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Injectivity of local quasi-isometries

F. W. GEHRING'Y

1. Introduction

Suppose that E is a set in R", the one point compactification of euclidean
n-space R", n =2, and suppose that f is a mapping from E into R". We say that f
is an L-quasi-isometry in E if

o lf(x1) "‘f(xz)i <L (1)

‘x1 - xzi B

1
T=
for each pair of points x,, x, € E —{} and if f() = whenever e E. We say that
f is a local L-quasi-isometry in E if for each L'>L each x € E has a neighbor-
hood U such that f is an L’-quasi-isometry in E N U.

Suppose that f is a local L-quasi-isometry in a domain D in R". If L =1, then
f is an isometry in D and hence injective there. (See, for example, Theorem IV in
[11].) Simple examples show that f need not be injective if L >1. It was F. John
who first noticed that for certain domains D, f will be injective provided L is close
enough to 1.

For each domain D < R" we let L(D) denote the supremum of the numbers
L =1 with the property that each local L-quasi-isometry in D is injective. We say
that D is rigid if L(D)>1.

John established the following interesting result in 1969 (Theorem A in [12]).
See also [7] and [8].

THEOREM 1. If D is an open ball or half space, then L(D)=2"*
This result was generalized by John and then extended recently by Martio and

Sarvas to a very broad class of domains. We say that D < R" is a uniform domain
if there exist constants a and b with the following property. Each pair of points

! This research was supported in part by grants from the U.S. National Science Foundation (Grant
MCS 79-01713) and the Finnish Ministry of Education.
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Injectivity of local quasi-isometries 203

X1, X2 € D can be joined by a rectifiable arc o in D so that
le)=<a|x;—x,| (2)
and so that for each x e «

mig l(e;)=b d (x,0D), (3)
1=1,

where a;, a, denote the components of a —{x}. Here l(a) denotes the euclidean
length of a and d (x,dD) the distance from x to 3dD.

Martio and Sarvas showed that uniform domains are rigid by establishing the
following result (Theorem 3.8 in [14]).

THEOREM 2. If D is a uniform domain, then L(D)=c>1 where c depends
only on the constants a and b.

The present paper is concerned with the problem of identifying the domains in
R™ which are rigid. In particular, we characterize in Section 2 the finitely
connected plane domains which have this property. It turns out that each
boundary component of such a domain is either a point or a quasicircle, that is,
the image of a circle or a line under a quasiconformal mapping of R2. In Section 3
we establish an extension theorem for quasi-isometries. We then apply this result
in Section 4 to show that if D is a simply connected rigid domain in R? and if f is
a local L-quasi-isometry in D with L <L(D), then f is not only injective in D but
has an extension as a quasi-isometry to all of R?.

2. Rigid plane domains

Throughout the remainder of this paper we shall use complex notation to
denote points in R2. For z,€ R? and 0<r<o we let B(z,,r) denote_the open
disk with center z, and radius r. Finally for each domain D< R? we let
D*=R?-D.

In this section we characterize the finitely connected domains in R? which are
rigid. We begin with a technical lemma concerning a special class of quasi-
isometries.

LEMMA 1. Suppose that ¢(t) is a real valued function defined in (0, ), that

ld(t) (L) <a (4)

51
log —
g )
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for t,, t,€(0, ) and that

ip(Jz} . 0
f(z)___{(z)e‘“ D if 0<|z| <o, (5)

if z=0.
Then f is a (1+ a)-quasi-isometry in R?.

Proof. Choose distinct points z,, z, € R? with |z,|=<|z,|. If z,#0, then

|f(z1) = f(z2)| =|z1— 25| +|24] |ei®dz:D — ei¢(|zzl)l

=|z,— zo| +|z4| |d(|z1]) — S (| 22))|

=|z,—2z5|+a |z
=(1+a)|z,— z,|

by (4), while

If(z1) —f(z))| = |zol=(1+a) |z, — 2,

if z, =0. Since ! is given by (5) with —¢ in place of ¢, the above argument can
be applied to f~! to complete the proof.

We next use Lemma 1 to obtain a geometric property of plane domains D
with L(D)>1.

