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On the placement problem of Reeb components

Shigeaki Miyoshi

Let f be a codimension-one smooth foliation on a three-sphere, S3. By
Novikov&apos;s theorem [10], there exists a Reeb component in &amp; and the entire set of
Reeb components of &amp; is &quot;knotted&quot; in S3 in the sensé of [10]. The placement
problem of Reeb components in S3 is not only interesting in itself but also related
to linked closed orbits of a transverse vector field to &amp;. In fact, Novikov proved
that a vector field transverse to a Reeb foliation on SxxD2 has a periodic
trajectory which is isotopic to the circle Sxx0 traversed once (see [10], Lemma
9.1). Therefore one can consider a Reeb component as a &quot;stable closed orbit&quot; of
any transverse vector field and in the case of studying linked closed orbits of a

transverse vector field, the placement problem of Reeb components in S3 is

significant.
In the présent paper, we study the placement problem of Reeb components in

S3 and hâve certain fundamental results about the structure of codimension-one
smooth foliations on S3. In §2, we will prove a décomposition theorem with
respect to a codimension-one smooth foliation on S3 which also asserts that the

décomposition is represented by a directed linear graph. The associated graph
with a foliation must satisfy some conditions and conversely there exists a smooth
foliation on S3 whose associated graph is the given graph satisfying the conditions.
We will call (the cores of) ail Reeb components in a codimension-one smooth
foliation on S3 a Reeb link. Then it follows that a fibred link is a Reeb link by the
standard technique, winding (the ends of) the fibres. So it is natural to consider
what conditions on the given foliation on S3 imply the Reeb link is fibred (we will
use a term &quot;spinnable&quot; instead of &quot;fibred&quot; in this paper below, see §1). §3 is

devoted to the study in the case of &quot;vertexwise fibred&quot; (precisely, see §1). In §4,

we construct some examples which we need in order to realize a smooth foliation
according to the given graph. Furthermore in §4 we construct Reeb knots (with
smooth foliations) which are &quot;vertexwise fibred&quot; but are not spinnable (fibred).

The author would like to express his hearty thanks to Professor Mitsuyoshi
Kato for valuable comments and suggestions, and also to Makoto Yamamoto and

Teruhiko Soma for helpful conversations.
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§1. Statement of résulte

We work mostly in the smooth category and ail foliations we consider will be
smooth (C°°), of eodirnension-one unless otherwise stated.

Let &amp; be a foliation on S3. We dénote the entire set of Reeb components of &amp;

by R Uiw=i Ru where Rt is a solid torus in S3 and the restricted foliation ^|Ri is

a Reeb foliation on the solid torus.

DEFINITION. A link L in S3 is a Reeb link if it is isotopic to a link which
consists of cores of ail Reeb components of a foliation on S3, where a core of a

solid torus is a circle S1x0 in some fixed framing S1xD2 of the solid torus.

A Reeb link is non-trivial, that is, no component can be spanned by a dise, not
intersecting the others (see Novikov [10], Theorem 9.2) and furthermore it is

non-splittable (see Proposition 2.1 below and Roussarie [14]).

DEFINITION. A compact 3-manifold with boundary M S3-Int JR is called
the Reeb link exterior with respect to &amp;.

Our main aim in this paper is to describe a certain structure of the Reeb link
exterior with respect to &amp;. It is well known that every compact leaf in &amp; is

difïeomorphic to a torus. We consider to separate the foliated manifold (M, &amp;\M)

along compact leaves and hâve the following graphical représentation theorem.
Before stating the theorem, we make terminological preliminaries. Let L be a link
in S3 and N(L) a tubular neighbourhood of L in S3. Then S3-IntN(L) is called

an exterior of a link or a link exterior. Let (S1 xD2) # • • • # (S1 xD2)-»S3 be an

embedding of fe-times interior-connected sum of solid tori into a three-sphere.
Then we call this embedded submanifold a solid toral sum in S3. Moreover let L
be a link in a solid toral sum (in S3) and N(L) a tubular neighbourhood in the
solid toral sum. Then the solid toral sum minus Int N(L) is said to be an exterior of
a link in a solid toral sum or a link exterior in a solid toral sum. Finally, a foliated
I-product over a manifold T is a foliated manifold (Tx/,^) such that ail leaves of
&amp; are transverse to {x}xj for ail x e T, where I [0,1].

THEOREM 1. Let &amp; be a foliation on S3. Then there exists a directed linear

graph (Le. a one-dimensional complex with directions on edges) F&amp; corresponding
to &amp; which represents a structure of &amp; as follows:

(1) vertices; there are three types of vertices *,• and O which represent Reeb

components, foliated I-products over tori {which may hâve infinitely many compact
leaves) and link exteriors or link exteriors in solid toral sums with foliations whose
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interior leaves are ail non-compact, respectively. *, # and O are referred to as star,
black and white vertices respectively.

(2) edges; an edge represents a compact leaf of &amp; along which we eut S3 so as

to hâve submanifolds represented by vertices which are connected by the edge.

(3) directions; let vx and v2 be vertices of one edge in F&amp;. Then a direction from

Vi to v2, v^v2 means the toral compact leaf corresponding to the edge bounds a solid

torus in S3 containing the submanifold represented by the vertex v2.

Remark 1. By Alexander&apos;s solid torus theorem (see [12]), every torus in S3

bounds a solid torus on at least one side. Therefore every compact leaf in ^
bounds a solid torus so that every edge in F&amp; is directed. Moreover cylindrical
components which are investigated in [2] do not occur in foliations on S3. Note
that an edge in F&amp; is directed in both directions if and only if the corresponding
toral compact leaf is unknotted in S3.

