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On the placement problem of Reeb components

SHIGEAKI MIYOSHI

Let # be a codimension-one smooth foliation on a three-sphere, S>. By
Novikov’s theorem [10], there exists a Reeb component in % and the entire set of
Reeb components of & is “knotted”” in S* in the sense of [10]. The placement
problem of Reeb components in S* is not only interesting in itself but also related
to linked closed orbits of a transverse vector field to %. In fact, Novikov proved
that a vector field transverse to a Reeb foliation on S'x D? has a periodic
trajectory which is isotopic to the circle S'x0 traversed once (see [10], Lemma
9.1). Therefore one can consider a Reeb component as a “‘stable closed orbit” of
any transverse vector field and in the case of studying linked closed orbits of a
transverse vector field, the placement problem of Reeb components in S? is
significant.

In the present paper, we study the placement problem of Reeb components in
S* and have certain fundamental results about the structure of codimension-one
smooth foliations on S>. In §2, we will prove a decomposition theorem with
respect to a codimension-one smooth foliation on $? which also asserts that the
decomposition is represented by a directed linear graph. The associated graph
with a foliation must satisfy some conditions and conversely there exists a smooth
foliation on S> whose associated graph is the given graph satisfying the conditions.
We will call (the cores of) all Reeb components in a codimension-one smooth
foliation on S a Reeb link. Then it follows that a fibred link is a Reeb link by the
standard technique, winding (the ends of) the fibres. So it is natural to consider
what conditions on the given foliation on S? imply the Reeb link is fibred (we will
use a term ‘‘spinnable” instead of “fibred” in this paper below, see §1). §3 is
devoted to the study in the case of ‘“vertexwise fibred” (precisely, see §1). In §4,
we construct some examples which we need in order to realize a smooth foliation
according to the given graph. Furthermore in §4 we construct Reeb knots (with
smooth foliations) which are ‘“vertexwise fibred” but are not spinnable (fibred).

The author would like to express his hearty thanks to Professor Mitsuyoshi
Kato for valuable comments and suggestions, and also to Makoto Yamamoto and
Teruhiko Soma for helpful conversations.
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§1. Statement of results

We work mostly in the smooth category and all foliations we consider will be
smooth (C%), of codimension-one unless otherwise stated.

Let ¥ be a foliation on S>. We denote the entire set of Reeb components of %
by R =/-, R, where R, is a solid torus in S> and the restricted foliation %| R IS
a Reeb foliation on the solid torus.

DEFINITION. A link L in S? is a Reeb link if it is isotopic to a link which
consists of cores of all Reeb components of a foliation on S>, where a core of a
solid torus is a circle S'x0 in some fixed framing S'x D? of the solid torus.

A Reeb link is non-trivial, that is, no component can be spanned by a disc, not
intersecting the others (see Novikov [10], Theorem 9.2) and furthermore it is
non-splittable (see Proposition 2.1 below and Roussarie [14]).

DEFINITION. A compact 3-manifold with boundary M = S>—1Int R is called
the Reeb link exterior with respect to %.

Our main aim in this paper is to describe a certain structure of the Reeb link
exterior with respect to %. It is well known that every compact leaf in & is
diffeomorphic to a torus. We consider to separate the foliated manifold (M, ;)
along compact leaves and have the following graphical representation theorem.
Before stating the theorem, we make terminological preliminaries. Let L be a link
in $* and N(L) a tubular neighbourhood of L in S*. Then S$*—1Int N(L) is called
an exterior of a link or a link exterior. Let (S'XD?) # - - - #(S'xD?— S? be an
embedding of k-times interior-connected sum of solid tori into a three-sphere.
Then we call this embedded submanifold a solid toral sum in S>. Moreover let L
be a link in a solid toral sum (in S>) and N(L) a tubular neighbourhood in the
solid toral sum. Then the solid toral sum minus Int N(L) is said to be an exterior of
a link in a solid toral sum or a link exterior in a solid toral sum. Finally, a foliated
I-product over a manifold T is a foliated manifold (T X I, &) such that all leaves of
% are transverse to {x}x I for all xe T, where I=[0, 1].