LEMMA 2. Suppose that D is a domain in R? with L(D)=c > 1. Then there
exists a constant b, depending only on c, such that for each zo€ R* and 0<r <,
D NdB(zy, r) lies in component of

G = D N(B(z,, br)— B(z,, 1/b)).

Proof. Choose b e(1, ) so that

T <, (6)

1+
log b

and suppose there exist points z;, z,€ D NaB(z,, r) which belong to different
components G,, G, of G. By making a change of variable we may assume that
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2o=0. Choose 6 e[—m, w] so that z,=2z,e" and let f be as in (5) with

(0 if 0<t$£— or br=t<om,
bt
log —
- Lo if —<t=r
b
log—t—r
\logbe if r<t<br

Then ¢ satisfies (4) with a=m/logb and f is a (1+ a)-quasi-isometry in R? by
Lemma 1. Set

V4 if ZED_Gl,

f(z) if zeG,. 7)

g(z)= {

If U is any open disk in D, then either U < D — G,, in which case g(z)=2z in U,
or Uc G,U(D—G), in which case g(z)=f(z) in U. Hence g is a local (1+a)-
quasi-isometry in D. Since z,¢ G,,

g(z)) =z,=z,e =z eV = g(z))

and g is not injective in D. Thus ¢ <1+ a. This contradicts (6) and establishes the
desired conclusion.

We say that C = R? is a K-quasicircle if it is the image of a circle or line under
a K-quasiconformal mapping f:R?— R? Similarly D < R? is said to be a
K-quasidisk if D is a K-quasiciricle.

We have next the following information about the boundary of a rigid plane
domain.

LEMMA 3. Suppose that D is a domain in R? with L(D)=c>1. Then each
component C of dD is either a point or a K-quasicircle where K depends only on c.
Moreover if C,; and C, are components of oD, then

min dia (G)=a d (C,, Cy) (8)

where a is a constant which depends only on c.
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Here dia (C;) denotes the diameter of C; and d (C;, C,) the distance between
Cl and Cz.

Proof. Choose b (1, ) so that (6) holds and suppose that zoe R?, 0<r<o
and z,, z,€ D N B(z,, r). Let a be any arc joining z, and z, in D. If a does not lie
in B(z,, r), then a N B(z,, r) contains two components «;,, a, which join z,, z, to
wy, W, € 0B(z,, r), respectively. Lemma 2 implies that w; and w, can be joined by
an arc B in D N B(z,, br) and hence a; U B Ua, joins z; and z, in D N B(z,, br).
A similar argument shows that any pair of points z,, z,€ D—B(zy, r) can be
joined in D — B(z,, r/b). Hence D is b-locally connected and by Lemma 5 in [3],
each component C of dD is either a point or a K-quasicircle where K depends
only on b.

Suppose next that C,; and C, are distinct components of dD, choose z; € C,
and z,€ C, so that

lzi— 2| =d (Cy, Cy)=2r

and let zy,=3(z,+2,). We shall use Lemma 2 to show that C, or C, lies in
B(z,, b*r) and hence that

m{g dia (C;) =2b>r.
=1,
This will establish (8) with a = b*.
Suppose that C; and C, do not lie in B(zy, b?r) and let D, denote the
component of R*—(C, U C,) which contains D. Then
F1=R2—(DOHB(ZO, bzr))’ Fzzg(zo, r)
are continua with

F; anz(C1UC2)n§(ZO) r)={z,, z5}. 9)

Hence by Theorem V.11.5 in [15], there exist points w,, w, which lie in different
components G,, G, of

Rz_(Fl U F,) = DN (B(zo, b2r)—§(20, r))
but which can be joined by an arc a in

RTZ__FI = DonB(ZO, bzr).
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Next (9) and Theorem V.16.2 in [15] imply that w,, w, are not separated by
C, U C,U B(z,, r) and hence can be joined by an arc 8 in Dy— B(z,, r). Thus for
j=1,2,a UB contains a curve which joins dB(z,, r) to dB(z,, b?r) in G;; hence

Since each component of H; is an open arc in D, with endpoints in C;UC,,
D NH;# & and we conclude that D N3dB(z,, br) does not lie in a component of
D N (B(zy, b2r)— B(zy, r)). This contradicts Lemma 2 and thus establishes the
desired conclusion.