Remark 2. A foliation restricted to the interior of a submanifold which is

represented by a white (or a star) vertex is a connected component of &amp; in the
sensé of Novikov [10].

Let v be a vertex in a directed linear graph F. Suppose that F is a tree, that is,

F is contractible. Suppose that there are (i + m + n)-edges which hâve v as a

common vertex in F and that /-edges of them are flowing out from v, m-edges of
them are flowing into v and n -edges of them hâve both directions. Then we will
call the non-negative integer triple (l,m,n) the index of the vertex v.

The following is a characterization of the graphs corresponding to foliations on
S3 by Theorem 1:

THEOREM 2. Let &amp; be a foliation on S3 and F&amp; be the graph corresponding
to &amp; by Theorem 1. Then F&amp; satisfies the following conditions (i)-(vi);

(i) F&amp; is a finite tree,

(ii) there exists a star vertex,
(iii) there does not exist a vertex whose index is (0, mt, 0) nor (0, m2,1) where

mx^2 and m2^l,
(iv) an index is (0,1,0) or (0,0,1) if and only if the vertex is star,
(v) the index of the black vertex is (1,1,0) or (0,0,2),

(vi) black vertices are not connected to each other by one edge.

Conversely, if a directed linear graph F which satisfies the conditions (i)-(vi) is

given, then there exists a foliation % on S3 such that F&lt;$ F.
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By a construction in realization of a foliation from a given graph, we hâve the

following corollary:

COROLLARY. A composite knot of Reeb knots is a Reeb knot.

Next we consider the question when a Reeb link is fibred or more generally,
&quot;vertexwise fibred&quot;. First note that we may assume that the foliation has only
finitely many compact leaves so far as we discuss the placement problem of Reeb

components. In fact, we can replace each foliated I-product over a torus by a

torus in the given foliation by adjusting the holonomy of the boundary leaves of
the foliated i-product over a torus into the flat holonomy (i.e. ail diflfeomorphisms
which generate the holonomy are infinitely tangent to the identy at 0), if
necessary.

Let F&amp; be the graph associated with a given foliation &amp;. We assume there is

no black vertex in T&amp;. The Reeb link of &amp; is vertexwise fibred if each restricted
foliation of 9 to the interior of the submanifold represented by a vertex is a

bundle foliation, that is, there is a fibre bundle structure on the interior of the
submanifold over S1 and the foliation is the one whose leaves are fibres of the

fibre bundle.
In order to describe asymptotic behaviour of non-compact leaves in a foliation,

we need the concept of ends of an open connected manifold.

DEFINITION. Let F be an open connected manifold. A family e of non-
empty connected open subsets of F is called an end of F if e satisfies the

following conditions (i)-(iv);
(i) C\F(U)— U is compact for ail Ue e, where C1F( means the closure with

respect to the topology of F,

(ii) if U, U&apos;ee, then there is 17&quot; e e such that [/&quot;c UDU\

(iv) e is a maximal family satisfying (i), (ii) and (iii).
An end e of F is called isolated if there is Ue e such that if an end e&apos; of F

contains U then e&apos; s.

For the following définitions, let 9 be a transversely orientable foliation on an

arbitrary closed orientable manifold M.

DEFINITION. Let e be an end of a non-compact leaf F of &amp;. Le(F)
fluee ClM(l7) and called the e-limit set of F.

e-limit sets of non-compact leaves hâve been studied by many authors. For

properties of e-limit sets, we refer to [1], [6], [8], [9], [11] and [15] for example.
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In [8], Nishimori defines a notion which prescribes circumstances of ends of
leaves in a foliation as follows:

DEFINITION. Let s be an end of a leaf F of ^. Then e is a tame end of
depth 1 if the following conditions (i)-(iii) are satisfied;

(i) e is isolated,
(ii) Le(F)nF &lt;t&gt;, and

(iii) e approaches Le(F) from one side, that is, for ail xeLe(F) there exist
ô&gt;0 and Use such that &lt;p({x}x]-Ô, O[)nU &lt;t&gt; for some transverse flow
&lt;p:MxR-»M.

For more détails, see Nishimori [8] and [9].
Next we define a notion of depth of leaves (see Nishimori [8]). Let Fx and F2

be leaves of SF. We say FX&lt;F2 if and only if Fx^ C1M(F2). Moreover we write
Fl&lt;F2 if and only if FX&lt;F2 and FX^F2. For a leaf F of &amp;, we dénote by d(F)
the supremum of integers k such that there exists a séquence of leaves Fl9..., Fk

of 9 satisfying Ft&lt;- • &lt;Fk=F. Let d(&amp;) be the supremum of d(F) where F
runs through 9. We call d(F) and d(&amp;) the depth of F and 9 respectively.

Now we can state our resuit. Recall that a leaf is said to be proper if it is not
asymptotic to itself.

THEOREM 3. Let &amp;* be a foliation on S3. Then the following four conditions
are équivalent:

(i) d(^) 2,
(ii) ail leaves of 9 are proper and ail ends of non-compact leaves are isolated,
(iii) ail ends of non-compact leaves are tame ends of depth 1, and
(iv) for the associated graph F&amp;, (a) each restricted foliation of &amp; to the interior

of the submanifold represented by a white vertex is a bundle foliation, and (b) for
each non-compact leaf F of a foliated I-product over a torus represented by a black
vertex, there exist compact leaves Fa and F2 such that the restricted foliation to the

component of the foliated I-product over a torus minus F2 U F2 which contains F is a
bundle foliation.