THEOREM 1. Let % be a foliation on S>. Then there exists a directed linear
graph (i.e. a one-dimensional complex with directions on edges) I's corresponding
to % which represents a structure of ¥ as follows:

(1) vertices; there are three types of vertices *, @ and O which represent Reeb
components, foliated I-products over tori (which may have infinitely many compact
leaves) and link exteriors or link exteriors in solid toral sums with foliations whose
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interior leaves are all non-compact, respectively. =, @ and O are referred to as star,
black and white vertices respectively.

(2) edges; an edge represents a compact leaf of ¥ along which we cut S* so as
to have submanifolds represented by vertices which are connected by the edge.

(3) d_i:eit’ions; let v, and v, be vertices of one edge in I'y.. Then a direction from
v, to v,, V;U, means the toral compact leaf corresponding to the edge bounds a solid
torus in S* containing the submanifold represented by the vertex v,.

Remark 1. By Alexander’s solid torus theorem (see [12]), every torus in S*
bounds a solid torus on at least one side. Therefore every compact leaf in &
bounds a solid torus so that every edge in I'¢ is directed. Moreover cylindrical
components which are investigated in [2] do not occur in foliations on S>. Note
that an edge in Iy is directed in both directions if and only if the corresponding
toral compact leaf is unknotted in S3.

Remark 2. A foliation restricted to the interior of a submanifold which is
represented by a white (or a star) vertex is a connected component of % in the
sense of Novikov [10].

Let v be a vertex in a directed linear graph I'. Suppose that I' is a tree, that is,
I' is contractible. Suppose that there are (I+m+n)-edges which have v as a
common vertex in I and that [-edges of them are flowing out from v, m-edges of
them are flowing into v and n-edges of them have both directions. Then we will
call the non-negative integer triple (I, m, n) the index of the vertex v.

The following is a characterization of the graphs corresponding to foliations on
S3 by Theorem 1:

THEOREM 2. Let % be a foliation on S> and I's be the graph corresponding
to ¥ by Theorem 1. Then I's satisfies the following conditions (i)—(vi);

(i) I's is a finite tree,

(ii) there exists a star vertex,

(iii) there does not exist a vertex whose index is (0, m,, 0) nor (0, m,, 1) where
m;=2 and my=1,

(iv) an index is (0,1,0) or (0,0, 1) if and only if the vertex is star,

(v) the index of the black vertex is (1,1,0) or (0,0,2),

(vi) black vertices are not connected to each other by one edge.

Conversely, if a directed linear graph I" which satisfies the conditions (i)—(vi) is
given, then there exists a foliation 4 on S such that F4=T.
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By a construction in realization of a foliation from a given graph, we have the
following corollary:

COROLLARY. A composite knot of Reeb knots is a Reeb knot.

Next we consider the question when a Reeb link is fibred or more generally,
“vertexwise fibred”. First note that we may assume that the foliation has only
finitely many compact leaves so far as we discuss the placement problem of Reeb
components. In fact, we can replace each foliated I-product over a torus by a
torus in the given foliation by adjusting the holonomy of the boundary leaves of
the foliated I-product over a torus into the flat holonomy (i.e. all diffeomorphisms
which generate the holonomy are infinitely tangent to the identy at 0), if
necessary.

Let I'y be the graph associated with a given foliation %. We assume there is
no black vertex in I'y. The Reeb link of & is vertexwise fibred if each restricted
foliation of & to the interior of the submanifold represented by a vertex is a
bundle foliation, that is, there is a fibre bundle structure on the interior of the
submanifold over S' and the foliation is the one whose leaves are fibres of the
fibre bundle.

In order to describe asymptotic behaviour of non-compact leaves in a folia-
tion, we need the concept of ends of an open connected manifold.