Finally we have the following relations between quasidisks and rigid plane
domains.

THEOREM 3. If D is a K-quasidisk in R?, then L(D)=c > 1 where c depends
only on K. Conversely if D is a simply connected proper subdomain of R* with
L(D)=c>1, then D is a K-quasidisk where K depends only on c.

Proof. If D is a K-quasidisk in R?, then by Corollary 2.33 in [14], D is a
uniform domain where the constants a and b in (2) and (3) depend only on K.
(For an alternative proof see Theorem III.2.3 in [4].) Hence L(D)=c>1 where
¢ = c¢(K) by Theorem 2. The converse is a consequence of Lemma 3.

THEOREM 4. A finitely connected domain D in R? is rigid if and only if each
component of 0D is either a point or a quasicircle.

Proof. If D is bounded by a finite number of points or quasicircles, then D is
uniform by Theorem 5 in [16] and Theorem 5 in [6]; hence D is rigid by Theorem
2. The converse follows from Lemma 3.

The problem of characterizing rigid plane domains D is more difficult when D
is infinitely connected. For example, if € denotes the collection of boundary
components of a rigid domain D in R?, then

“u min (dia (C), dia (C")) <o
c,c'g% d(C, )

by Lemma 3. Hence one must take into account not only the shape but the
relative size and position of the boundary components when D has infinite
connectivity.

We conclude this section by exhibiting a plane domain D which is rigid but not
uniform; thus the converse of Theorem 2 does not hold. The existence of such a
domain is an immediate consequence of the following result.
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THEOREM 5. If D is a rigid domain in R? and if E is a discrete subset of D,
then D—E is a rigid domain.

Proof. Suppose that U is an open disk with center at z, and let Uy = U —{zo}.
Then since L(D) is invariant under similarity mappings, Theorem 4 implies that
L(U,) is an absolute constant ¢ which exceeds 1.

Suppose next that f is a local L-quasi-isometry in D—E with L<
min (L(D), c¢). Given z,€ E we can choose an open disk U centered at z, such
that

U(): U"'{Z()}CD'—E.

If z,,z,e U,, then for each £ >0 we can find an arc a joining z, and z, in U,
with

lla)=(1+¢€)|z,— 2z,
Since f is a local L-quasi-isometry in U,
[f(z))—f(z)| = U(f(a)) =Ll @)= L(1+¢) |z, — 2,
and letting & — 0 yields
f(z1) = f(z2)| =L |z, — z,|. (10)

Then (10) implies that f has a continuous extension in U which satisfies (10) for
Z1, Z,€ U. Next since L <c, f is injective in U,, and it follows that f is injective
and hence a homeomorphism in U. Choose an open disk V about f(z,) with
V< f(U). Then g=(f| U)" ! is a local L-quasi-isometry in V,=V —{f(z,)}, and
the above argument applied to g shows that f is an L-quasi-isometry in g(V).
Thus f has an extension to D which is a local L-quasi-isometry in a neighborhood
of each point of E and hence in D. Then since L <L(D), f is injective in D.
Hence f is injective in D —E,

L(D—-E)=zmin(L(D),c)>1

and D—E is a rigid domain.
Now let B denote the unit disk and let

1k
E={z=(1—}1:)exp<2721 ):k==1,2,...,j2,j:2,3,...}.
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Then D =B —E is rigid by Theorem 5. On the other hand if z, =0 and if z,e D
with |z,|=1—-1/2j and j=2, then each rectifiable arc a joining z, and z, in D
must contain a point z with |z|=1-1/j and

: J
,2’{2 (o) = . d(z,0D),

where a,, a, denote the components of a —{z}. Hence there exists no constant b
for which D satisfies condition (3) and D is not a uniform domain.

3. Extension of quasi-isometries

We establish here some extension theorems for plane quasi-isometries. Our
arguments are based on a reflection principle for quasidisks due to Ahlfors [1] and
estimates for the hyperbolic distance.