For foliations which hâve only finitely many compact leaves, we hâve the
following corollary:

COROLLARY 1. Let &amp; be a foliation on S3 which has only finitely many
compact leaves. Then the following are équivalent:

(i) dm 2,

(ii) ail leaves of 9 are proper and ail ends of non-compact leaves are isolated,

(iii) ail ends of non-compact leaves are tame ends of depth 1, and

(iv) the Reeb link of 9 is vertexwise fibred.
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As noted above, since the link type of the Reeb link does not change when we
replace each foliated J-product over a torus by a torus, we note that the
conditions (i)-(iii) of Theorem 3 imply that the Reeb link is vertexwise fibred.

Since d(&amp;)j= 1 for a foliation on S3, by Nishimori&apos;s resuit (Theorem 1 in [8])
and Theorem 3 we hâve the following:

COROLLARY 2. Let &amp; be a foliation on S3. Then each condition of Theorem
3 is équivalent to the one that (&amp;, ^) is a partially ordered set and &amp; is almost
without holonomy.

Let L be a hnk in S3. We say L is a spinnable if there exists a fibration
7r : S3 — L —&gt; S1 and a tubular neighbourhood of each component Kt of L framed
as SlxD2 with Kl^S1xO such that the restriction of tt to Slx(D2-0) is the

map into S1 given by (x, y) •—&gt; y/1 y |. Ordinarily, a spinnable link is referred as a

fibred link (see [12]). However, in order to avoid confusion with vertexwise fibred,
we call it as above. Let L be a spinnable link in S3. Then one can construct a

foliation on S3 whose Reeb link is L by winding ends of ail fibres to the boundary
of a smaller tubular neighbourhood of each component Kt of L (see [16]). We
also call this foliation or the restriction of this foliation to the Reeb link exterior
spinnable. Note that the associated graph with this foliation is as Figure 1.

As a detailed part of Theorem 3, we hâve the following:

PROPOSITION 1. Let &amp; be a foliation on S3 which satisfies the condition of
Theorem 3. Let Y&amp; be the graph associated with 8P. Then the restriction of &amp; to the

interior of the submanifold represented by a white vertex whose index (1,0,0) is

spinnable. In particular, if the associated graph is O—»—*, then the Reeb knot is

spinnable with respect to &amp;.

When we forget a foliation on the Reeb link exterior and observe only a Hnk

type of the Reeb link, we hâve the following proposition in contrast with

Fig. 1
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Proposition 1:

PROPOSITION 2. There exists a vertexwise-fibred Reeb knot which is not a
spinnable knot. In fact, the twisted double of any Reeb knot is a Reeb knot.

For the définition of a twisted double of a knot, see the proof of Proposition 2.

§2. A graphical représentation of a foliation on S3

In this section, we prove Theorem 1 and the first half of Theorem 2. First we
state the following:

PROPOSITION 2.1. The Reeb link exterior of any Reeb link is irreducible, that
is, each embedded 2-sphere bounds a 3-ball in the Reeb link exterior. In other
words, each Reeb link is non-splittable.

Proposition 2.1 follows directly from Novikov&apos;s theorem [10] and the sphère
theorem (see [3], [12]). Roussarie [14] proved a more gênerai resuit. For more
détails, see [14].

Recall that SF is a foliation on S3 and R Ur=i^t is the entrie set of Reeb

components of &amp;. Let M dénote the Reeb link exterior with respect to &amp;. A
foliated I-product over a torus in &amp; is meant to be a T2 x / in S3 with the induced
foliation which is a foliated I-product over a torus. We say a foliated I-product
over a torus in &amp; is maximal if it is maximal with respect to the relation of
inclusion. Then we can take ail maximal foliated I-products over tori in
&amp;;CU..., Cm. Note that there are only finitely many maximal foliated I-
products over tori in &amp;

* Also note that there are only finitely many compact
leaves which are not contained in Uî^i Q- We dénote the compact leaves by

Si,..., S[.

Let Mt be the closure of a connected component of M —

(U!=i S,)) in M. Then MtnMj is a torus in S3 if i£j and Mt

Lemma 2.2. Mt is a link exterior or a link exterior in a solid toral sum in S3.

Proof. Obviously, the boundary BMt is a union of tori. Let dMt =Ua=i ^4&gt;

where Ua is a torus in S3. By Alexander&apos;s solid torus theorem, there exists a solid
torus Va in S3 such that dVa Ua for each Ua. We can assume that Mt fllnt Va
&lt;t&gt; for an unknotted solid torus Va in S3, taking the other solid torus for Ua dVa
in S3, if necessary.
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First, if Mx H Int Va &lt;t&gt; for any a 1,..., sl9 then M, S3-US«i Int Va so

that M, is a link exterior.
Next, suppose that there exists a e{l,..., s,} such that Mt Pi Int Va^ &lt;f&gt;. The

proof is divided into two cases as follows:/. Vb c Va for any b e {1,..., st}, and IL
otherwise case, that is, there is fce{l,..., s,} such that Vb&lt;£ Va. We need two
sublemmas.

SUBLEMMA 1. Let Vx and V2 be solid ton in S3 such that V1nV2ï&lt;t&gt;,

dV1ndV2 &lt;t&gt;, V1£V2 and V2£V1. Then V1UV2 S3.

SUBLEMMA 2. Let Vt and V2 be knotted solid tori in S3 such that Vtn
V2ï&lt;t&gt;,dV1DdV2 &lt;P,V1t V2 and V2tV1. Then VxH V2 is a solid toral sum in
S3, that is, there is an embedding (S^xD2) # (S1 xD2)-*S3 whose image
is Vx H V2.

Thèse sublemmas can be easily proved. So we omit the proof of Sublemma 1

and we only sketch the proof of sublemma 2.

