an L3-quasi-
îsometry m T(E)

We now obtam the main resuit of this section from combimng Lemma 8 and
Theorem 6

THEOREM 7 Suppose that Dx is a Kx-quasidisk in R2, that D2 is a Jordan
domain in R2 and that &lt;f&gt; dD1 —&gt;dD2 is an L^-quasi-isometry Then there exist L-
quasi-isometnes f Dx-+ D2 and /* D* ~&gt; D% such that f f* &lt;f&gt; on d&amp;i and L
dépends only on Kx and Lx

Proof Suppose that c°edD1 Then Dx and D* are iCi-quasidisks with dDx
dD% and the existence of / and /* is an immédiate conséquence of Theorem 6

Suppose next that o° £ dDx Then oo^ D* and ^eD2 By making a prehminary
change of variables we may assume that 0 g dDx and that &lt;£(0) 0 For / 1, 2 let
Gj dénote the image of D] under T(z) 1/z and set il/ T°&lt;t)°T~l Then Gx is a

Kx-quasidisk with &lt;x&gt;edGï9

(27)

for zsdDx — {0} and hence ifr dGx-^dG2 is an L3-quasi-isometry by Lemma 8

Theorem 6 then yields L2-quasi-isometnes g Gx-&gt; G2 and g* G* -&gt; Gf such

that g g* i\f on dGx and L2 dépends only on Kx and Lx In addition, since
OeGÏ, 0gG| and

1
_ 10-zl

for z e dGx -{oo} by (27), we can choose g* so that g*(0) 0 Fix zx e Gx -{*&gt;} and
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let z0 be a point where the segment joining 0 to zx meets dGx. Then

~g(zo)| + |g(*o)l^L2 \zx-zo\

since L2&gt;LX. Thus by symmetry

for z€Gx-{&lt;»}. Next

for z e G*-{0, 00} since g* is an L2-quasi-isometry in G*. Thus /= T~1(&gt;g°T and

f* T~l°g*°T hâve the required properties by Lemma 8.

COROLLARY 1. Suppose thaï Dx and D2 are Kx- and K2-quasidisks in R2

and that f:Dx —&gt; D2 is a bijective local Lx-quasi-isometry. Then there exists an L-
quasi-isometry g:R2-*R2 such that g f in Dx and L dépends only on Kx, K2
and Lx.

Proof. By Lemma 6, / extends to an L2-quasi-isometry of Dx onto D2 where

L2 dépends only on Kx, K2 and Lx. Next Theorem 7 with &lt;^=/|âD1 yields an

L2-quasi-isometry /* : D* —&gt; D* such that /* / on dDx and L* dépends only on
Kl9 K2 and Lx. Then

f/ in D,
[ 1/* in Dï,

(28)

is the desired extension of /.

COROLLARY 2. Suppose that Cx is a Kx-quasicircle and that 4&gt; is an Lx-
quasi-isometry in Cx. Then there exists an L-quasi-isometry g:R2-^ R2 such that

g &lt;f&gt; on Cx and L dépends only on Kx and Lx.

Proof. Let C2 &lt;t&gt;(Cx) and for j 1,2 let D, be a component of R2-C} chosen

so that Dj c K2. If f and /* are the L-quasi-isometries given by Theorem 7, then

g defined in (28) is the required extension.
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Corollary 2 extends récent results of Jerison and Kenig [9] and of Tukia [18]
who consider the cases where Cx is a hne and a circle, respectively.

4. An application

If / is a local L-quasi-isometry in a plane domain D with L&lt;L(D), then / is

injective. The following resuit shows that one can say more whenever D is simply
connected.

THEOREM 8. Suppose that Dx is a simply connected proper subdomain of R2
and that f is a local Lx-quasi-isometry in Dx with L&lt;L(DX). Then there exists an
L-quasi-isometry g : R2 —&gt; R2 such that g / in Dx and L dépends only on L(DX)
and Lx.

Proof. Let D2 f(Dx) and let g dénote any local L2-quasi-isometry in D2 with
L2&lt;L(D1)ILl. Then g°/ is a local L1L2-quasi-isometry in Di9 g°f is injective in
Dx since LXL2&lt;~L(DX) and hence g is injective in D2. Thus

(29)

Since / is injective in Dl9 f is an Lj-quasiconformal mapping of Dt and hence

D2 is a simply connected proper subdomain of R2. Then by Theorem 3 and (29)
Dx and D2 are Kx- and JK2-quasidisks, where Kx and K2 dépend only on L(DX)
and L(DX)/LX respectively, and the existence of g follows from Corollary 1.

Theorem 8 can be interpreted physically if we think of Dx as a homogeneous
elastic body and / as the distortion of Dx due to a force field. In this case L(DX)
measures the maximum permissible strain in Dx before Dx buckles. Theorem 8

asserts that if the strain in Dx is less than L(DX)9 then the shape of Dx is not
substantially changed under the force field.
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