DEFINITION. Let F be an open connected manifold. A family £ of non-
empty connected open subsets of F is called an end of F if ¢ satisfies the
following conditions (i)—(iv);

(i) Clg(U)—U is compact for all U € &, where Clg( ) means the closure with

respect to the topology of F,
(i) if U, U'e ¢, then there is U"€ ¢ such that U'cUNU’,

(iii) Nyee Clg(U) = ¢, and

(iv) € is a maximal family satisfying (i), (if) and (iii).

An end ¢ of F is called isolated if there is U € ¢ such that if an end €' of F
contains U then &' =&.

For the following definitions, let % be a transversely orientable foliation on an
arbitrary closed orientable manifold M.

DEFINITION. Let € be an end of a non-compact leaf F of . L. (F)=
MNuee Cly(U) and called the e-limit set of F.

e-limit sets of non-compact leaves have been studied by many authors. For
properties of &-limit sets, we refer to [1], [6], [8], [9], [11] and [15] for example.
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In [8], Nishimori defines a notion which prescribes circumstances of ends of
leaves in a foliation as follows:

DEFINITION. Let € be an end of a leaf F of %. Then ¢ is a tame end of
depth 1 if the following conditions (i)—(iii) are satisfied;
(i) € is isolated,
(i) L. (F)NF=¢, and
(iif) € approaches L (F) from one side, that is, for all x e L_(F) there exist
>0 and Uee such that ¢({x}x]—8, O)NU=¢ for some transverse flow
¢:MXR—-> M.

For more details, see Nishimori [8] and [9].

Next we define a notion of depth of leaves (see Nishimori [8]). Let F, and F,
be leaves of . We say F,=F, if and only if F; < Cly(F,). Moreover we write
F,<F, if and only if F;=F, and F, # F,. For a leaf F of %, we denote by d(F)
the supremum of integers k such that there exists a sequence of leaves F, ..., F;
of # satisfying F,<---<F,=F. Let d(¥) be the supremum of d(F) where F
runs through %. We call d(F) and d(%) the depth of F and % respectively.

Now we can state our result. Recall that a leaf is said to be proper if it is not
asymptotic to itself.

THEOREM 3. Let % be a foliation on S>. Then the following four conditions

are equivalent:
() d(F)=2,

(ii) all leaves of ¥ are proper and all ends of non-compact leaves are isolated,

(iii) all ends of non-compact leaves are tame ends of depth 1, and

(iv) for the associated graph Iy, (a) each restricted foliation of F to the interior
of the submanifold represented by a white vertex is a bundle foliation, and (b) for
each non-compact leaf F of a foliated I-product over a torus represented by a black
vertex, there exist compact leaves F, and F, such that the restricted foliation to the
component of the foliated I-product over a torus minus F; U F, which contains F is a
bundle foliation.

For foliations which have only finitely many compact leaves, we have the
following corollary:

COROLLARY 1. Let ¥ be a foliation on S> which has only finitely many
compact leaves. Then the following are equivalent:
(i) d(F)=2,
(ii) all leaves of ¥ are proper and all ends of non-compact leaves are isolated,
(iii) all ends of non-compact leaves are tame ends of depth 1, and
(iv) the Reeb link of F is vertexwise fibred.
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As noted above, since the link type of the Reeb link does not change when we
replace each foliated I-product over a torus by a torus, we note that the
conditions (i)—(iii) of Theorem 3 imply that the Reeb link is vertexwise fibred.

Since d(%)# 1 for a foliation on S*, by Nishimori’s result (Theorem 1 in [8])
and Theorem 3 we have the following:

COROLLARY 2. Let % be a foliation on S*. Then each condition of Theorem
3 is equivalent to the one that (¥, =) is a partially ordered set and % is almost
without holonomy.

Let L be a link in S*. We say L is a spinnable if there exists a fibration
m:8>—L — S' and a tubular neighbourhood of each component K; of L framed
as S'xD? with K;=~S"'x0 such that the restriction of 7w to S'x(D?-0) is the
map into S' given by (x, y)~>y/|y|. Ordinarily, a spinnable link is referred as a
fibred link (see [12]). However, in order to avoid confusion with vertexwise fibred,
we call it as above. Let L be a spinnable link in S>. Then one can construct a
foliation on S> whose Reeb link is L by winding ends of all fibres to the boundary
of a smaller tubular neighbourhood of each component K; of L (see [16]). We
also call this foliation or the restriction of this foliation to the Reeb link exterior
spinnable. Note that the associated graph with this foliation is as Figure 1.