If D is a simply connected proper subdomain of R?, then the hyperbolic metric
with curvature —1 in D is given by

|g'(2)]

PD(Z):m ,

where g is any conformal mapping of D onto the upper half plane H. From
standard distortion theorems it follows that

d(z,0D)

11
Im (g(z)) =2 uh

;=g ———

where d (z,0D) denotes the distance from z to dD, and hence that

Y (12)

2d (z,0D) d(z,0D)

(See, for example, p. 22 in [17].) Next the hyperbolic distance between points
Z1, 2, € D is given by

hp(z4, 22)=i2f J pp(2) |dz|,

o

where the infimum is taken over all rectifiable arcs a joining z; and z, in D. From
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(12) and Lemma 2.1 in [5] it follows that

d(z,,9D)

54 (z,,9D) (13)

hD(Zl, 22)2%’ ‘10

for z,, z,€ D. Next if D is a K-quasidisk, then by (12), Corollary 2.33 in [14] and
Theorem 1 in [6],

hD(Z1,Zz)Sclog( |21~ 2] +1>( |21 — 2,

d(z,,0D) d(z,, aD)+1)+d' \14)

for z,,z,€ D, where ¢ and d are constants which depend only on K. (Cf. pp.
42-44 in [13].)
We begin with a result on a special class of quasi-isometries.

LEMMA 4. If D is a Jordan domain in R? and if z,, z,€ D with hp(z,, z,) =
a, then there exists an L-quasi-isometry f: D — D such that f is the identity on 9D,
f(z,) =z, and L depends only on a.

Proof. Choose a conformal mapping g:D — H normalized so that g(z,)=1i
and g(z,) = bi where b>1. Then

log b=hp(z,,z,)=a

and g extends to a homeomorphism which maps D onto H. Set

h(w)={u+ibv if w=u+iveH—{x},

oo if w=oo,

Then h is continuously differentiable with

hy(h(w), w)=logb=a,
1 |dw| _ |dh(w)| _ |dw| (15)
bIm(w) Im(h(w)) Im(w)

in H and f=g 'ohog is a homeomorphism of D onto D which is the identity on
oD and maps z; onto z,.
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Fix ze D and set w=g(z). Then

|df(2)] _|dh(w)] |g'(2)|

dz| — |dw| [g'(F)I’ (16)
while we obtain
1 d (Z aD) )
=g (2)| —— Im (w) =2
(17)
=y 402 0D) _
:=|g'(f(2))| Im (h(w)) _.ZJ
from (11). Next by (13) and (15),
11 d D
) ‘ ((1]1(2)8163) ) =hp(f(2), z) = hy(h(w), w)=<a
whence
204 (f(2),0D) _ , -

d(z,0D)

Combining (15), (16), (17) and (18) yields

where L =4e>?%, and hence f is a local L-quasi-isometry in D. (Cf. p. 395 in [10].)
The desired conclusion is now a consequence of the following elementary result.

LEMMA 5. Suppose that D, and D, are domains in R?, that f:D,— D, is a
homeomorphism and that f is an L,-quasi-isometry in 3D, and a local L,-quasi-
isometry in D,. Then f is an L-quasi-isometry in D; where L =max (L, L,).

Proof. Fix z,, z,€ D, and let a be the open segment joining these points in
R?. If a = D,, then

If(z1) = f(z)| = U(f(e)) = Ll(a@) <L |z, —z,|.
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Otherwise for j=1, 2 let o; denote the component of o N D, which has z; as an
endpoint and let w; denote the other endpoint of «;. Then w; €dD,, a; = D, and

lf(zl)"f(zz)lS|f(21)"f(W1)|+|f(W1)"'f(W2)|+lf(Wz)'“f(Zz)l
=L |z;—w|+ L, [w;—wy|+L|w,— 2z,

=L |z,—z,].

Applying this argument to f~' shows that f is an L-quasi-isometry in D,, and
hence in D, by continuity.

Lemma 5 shows that a bijective local quasi-isometry between two domains is a
quasi-isometry if the induced boundary correspondence is a quasi-isometry. We
can also draw this conclusion without knowledge of the boundary correspondence
when the two domains have sufficiently regular boundaries.

LEMMA 6. Suppose that D, and D, are K,- and K,-quasidisks in R*> and that
f:D,— D, is a bijective local L,-quasi-isometry. Then f extends to an L-quasi-
isometry of D, onto D, where L depends only on K;, K, and L,.