Sketch of the proof of Sublemma 2. By the fact that Vr&apos;s are knotted and

irreducible and by gênerai position argument, we assert that there exists a

meridian dise of Vx which does not intersect dV2 (changing the suffixes of Vt&apos;s, if
necessary). Then there exists a 3-ball B3 in Int Vt such that dV2c=IntB3,
d£3c=Int V2 and dV1a S3-Int B3&lt;= V2. This implies VxnV2 is difïeomorphic to

(S^D^tf^x D2). This proves Sublemma 2.

Case I. First we assert that Vb H Vc &lt;\&gt; if b =fc a and c^a. In fact, assume

VbnVc^ &lt;jf&gt;, then VbUVcc Va so that Vb c Vc or Vc e Vb by Sublemma 1. We

can assume VbczVc. Then dVc séparâtes dVa and dVb. This contradicts that
dVa9 dVb and dVc are boundary components of Mr Therefore Vb D Vc (f&gt; for any
b, c€{l,... ,5t}-{a}. This implies MinintVb ^&gt; for any b^a, and conse-

quently Mx is an exterior of a link in a solid torus Va.

Case IL dVbaVa since M c Va. Therefore VanV6^ and also Mt H

Int Vbi=4&gt;. Note that Va&lt;£ Vb and that Va and Vb are knotted respectively by the

définition of V,&apos;s. So, by Sublemma 2 Va H Vb is difïeomorphic to
(S1 x D2) # (S1 x D2). Let Vbl,..., VK be the solid tori which are not contained
in Va. Then Vbx does not contain Vbj nor Va for any i,j&apos; l,..., n, and i^/.
Therefore, for each pair of the solid tori Va, Vbl,..., Vbj, the same situation

occurs. One can prove that Va D Vbl 0 • • • H Vbn is difïeomorphic to
(S1 x D2) # • • • # (S1 x D2), an (n + l)-times connected sum of solid tori, by the
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same considération as Sublemma 2. Let VCi,..., VCm be the solid tori which are
contained in Va. Then Mt Va D Vbi n • • • H VK - VCl U • • • U VCm. This complètes
the proof of Lemma 2.2.

Proof of Theorem 1. As the observation just before Lemma 2.2, we may take
maximal foliated J-products over tori C1?..., Cm. We assign to C3,..., Cm black
vertices. By the maximality of the foliated J-products over tori, this assignment is

well-defined, that is, non-negative integer m and submanifolds C,&apos;s dépend only
on &amp;. Then submanifolds M,&apos;s which are defined just before Lemma 2.2 are
well-defined and by définition interior leaves in $F\Mi are ail non-compact. We
assign to M,&apos;s white vertices and to Reeb components star vertices. Finally,
connect those vertices each other by an edge according that the submanifolds
which are represented by the vertices intersect on a torus in S3. Direct ail edges

according to Alexander&apos;s solid torus theorem, then we hâve the desired directed
linear graph F&amp;. Now, by Lemma 2.2 and our construction of the graph, the
assertions of the theorem is obvious.

Next we prove the first half of Theorem 2. We will prove the latter half and

Corollary to Theorem 2 in §4.

Proof of Theorem 2. Part 1. We prove the graph F&amp; satisfies the conditions.
By the définition, Y&amp; is a finite connected graph. Since each torus in S3 séparâtes
S3 there is no loop in F&amp;. This shows (i). (ii) follows from Novikov&apos;s theorem [10].
(v) and (vi) are obvious. Next we prove (iii). Let Al5..., Am be loops in solid torus
S*xD2 defined by Al(t) (î/m,(exp(27rit))/2), where S1=R/Z,D2
{zeC\ |z|=i 1} and A, :[0,1]-^ S1 x D2. Let Xm S1 x D2-U™i Int N(At), where
N(A,) is a small tubular neighbourhood in S1xD2. We consider S1xD2 as Xo.
Then a submanifold of S3 represented by a vertex whose index is (0, ml9 0), where

mi^2, is diffeomorphic to Xmi_!. For, as in the proof of Lemma 2.2, in particular
Sublemma 2, a submanifold whose index is (0, mu 0) is a solid toral sum in S3 and

an (m 4- l)-times connected sum of solid tori is diffeomorphic to Xm. Note that the
vertex is not a black vertex. Any boundary component dtXm of Xm is compressible

in Xm, that is, natural homomorphism ir^X^—^tt^X™) induced by the
inclusion is not monic. Therefore, by Novikov&apos;s theorem [10], any foliation on Xm
with boundary components as leaves has a compact leaf in Int Xm (see [10]). This
contradicts our construction. A submanifold whose index is (0, m2,1) is

diffeomorphic to Xm2_x —IntN(A), where A is a loop in IntXm2_! and N(A) is a

small tubular neighbourhood of A. Consider the foliation on Xm2_x-IntN(A)
induced from &amp;. Since each interior leaf of the foliation is not compact, each

boundary component of Xm2_!-Int N(A) must be incompressible by Novikov&apos;s

theorem. In other words, A must pass through each meridian dise of ail boundary
components in Xm2_x. Therefore the solid torus corresponding to N(A) in S3 must
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be knotted by non-cancellation theorem on companionship (see Theorem 4.D.9 in
[12]). This contradicts the définition of the index. So there is no vertex whose
index is (0, m1? 0) nor (0, m2,1), where mx ^2 and m2^ 1, in F&amp;. This shows (iii).
The index of a star vertex is obviously (0,1,0) or (0,0,1). Conversely, if the index
of a vertex is (0,1,0) or (0, 0,1), then the corresponding submanifold is a solid
torus in S3. By our construction (and the condition (v)), interior leaves of the
restricted foliation to the solid torus are ail non-compact. Then it is a Reeb
foliation by Novikov&apos;s resuit [10]. Now we hâve proved the first half of Theorem
2.