As a detailed part of Theorem 3, we have the following:

PROPOSITION 1. Let & be a foliation on S* which satisfies the condition of
Theorem 3. Let I'y be the graph associated with % . Then the restriction of % to the
interior of the submanifold represented by a white vertex whose index (1,0,0) is
spinnable. In particular, if the associated graph is O——#%, then the Reeb knot is
spinnable with respect to F .

When we forget a foliation on the Reeb link exterior and observe only a link
type of the Reeb link, we have the following proposition in contrast with

-
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Proposition 1:

PROPOSITION 2. There exists a vertexwise-fibred Reeb knot which is not a
spinnable knot. In fact, the twisted double of any Reeb knot is a Reeb knot.

For the definition of a twisted double of a knot, see the proof of Proposition 2.

§2. A graphical representation of a foliation on S°

In this section, we prove Theorem 1 and the first half of Theorem 2. First we
state the following:

PROPOSITION 2.1. The Reeb link exterior of any Reeb link is irreducible, that
is, each embedded 2-sphere bounds a 3-ball in the Reeb link exterior. In other
words, each Reeb link is non-splittable.

Proposition 2.1 follows directly from Novikov’s theorem [10] and the sphere
theorem (see [3], [12]). Roussarie [14] proved a more general result. For more
details, see [14].

Recall that & is a foliation on S? and R ={J"_,R, is the entrie set of Reeb
components of . Let M denote the Reeb link exterior with respect to . A
foliated I-product over a torus in ¥ is meant to be a T?>x I in S> with the induced
foliation which is a foliated I-product over a torus. We say a foliated I-product
over a torus in & is maximal if it is maximal with respect to the relation of
inclusion. Then we can take all maximal foliated I-products over tori in
%;Cy,...,C, Note that there are only finitely many maximal foliated I-
products over tori in ¥. Also note that there are only finitely many compact
leaves which are not contained in | /L, C.. We denote the compact leaves by
Si,..., 8.

‘Let M, be the closure of a connected component of M—((U™,C)U
(Ui=1 S;)) in M. Then M; N M, is a torus in S if i#j and M, N M, # ¢.

Lemma 2.2. M, is a link exterior or a link exterior in a solid toral sum in S>.

Proof. Obviously, the boundary oM, is a union of tori. Let aM; =J3-, U,,
where U, is a torus in S>. By Alexander’s solid torus theorem, there exists a solid
torus V, in S> such that 9V, = U, for each U,. We can assume that M; NInt V, =
¢ for an unknotted solid torus V, in S?, taking the other solid torus for U, =9V,
in §3, if necessary.
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First, if M;NIntV,=¢ for any a=1,...,s, then M;=8>—J5_,Int V, so
that M; is a link exterior.
Next, suppose that there exists ae{l,...,s;} such that M, NInt V,# ¢. The

proof is divided into two cases as follows:I. V, <V, for any be{l,...,s;}, and II.
otherwise case, that is, there is be{l,..., s} such that V,&¢ V,. We need two
sublemmas.

SUBLEMMA 1. Let V, and V, be solid tori in S* such that V,N\V,# ¢,
8V1ﬁ6V2=¢, V1¢ V2 and V2¢ Vl' Then V1UV2:S3.

SUBLEMMA 2. Let V, and V, be knotted solid tori in S such that V,N
Vo#¢,0ViNaV,=d, V.EV, and V,& V,. Then VNV, is a solid toral sum in
S3, that is, there is an embedding (S'xXD?* # (S'xD?)—S>? whose image
is ViNV,.

These sublemmas can be easily proved. So we omit the proof of Sublemma 1
and we only sketch the proof of sublemma 2.