Proof. Fix z,, z,€ D,. By Corollary 2.33 in [14], there exists a rectifiable arc «
joining z, and z, in Dy such that

la)=a,l|z,~ 2z,

where a, depends only on K;. Thus
If(z) - f(z)|=l(f(a)) =L l(a) =L,a, |z, - z,].

Next since f is injective, f~' is a local L,-quasi-isometry in D, and arguing as
above yields

|z, — 22| =La, |f(z) — f(2,)],

where a, depends only on K,. Hence f is an L-quasi-isometry in D, where
L =max (L,a,, L,a,), and we can extend f to D; by continuity.

We will require the following version of Lemma 4 for the case where D is a
quasidisk.

LEMMA 7. Suppose that D is a K-quasidisk in R?, that z,, z,€ D and that

l< |z, —z|

b_IZZ"ZISb (19)
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for all z€dD —{o} where b is a constant. Then there exists an L-quasi-isometry
f:D — D such that f is the identity on oD, f(z,)=z, and L depends only on K
and b.

Proof. For j=1,2 choose w;€dD —{x} so that
|z; —w;| =d (z,, D).
Then by (19),
|z, = za| = |z, = wi|+ |z —w;|=(b+1)d (2, D)
and hence
hp(zy, z;)<2clog(b+2)+d=a

by (14), where ¢ and d depend only on K. The desired conclusion now follows
directly from Lemma 4.

We derive now an extension of Ahlfors’ reflection principle for quasidisks.
(See, for example, Lemma 3 on p. 80 in [2].)

THEOREM 6. Suppose that D, is a K,-quasidisk with »€dD,, that D, is a
Jordan domain in R?* with ©€dD, and that ¢:0D,— 3D, is an L,-quasi-
isometry. Then there exists an L-quasi-isometry f: D, — D, such that f=¢ on oD,
and L depends only on K, and L,. Suppose further that z,€ D,, z,€ D, and

1_ lz,-2]

el lad S B 2
b Tz b@] (20)

for all z € 3D, —{x=} where b is a constant. Then we can choose f so that, in addition,
f(z,) =2z, and L depends only on K,, L, and b.

If we choose D, = D* and ¢(z) = z, then the first part of Theorem 6 yields the
above mentioned result of Ahlfors.

Proof. For j=1,2 let g map D; conformally onto the upper half plane H.
Then g; extends to a homeomorphism of D onto H and by performing an
additional Mobius transformation we may assume that g;()=o0. Hence ¢(x)=
g,odpogy'(x) is a homeomorphism of dH onto itself with () =,

Choose —o<x<® and t>0, let aj=(x,x+t) and B} = (-0, x—t) and let
a,, a,, ab and By, B, B5 denote the images of aj and ] under gil, dogih, ¥
respectively. If I'; is the family of arcs joining a; to B; in D, then the extremal
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length A(I'}) of I'; is equal to 1. Moreover since D, is a K;-quasidisk,

|2, zs| = ¢, |z, — 23] (21)

for each ordered triple of points z,, z,, z;€dD; —{} where ¢, is a constant which
depends only on K. In particular if we let z, =g7'(x) and w, =g;'(x+1), then
the argument on pp. 82-83 in [2] shows that

alcé(wl7 r)7 r=a¢; Izl—wll
and that
d(ay, B))=s=ci’e>"r.

Since ¢ is an L,;-quasi-isometry,

a, & B(Wza L,r), d (ay, B2) Zi‘s‘

1

where w, = ¢(w,), and arguing again as on p. 83 in [2] we see that

A(Fz)-—( a )2

L1r+s

where I, is the family of arcs joining a, to B, in D,. This implies that

Ypx+1)—dx) _

VoG- 22)

where ¢, is a constant which depends only on K, and L. From (22) and the above
argument with af=(x—1t, x) and B} =(x+1, ) we conclude that

P+ —gx) _
C2 l{/(x) 'I'(x—t)

for all such x and t. Set

h@) =3 | @t +ba—mdieg [ WG+ —ute—n)] e
0
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for z=x+iye H—{»} and h(®)=«. Then h maps H homeomorphically onto H
and h is continuously differentiable and K-quasiconformal in H with