§3. Reeb links which are vertexwise fibred

Let F be a non-compact leaf in an arbitrary foliated manifold (M, ^).

DEFINITION. A point y g M is a limit point of F if there exists a séquence
{*nlneN m F such that {xn} has no accumulating point in F with respect to the

topology of F as an abstract manifold but converges to y with respect to the

topology of M. The set of ail limit points of F is called the limit set of F and is

denoted by L(F).

In order to prove Theorem 3, we need some lemmas about limit sets and

e-limit sets. Let M be a compact manifold and F a non-compact leaf of a foliation
&amp; on M. Let e be an end of F. A subset of M is called saturated if it is a union of
leaves of SP.

LEMMA 3.1. (1) Le(F) and L(F) are non-empty compact saturated subsets of
M. (2) Le(F) is connected. (3) L(F) is a union of ail e-limit sets of ail ends of
F;L(F) \JaGALEa(F), where {ea}aeA is the set of ail ends of F.

LEMMA 3.2. F is a proper leaf if and only if L(F)nF=&lt;t&gt;.

LEMMA 3.3. (1) F is a proper leaf if and only if L(F) C1M(F) - F. (2) F is a

non-proper leaf if and only if L(F) C1M(F).

LEMMA 3.4. Let Fbea proper leaf and let e be an end of F. Assume Le(F) be

a union of proper leaves, then Le(F) contains a compact leaf.

It is easy to prove Lemma 3.1, 3.2 and 3.3, and we omit the proof.
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Proof of Lemma 3.4. Let 3C be the set of ail non-empty compact saturated sets

in Le(F). Note that %^ &lt;f&gt; and % is ordered by inclusion. Then every non-empty
linear ordered subset of 3if has a lower bound. Therefore there exists a minimal
élément in % by Zorn&apos;s lemma. Let K dénote a minimal élément. If K contains a

non-compact leaf G, then, since G is proper, C1M(G) — G is a closed saturated
subset by Lemma 3.1 and 3.3, and C1M(G)- G &lt;= K. This contradicts the minimal-
ity of K. Therefore K contains no non-compact leaf and thus, by the minimality,
K is just a compact leaf.

Now we prove Theorem 3.

Proof of Theorem 3. First, note that if ail leaves of &amp; are proper every e-limit
set contains a compact leaf by Lemma 3.4. The équivalence between (ii) and (iii)
follows immediately from Lemma 3.1, 3.2 and the fact that each compact leaf in
S3 séparâtes S3.

The rest will be proved as (ii) ^ (iv) i^&gt; (i) =&gt; (ii). First assume (ii). Let M, be a

submanifold represented by a white vertex. Let dMx Sx U • • • U S^ where S, is a

toral boundary component. Since ail leaves of &amp;\Mx are proper and ail interior
leaves of ^|M| are non-compact, we can take a staircase around each S, by
Nishimori&apos;s theorem [7]. Precisely, let / : [0, e[—»[0,8] be a contracting
difïeomorphism which préserves 0 and Xf S1 x/x[0, e[/~ a quotient manifold
where (x, 0, t)~(x, 1,/(*)), and let &amp;f be a foliation on Xf induced from the

product foliation {Sxx Jxr}tG[0,e[ on S1xIx[0, e[. Then there exists an embed-
ding h : Xf-+Mt such that h(S1x/x0/~) SJ and h*^ ^f. It follows from this
description that there exists a torus in Mt which is transverse to &amp;\Mt and is

parallel to S,, that is, there exists an embedding cp:T2xI^&gt;M, such that
(p(T2 x 0) Sj and &lt;p(T2 x 1) is the torus. In fact, one can construct it in a staircase

h(Xf) as follows: Let e&apos;&lt;e, and let ty: S1 xI-* S1*!*[0, e[ be an embedding
defined by &lt;Hx, t) (x, f, (f(e&apos;)- e&apos;)t + e&apos;). Then after rounding corners i/r(S*x J)/~
is a smooth torus in Xf which is transverse to &amp;f. Therefore we hâve tori in Mx

which are transverse to 3 and are parallel to respective boundary components.
Let T1?..., T^ be the tori. Let M\ be the closure in M, of the connected

component of Mx -U/=i T, which does not contain bMx. Then bM\ \})^x T, and

dM[ is transverse to the restricted foliation ^|M;- Let F&apos; be any leaf of &amp;&quot;\M&apos;t and let
F be the leaf of &amp;\Mx such that F&apos;ciF. Then F is a non-compact proper leaf and

UeLe(F) L(F) ClMt(F)-F. By Lemma 3.4, Le(F) contains a boundary
component of Mt for each end e of F. Note that Le (F) consists of just one leaf if and

only if e is a tame end of depth 1 by a resuit of Nishimori [9]. This is the case. Ail
ends of F are isolated by assumption so that they are eut off by cutting M, along
transversal tori TJ&apos;s. Therefore F&apos; is compact. Consequently ail leaves of &amp;\M\ are
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compact and one can construct a fibration ir[:M[-^Sl such that ^|MÎ
{tr^iO) | 0 e S1}. It is clear that tt\ extends into Int M, so that S*|IntM| is a bundle
foliation. This implies (a) of (iv). One can see that 2F satisfies the condition (b) by
a similar observation.

Next assume (iv). For each non-compact leaf F of &amp;y C1M(F)-F L(F)
Ue Le(F) and L(F) consists of compact leaves by the conditions (a) and (b). This
implies d(&amp;) 2.