Sketch of the proof of Sublemma 2. By the fact that V;’s are knotted and
irreducible and by general position argument, we assert that there exists a
meridian disc of V; which does not intersect dV, (changing the suffixes of V,’s, if
necessary). Then there exists a 3-ball B® in Int V; such that 8V,<Int B>,
0B3*<Int V, and 0V, = §>—Int B*>< V,. This implies V; NV, is diffeomorphic to
(S'x D? # (S'x D?). This proves Sublemma 2.

Case I. First we assert that V,NV_.=¢ if b#a and c# a. In fact, assume
V,NV.#¢, then VUV, <V, so that V, <V, or V,c V, by Sublemma 1. We
can assume V,c V. Then 9V, separates dV, and dV,. This contradicts that
dV,, aV, and aV, are boundary components of M;. Therefore V, NV, = ¢ for any
b,ce{l,...,s;}—{a}. This implies M;NInt V,=¢ for any b#a, and conse-
quently M; is an exterior of a link in a solid torus V.

Case II. 0V, <V, since M;cV, Therefore V,NV,#¢ and also M;N
Int V, # ¢. Note that V,¢ V, and that V, and V, are knotted respectively by the
definition of V,’s. So, by Sublemma 2 V,NV, is diffeomorphic to
(S'xD? #(S'xD?. Let V,, ..., V, be the solid tori which are not contained
in V,. Then V, does not contain V, nor V, for any i,j=1,...,n, and i#].
Therefore, for each pair of the solid tori V,, V,,..., V,, the same situation
occurs. One can prove that V,NV,N---NV, is diffeomorphic to
(S'XD? #---#(S'x D?, an (n+1)-times connected sum of solid tori, by the
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same consideration as Sublemma 2. Let V_,..., V. be the solid tori which are
contained in V,. Then M;=V, NV, N---NV, =V, _U---UV,_ . This completes
the proof of Lemma 2.2.

Proof of Theorem 1. As the observation just before Lemma 2.2, we may take
maximal foliated I-products over tori Cy, ..., C,. We assign to C,, ..., C,, black
vertices. By the maximality of the foliated I-products over tori, this assignment is
well-defined, that is, non-negative integer m and submanifolds C;’s depend only
on %. Then submanifolds M;’s which are defined just before Lemma 2.2 are
well-defined and by definition interior leaves in %|,, are all non-compact. We
assign to M,;’s white vertices and to Reeb components star vertices. Finally,
connect those vertices each other by an edge according that the submanifolds
which are represented by the vertices intersect on a torus in S>. Direct all edges
according to Alexander’s solid torus theorem, then we have the desired directed
linear graph I's. Now, by Lemma 2.2 and our construction of the graph, the
assertions of the theorem is obvious.

Next we prove the first half of Theorem 2. We will prove the latter half and
Corollary to Theorem 2 in §4.