1 |dz| - |dh(2)| = |dz|
csIm(z) Im(h(z)~ “Im(z)’

where K and c; depend only on c¢,, and hence on K; and L,. (See pp. 69-74 in [2]
for the case where {s(x) is increasing in x.) Thus f, = g5'°hog, is a homeomorph-
ism of D, onto D,, f=¢ on aD,, f, is K-quasiconformal in D, and

|dfu(2)| _|dh(w)| gi(2)]
|dz| ldw| |g5(fi(2))l

for ze D;, w=g,(z). From (11) applied to g; and g, we obtain

d(z, aDl)

z=lg1 D= ) <2,
d (f(2), 8D,
3=|g5(f1(2)) gn ((Zz(i)))sz.
Thus
1 d(fi(2),8D;) _ldf:(2)| _, d(fi(2),8D,)
dc; d(zaDy — |dz] e Td(z D)) (23)

and it remains to bound the ratio on the left and right sides of (23).
If w,, w,, ws is an ordered triple of points in D, —{x}, then

Wi —wa|=c, L7 |w;— ws|

by (21) and D, is a K,-quasidisk where K, depends only on K; and L,. Hence f,
can be extended by quasiconformal reflection in dD; and éD, to yield a K-
quasiconformal mapping of R? onto itself with K;=KK3K5. Fix z,e D, and
z,€dD,—{»}, and choose z;€dD; so that |z3—z,|=|z;—2z,|. Since f; is K;-
quasiconformal in R? with f,(c) =,

Ifi(z) — fiz)l=c fi(z3) — fi(z)| = cq | 23— 25| = c4 |21 — 24l
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where ¢ and ¢, =cL, depend only on K; and L,. We thus obtain

cl |z1= 2ol <|fi(z) ~ fulz) = cslz1~ 20 (24)

4

for all z, € D, and z,€9D; —{oc}. In particular, (24) implies that

4 (z,0D) =d (fy(2), D) =y d (2,3D,)

4

for all z € D,, and we conclude from (23) that f, is a local L,-quasi-isometry in D,
with L,=4csc,. Lemma S then implies that f, is an L,-quasi-isometry in D,
where L;=max (L,, L,), and choosing f = f, completes the proof of the first part
of Theorem 6.

Finally suppose that z, € D;, z,€ D, and that (20) holds for all z € 9D, —{}. If
wedD,—{=}, then z = f;'(w)e€dD, —{x} and

Ifi(z))— w| _ Ifi(z))—f1(2)] |z,— 2|

|z~ wl B |z, — 2| |z, — &(2)|

lies between (bc,)™ ' and bc, by (20) and (24). By Lemma 7 there exists an L,-
quasi-isometry f,: D, — D, such that f, is the identity on aD,, f»(fi(z,)) = z, and
L, depends only on K, and b. Thus f = f,°f; has all the properties required in the
second part of Theorem 6.

Finally we require the following result which shows that a certain class of
quasi-isometries is invariant under conjugation by inversion.

LEMMA 8. Suppose that f is an L-quasi-isometry in E < R?, that

sif(z” <L (25)

2|

=

for ze E—{0, =} and that f(0)=0 if 0 E. Then g=TeofT ' is an L>*-quasi-
isometry in T(E) where T(z)=1]z.

Proof. Choose distinct points w;, wo€ T(E)—{} and let z;=1/w. If
Wi, Wy 7& 0’ then Z1, 22€ E__{Oa 00}’

|8(W1)“8(W2)I___|f(21)“f(zz)l A2
[wi— wy| 21— 25| f(z)]|f(22)]
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and hence

1 _lg(wy) —g(wy)|
L |wi—w,

<3 (26)

by (25). If w, =0, then g(w,)=0,

|g(w)) — g(w,)] _ |z,
lwl - Wzl |f(22)|

and again (26) holds. Finally if e T(E) then g(«) =« and thus g is an L3-quasi-
isometry in T(E).

We now obtain the main result of this section from combining Lemma 8 and
Theorem 6.

THEOREM 7. Suppose that D, is a K,-quasidisk in R?, that D, is a Jordan
domain in R* and that ¢ : 0D, — D, is an L,-quasi-isometry. Then there exist L-
quasi-isometries f : D, — D, and f*: D% — D¥ such that f=f*=¢ on oD, and L
depends only on K, and L,.