Assume d(2F)~2. Then &amp; is almost without holonomy, that is, ail non-
compact leaves hâve no holonomy (see Theorem 1 in [8]). Moreover each leaf of
&amp; satisfies the assumption of Theorem 6 in [8], so we conclude that ail leaves of
&amp; are proper and that each end of a non-compact leaf is isolated. This can be

proved directly without difficulty and is an easy case of Nishimori&apos;s theorem. This

complètes the proof.

Proof of Proposition 1. Let M, be the submanifold represented by a white
vertex with the index (1, 0, 0). M, is a knot exterior. Let T be a transversal torus
parallel to the boundary of M, and let M[ be as in the proof of Theorem 3. First
we prove the foliowing assertion:

Assertion. For any leaf F&apos; of ^|M;, dF&apos; F&apos;DdM[ is connected. In fact, dF&apos; is a

longitude of dM[.

Proof of Assertion. Let n be the number of connected components of dF&apos;.

Note that n ± 0. By construction of T, dF&apos; lx U • • • U ln is a torus link in dM[9 that
is, //s are ail parallel in the torus dM[ and each lx is a generator of 7Ti(dM[).
Moreover each orientation of /, induced from F&apos; is the same since 9 is trans-
versely orientable. Therefore, let d : H2(M[, dM[) ^ H1(BM&apos;Ù be the boundary
homomorphism, then d[F&apos;] [dF&apos;] [I1]+- • •+[in] n[i], where [ ] means the

homology class and / is one of /,&apos;s. Moreover n(i#[/]) i#(n[/]) i# • d[F&apos;] 0e
H^MÎJsZ where i^:H1(dM&apos;l)^^ HX(M&apos;) is induced by the inclusion. Since

W7fe0,i#[I] 0 so that l is a longitude of dM[. Next, let I:H2(M[,dM&apos;l)®

H1(M/l)—&gt;Z be the intersection form and jieH^M&apos;,) be a generator of H^M&apos;^

represented by a meridian loop. Then we can assume /([F&apos;], /ut) n. There is a

section a : S *
-&gt; MJ of the fibration irî, that is a simple transversal loop in M[ such

that aiS^HG&apos; is one point for any leaf G&apos;e^|Mî. [cr]^0 in Ht(M&apos;X since

(tr&apos;,)#[cr] (irî)# • o&quot;#[S1] [S1] is the fundamental class. We can assume
J([F&apos;],[o-]) l. On the other hand [a]=miMeH1(Mfl), where m^O. Then 1

&apos;], [a]) m(I([F&apos;], /ut)) m • n, therefore m n 1 so that dF is connected.

It was also proved in the proof of Assertion that a meridian loop can be taken

as another generator of ir^dM&apos;X Specify thèse longitude and meridian and attach
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a solid torus to M[ by the orientation-reversing difïeomorphism S1 x dD2 —» dM[
which takes S^jl} and {0}xdD2 respectively to the specified longitude and
meridian of dM[. Then the resulting manifold is S3 and tt[ extends to S3 except
the core of the solid torus by natural projections S&quot;1 x (D2-0) —&gt; S1. This implies
Proposition 1.

§4. Examples and realization of a foliation

Let V be a codimension-zero compact submanifold in S3 such that dV^&lt;t&gt; and
each component of dV is a torus. Let (/, m, n) be the index of V, that is, dV
consists of (f + m + n)-tori in S3 and J-components bound solid tori outside of V,

m-components bound solid tori on the side of Vand n-components bound solid
tori on both sides. In this section, we will construct a foliation on V with
boundary components as leaves which has no compact leaves in interior, where V
has an index which is not (0,mu0) nor (0, m2,1) where m^l and m2^l.
Furthermore we will prove the rest of Theorem 2 using this construction.
Also we will prove Corollary to Theorem 2 and Proposition 2.

EXAMPLE A. In the case that / • m • n 0.

(1) In the case that the index is (/, 0,0), where /^ 1: (a) Since a (21, 3/)-type
torus link is spinnable (see [12], [5]), on a (21, 3i)-type torus link exterior V we
hâve a spinnable foliation, (b) Let V be a trefoil (i.e. (2, 3)-type torus knot)
exterior and &amp;1 a spinnable foliation on V by the standard fibration of a trefoil
(see [12]). Take loops al9..., aX-x transverse to SF&apos; which are isotopic to meridian
loops in V and let Nic^) be a small tubular neighbourhood of ax in V. Let bt be

a torus knot in dNia,) and N(bt) a small tubular neighbourhood (see Figure 2).
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Fig. 3

Then set V= V-|J!=i Int N(bt) and turbulize &amp;&apos; along b/s so as to hâve dN(fct),
i 1,...,/-1, as leaves. For the définition of turbulization of a foliation along a

transversal loop, we refer to [14] for example. Let &amp; be the restricted foliation to
V. Then (V,&amp;) is a desired foliated submanifold.

(2) In the case that the index is (0, 0, n), where n^l: (a) Let V be an

(n, 2n)-type torus link exterior and &amp; a foliation on V which is a spinnable
foliation with boundary components as leaves. (b) Assume n^2. Let V be an
exterior of the link indicated in Figure 3. V is diflfeomorphic to T2x/. Let 2F

&apos;

be

a foliation on V by cylinders, that is, for example, let &amp;R be a Reeb foliation on
an annulus, then &amp;&apos; SX x^R ={S1xL \ Le^R}. Let al9..., an_2 be loops
defined by ax(t) ((i- l)/(n -2), f, |)6 (R/Z) x (R/Z) x I, and N(at) a small tubular
neighbourhood for each i 1,..., n-2. Then V= V&apos;-Ur=? Int M^i) an(i
turbulize ^&apos; so as to define a foliation on V with boundary components as leaves

(see Figure 4).
(3) In the case that the index is (0,1,0): In this case V is a knotted solid torus

and &amp; must be a Reeb foliation.
(4) In the case that the index is (i, 0, n), where Z ^ 1 and n ^ 1: Let V be a

standard solid torus in S3 and &amp;&apos; a Reeb foliation on V. Let V be framed as

a leaf

ashceof T2*l

Fig. 4



274 SHIGEAKI MIYOSHI

SxxD2 and al9..., an_x loops in V isotopic to the core of V which are
contained in the sub-solid torus V&apos;Ô)c V, where V(è) Sl x D20 with respect
to the framing and D2g)={x€D2 | |x|^|}. Let t be a (21, 3J)-type torus link in
dV(§) where V&apos;@ S1xD2g). Note that we can assume a, and t to be

transverse to 8F&apos;. Remove small open tubular neighbourhoods of a,&apos;s and t, and
turbulize &amp;&apos; so that we hâve a desired foliation.

(5)* In the case that the index is (0, m, n), where m^l and n^2: Let
T3 R3/Z3 be a 3-torus. Let Tx, Ty and Tz be tubular neighbourhoods of x-axis,
y-axis and z-axis in gênerai position, respectively. It is known ([4], [13]) that
T3-Int(Tx UTy UTZ) is diffeomorphic to an exterior of Borromean rings (see

Figure 5). Furthermore this diffeomorphism takes the curves ax, ay and az (as in

Fig. 5

Figure 6) to the longitudes of the rings, and takes a circle that is parallel to an axis

and lie on one of the tubes to a meridian of one of the rings. On the other hand,
T3 — Int T2 is an S^bundle over punctured torus. By Proposition 7.1 of [18], for
an irrational rotation p, there exist orientation-preserving diffeomorphisms / and

g of S1 (in fact they are in SL(2, R) acting on S1) such that p / • g • f&apos;1 • g&quot;1.

Consider the foliated S^bundle over punctured torus which is determined by the

total holonomy difleomorphisms / and g. Then we hâve a foliation on T3 - Int Tz

which is transverse to x-axis, y-axis and the boundary dTz and induces on dTz the

irrational linear foliation by p. We hâve transversal loops ai,...,am-1 which
are isotopic to az in T3-Int (TxUTy UT2) (see Figure 7) since the foliation
induces an irrational linear foliation on dTz. Furthermore loops bl9..., fen_2

which are parallel to x-axis (Figure 7) are also transverse to the foliation.

*The author wishes to thank Professor T. Mizutani and N. Tsuchiya for repairing the original
examples in this case which are only of class C°.
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Let Nfa) and N(b,) be small tubular neighbourhoods and let M
T3-Int(TxUTyUT2U(Ur=VMaJ)U(Ur=i2N(6J))). M is diffeomorphic to an
exterior of the hnk indicated in Figure 8. By turbulizing the foliation along x-axis,
y-axis, at&apos;s and fe/s, we can make dTx, dTy, and dN(fc,), where i-
1,..., m -1 and / 1,..., n -2, leaves of the new foliation. One can wind the
irrational linear foliation on dTz in order to make dTz a leaf. Finally we hâve a

foliation &amp; on M which has the boundary components as leaves and whose
interior leaves are ail non-compact. We hâve a foliated submanifold which has the
index (0, m, n) by embedding (M, &amp;) into S3 as follows: Let L (Jî^T1 K be the
link indicated in Figure 8. Recall that M is an exterior of L. Note that each

Fig 8
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Fig 9

component of L is a trivial knot in S3. Consider M as an exterior of the link L&apos;

L — K3 in a solid torus which is an exterior of the component K3 (see Figures 8

and 9). Now we construct an embedding. Let Ul be a slice of M which contains

dN(K3+t) and a part of dN(K2) and dN(K3), and does not contain any other
boundary components (see Figure 10). We dénote by P a two-punctured dise and

by A an annulus. Then Ul is diffeomorphic to (P x I)\Ja (A x /) where a:dAx
I-^dPxI is an embedding which takes dAx{|} to diPx{|,|}, where d2P is a

component of dP (see Figure 11). Note that the meridian of the solid torus is the

longitude of K3. First we embed Px/ so as to make a local knotted Pxl just
between two components of a(dA x/). Then we attach A xi so as to cover the
knotted part (see Figure 12). Now we hâve an embedding Ut -» S3. We join thèse

embeddings for l^ï^m —1 and embed the other slice of M such that the

boundary torus of the solid torus, that is, dN(K3) is embedded to be the boundary
of a knotted solid torus in S3 (see Figure 9). Then we hâve a desired embedding
M-+S3.

(6) In the case that the index is (l, m,0), where i^l and m^l: We will
construct an example of this type in Example B.

EXAMPLE B. In the case that l-m-n^O and that l • m f 0 and n 0 ((6) of
Example A).