Proof. Suppose that ©«edD,. Then D, and D¥ are K,-quasidisks with oD, =
dD* and the existence of f and f* is an immediate consequence of Theorem 6.

Suppose next that ¢ dD,. Then e D* and «c D%. By making a preliminary
change of variables we may assume that 0€ 9D, and that $(0)=0. For j=1, 2 let
G, denote the image of D; under T(z)=1/z and set y=TopoT '. Then G, is a
K,-quasidisk with ©€dG,,

1 _lé@z)| _ 27)

1

L1 lzl

for ze€dD,—{0} and hence ¢ :0G, — 3G, is an L3- quas1 1sometry by Lemma 8.
Theorem 6 then yields L,-quasi-isometries g: G, — G, and g*:G¥ — G% such
that g =g* =4 on G, and L, depends only on K, and L,. In addition, since
0e G* 0eG?% and

02|

0w

for z € G, —{} by (27), we can choose g* so that g*(0) =0. Fix z, € G, —{} and
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let z, be a point where the segment joining 0 to z; meets dG;. Then

lg(zl)l =|g(z1) — g(z0)| +18(z0)| = L |2, — 20| + | (zo)]

SLZ ‘Zl _ZO|+L1 i20| SLZ IZII

since L, =L,;. Thus by symmetry

for z € G;—{}. Next

1 _lg%)l
L, |z

=L,

for ze G¥—{0, »} since g* is an L,-quasi-isometry in G¥. Thus f=T 'ogoT and
f¥*=T 'og*-T have the required properties by Lemma 8.

COROLLARY 1. Suppose that D, and D, are K- and K,-quasidisks in R>
and that f: D, — D, is a bijective local L,-quasi-isometry. Then there exists an L-
quasi-isometry g: R?>— R? such that g=f in D, and L depends only on K,, K,
and L,.

Proof. By Lemma 6, f extends to an L,-quasi-isometry of D, onto D, where
L, depends only on K;, K, and L,. Next Theorem 7 with ¢ =f|dD, yields an
L*-quasi-isometry f*: D% — D3 such that f*=f on 9D, and L% depends only on
K;, K, and L,. Then

f in D,
= _ 2
5 {f* in D%, (28)

is the desired extension of f.

COROLLARY 2. Suppose that C, is a K,-quasicircle and that ¢ is an L,-
quasi-isometry in C,. Then there exists an L-quasi-isometry g: R>— R? such that
g =¢ on C, and L depends only on K, and L,.

Proof. Let C,=¢(C,) and for j =1, 2 let D; be a component of R?— C; chosen
so that D; = R?. If f and f* are the L-quasi-isometries given by Theorem 7, then
g defined in (28) is the required extension.
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Corollary 2 extends recent results of Jerison and Kenig [9] and of Tukia [18]
who consider the cases where C, is a line and a circle, respectively.

4. An application

If f is a local L-quasi-isometry in a plane domain D with L <L(D), then f is
injective. The following result shows that one can say more whenever D is simply
connected.

THEOREM 8. Suppose that D, is a simply connected proper subdomain of R?
and that f is a local L-quasi-isometry in D, with L <L(D,). Then there exists an
L-quasi-isometry g: R*>— R? such that g=f in D, and L depends only on L(D,)
and L,.

Proof. Let D, = f(D,) and let g denote any local L,-quasi-isometry in D, with
L,<L(D,)/L,. Then geof is a local L1L2—quaéi-isometry in D, geof is injective in
D, since L,L,<L(D,) and hence g is injective in D,. Thus

L(D,)

1

L(D,)= > 1. (29)

Since f is injective in D,, f is an L3-quasiconformal mapping of D, and hence
D, is a simply connected proper subdomain of R?. Then by Theorem 3 and (29)
D, and D, are K- and K,-quasidisks, where K; and K, depend only on L(D,)
and L(D,)/L; respectively, and the existence of g follows from Corollary 1.

Theorem 8 can be interpreted physically if we think of D, as a homogeneous
elastic body and f as the distortion of D; due to a force field. In this case L(D,)
measures the maximum permissible strain in D, before D, buckles. Theorem 8
asserts that if the strain in D, is less than L(D,), then the shape of D, is not
substantially changed under the force field.
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