We apply the technique in Example A (2) (b) and A (1) (b). We also apply a

similar construction of an embedding in Example A (5). Let (M&apos;, &amp;&apos;) be the
foliated manifold (V99&apos;) in Example A (2) (b). Precisely, M1 (R/Z) x (R/Z) x I
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9N(K3)
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Fig 10

Fig 11
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Flg 12

and &amp;&apos; S1x&amp;R={S1xL\Le&amp;R} where 9R is a Reeb foliation on an annulus.
Let bu...,bl+m+n-2 be loops defined by bl(0 ((i-l)/(i + m + n-2), t,\)e
(R/Z) x (R/Z) x / and N(bx),..., N(bI+m+n_2) small tubular neighbourhoods. Let
cu ...,Cj_! be torus knots in dN(6m+n),..., dN(fcI+w+n_2) respectively and

N(ct),..., iV(ci-i) small tubular neighbourhoods. Set M M&apos;- Int
((Ur^i&quot;&quot;1 Mb,))U(U!=1i MO)) and 9 a foliation which is obtained by turbulizing

&amp;&apos; along bu i&gt;m+n-i and c^ Ct-U and has dNib^,..., aN(fcm+n_!) and

aN(ci),..., aN(ci_x) as leaves. Then we may embed (M, ^) into S3 whose image
is a desired foliated submanifold. The construction of an embedding is essentially
the same as Example A (5). Let Ut ([2i-3)/2(l + m + n-2),
(2i-l)/2(i + m + n-2)]x(R/Z)xI)nM Then, for n + l^i^m + n-1, embed

Ut into S3 as the same way in Example A (5) except that we replace the

two-punctured dise with a punctured dise. For the other Ul &apos;s, embed as it is. We

join thèse embedding so that the torus which is the image of a connected

component of dM&apos;adM is the boundary of a knotted solid torus (see Figure 13).

In the above construction, set n 0, then we hâve an example of the type (l9 m, 0),
where 1^1 and m^l.

First we prove Corollary to Theorem 2.

Proof of Corollary to Theorem 2. Let (Ml9&amp;ù and (M2,^2) be Reeb knot
exteriors. We can assume that each boundary leaf has the flat holonomy by
adjusting the given holonomy if necessary. In Example B, set 1 1, m =2 and

n 0. That is, let X T2 x I» Int N(À), where A : [0,1] -» (R2/Z2) x I is defined by
À(t) (O, f,|) and N(À) is a small tubular neighbourhood of A, and let 9 be a

foliation on X constructed from (T2xl,9&apos;) in Example A (2) (b) by turbulizing
along A. Note that, in Example B, each boundary component corresponding to the
second component of the index can be embedded to be the boundary of any
knotted solid torus in S3. Then there exists an embedding of X into S3 which
patches Mt and M2 together so as to construct S3 by adding one Reeb component
(compare Figure 13). We hâve a foliation on S3 which consists of 9U 92,9 and a
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n times
l t times

m t times

Fig 13

Reeb component so that the resulting Reeb knot îs the composite knot of the

given two Reeb knots.

Proof of Theorem 2. Part 2. Let F be a graph satisfying conditions (i)-(vi). We
can assume F has no black vertex. For, we can replace a compact leaf with a

foliated J-product over a torus at will. Then there exists a vertex whose index is
(/, 0, n). In fact, since F is a directed finite tree, there must exist a &quot;source&quot; in F.

Let i??,..., v®0 be ail such vertices. We can construct foliated submanifolds of S3

corresponding to u?,..., d°0. Precisely, we can construct foliated manifolds
(M0,, ^?) and embeddings /?:M?-* S3 such that each /?(M?) has the index of v°}

by Example A (1) (a), (2) (a) and (4). Note that ail knotted boundary-tori in
/°(M°)&apos;s are boundaries of tubular neighbourhoods of trefoils. If v°t is connected
to v°j by one edge, then they are connected to each other by an edge with both
direction. This means the boundary components of /?(M?) and /?(M°) which are
corresponding to the edge are unknotted. Therefore we can glue /?(M?) and
f%M®) on the boundary components by deforming /? and /° by isotopy. Next, let
v\9..., us\ be vertices which are connected to ufs by one edge. Then the second

components of the indices of thèse vertices are positive and the vertices are
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connected to i;°&apos;s by the edges corresponding to the second components of the
indices. Let (M}, &amp; and /} :Mj -» S3 be a foliated manifold and an embedding
respectively corresponding to v) as Example A (3), (5) and Example B (1 ^j&quot; ^Si).
In this stage, we can construct the embedding /) so that ail boundary components
of f)(M)) which are corresponding to edges with only one-sided directions are
boundaries of tubular neighbourhoods of trefoils in S3 (compare Example A and

B). Therefore, by isotopy, we can glue f](M)) to some of /?(Aff)&apos;s according to
F. By the same reason, there is no problem for gluing at the vertex which is a

&quot;confluence&quot;, that is, the second component of the index of the vertex is greater
than one. This construction works well inductively. Consequently we hâve a

foliation on S3 whose graph is the given one. This complètes the proof of
Theorem 2.

In order to prove Proposition 2, we need the following (see [12], Chapter
10-H, Corollary 9):

LEMMA 4.1. Let K be a spinnable knot in S3. Then the Alexander polynomial
of K, A(K: t) is monic, that is, the leading coefficient of A(K; t) is ±1.

Proof of Proposition 2. Let Ko be any knot in S3 and let K be a doubled knot
with the companion Ko with twisting number n. Précise construction of K is as

follows: Let L Kx U K2 be Whitehead&apos;s link (see Figure 14) and N(Kt) a tubular
neighbourhood of Kx in S3. Then S3 —IntNCK&quot;!) is a solid torus with a knot K2.
Let hn : S3-Int N{KX) -&gt; N(KQ) be the diffeomorphism such that hn(longitude)
longitude+ n(meridian) and set K hn(K2). K is also called a twisted double of
Ko with a certain twisting number. For the détails, we refer to [12]. Then, as is

well known fact, A(K; t) n • t2~(2n±l) • t + n, where â(K;t) is the Alexander
polynomial of K (see [12], [17]). On the other hand, Whitehead&apos;s link is spinnable
(see [12]). Therefore a twisted double of any Reeb knot is a Reeb knot. Set the

twisting number n^±l, then we hâve Proposition 2.

Fig. 14
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