Proof of Theorem 2. Part 1. We prove the graph [ satisfies the conditions.
By the definition, I' is a finite connected graph. Since each torus in S separates
S? there is no loop in I'y. This shows (i). (ii) follows from Novikov’s theorem [10].
(v) and (vi) are obvious. Next we prove (iii). Let A4, ..., A,, be loops in solid torus
S'xD? defined by A(t)=(i/m,(exp (2mit))/2), where S'=R/Z,D*=
{zeC||z|=1} and A;:[0,1]—> S'x D2 Let X,, =S'xD?*-J™, Int N(},), where
N(X;) is a small tubular neighbourhood in S'x D? We consider S'x D? as X,.
Then a submanifold of S represented by a vertex whose index is (0, m,, 0), where
m, = 2, is diffeomorphic to X,, _;. For, as in the proof of Lemma 2.2, in particular
Sublemma 2, a submanifold whose index is (0, m, 0) is a solid toral sum in S and
an (m + 1)-times connected sum of solid tori is diffeomorphic to X,,.. Note that the
vertex is not a black vertex. Any boundary component 9;X,, of X,, is compressi-
ble in X,,, that is, natural homomorphism (9, X,,)— m(X,,) induced by the
inclusion is not monic. Therefore, by Novikov’s theorem [10], any foliation on X,
with boundary components as leaves has a compact leaf in Int X,, (see [10]). This
contradicts our construction. A submanifold whose index is (0, m,, 1) is
diffeomorphic to X, _;—Int N(A), where A is a loop in Int X,,,,_; and N(A) is a
small tubular neighbourhood of A. Consider the foliation on X, _;—Int N(A)
induced from %. Since each interior leaf of the foliation is not compact, each
boundary component of X, _;—Int N(A) must be incompressible by Novikov’s
theorem. In other words, A must pass through each meridian disc of all boundary
components in X, _;. Therefore the solid torus corresponding to N(A) in S3 must
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be knotted by non-cancellation theorem on companionship (see Theorem 4.D.9 in
[12]). This contradicts the definition of the index. So there is no vertex whose
index is (0, m,, 0) nor (0, m,, 1), where m; =2 and m, =1, in I'¢. This shows (iii).
The index of a star vertex is obviously (0, 1, 0) or (0, 0, 1). Conversely, if the index
of a vertex is (0, 1,0) or (0,0, 1), then the corresponding submanifold is a solid
torus in S*. By our construction (and the condition (v)), interior leaves of the
restricted foliation to the solid torus are all non-compact. Then it is a Reeb
foliation by Novikov’s result [10]. Now we have proved the first half of Theorem
2.

§3. Reeb links which are vertexwise fibred
Let F be a non-compact leaf in an arbitrary foliated manifold (M, %).

DEFINITION. A point ye M is a limit point of F if there exists a sequence
{x,.}.en in F such that {x,} has no accumulating point in F with respect to the
topology of F as an abstract manifold but converges to y with respect to the
topology of M. The set of all limit points of F is called the limit set of F and is
denoted by L(F).

In order to prove Theorem 3, we need some lemmas about limit sets and
e-limit sets. Let M be a compact manifold and F a non-compact leaf of a foliation
% on M. Let € be an end of F. A subset of M is called saturated if it is a union of
leaves of %.

LEMMA 3.1. (1) L.(F) and L(F) are non-empty compact saturated subsets of
M. (2) L.(F) is connected. (3) L(F) is a union of all e-limit sets of all ends of
F; L(F)=Ugaca L. (F), where {€,}4ca is the set of all ends of F.

LEMMA 3.2. F is a proper leaf if and only if L(F)NF=¢.

LEMMA 3.3. (1) Fis a proper leaf if and only if L(F)=Cly(F)—F. (2) Fisa
non-proper leaf if and only if L(F)=Cly(F).

LEMMA 3.4. Let F be a proper leaf and let € be an end of F. Assume L. (F) be
a union of proper leaves, then L (F) contains a compact leaf.

It is easy to prove Lemma 3.1, 3.2 and 3.3, and we omit the proof.
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Proof of Lemma 3.4. Let X be the set of all non-empty compact saturated sets
in L, (F). Note that ¥ # ¢ and ¥ is ordered by inclusion. Then every non-empty
linear ordered subset of & has a lower bound. Therefore there exists a minimal
element in & by Zorn’s lemma. Let K denote a minimal element. If K contains a
non-compact leaf G, then, since G is proper, Cl,,(G)— G is a closed saturated
subset by Lemma 3.1 and 3.3, and Cl\(G)— G g K. This contradicts the minimal-
ity of K. Therefore K contains no non-compact leaf and thus, by the minimality,
K is just a compact leaf.

Now we prove Theorem 3.

Proof of Theorem 3. First, note that if all leaves of % are proper every e-limit
set contains a compact leaf by Lemma 3.4. The equivalence between (ii) and (iii)
follows immediately from Lemma 3.1, 3.2 and the fact that each compact leaf in
S3 separates S>.

The rest will be proved as (ii) = (iv) = (i) = (ii). First assume (ii). Let M; be a
submanifold represented by a white vertex. Let 9M; =S, U- - -US, where §; is a
toral boundary component. Since all leaves of %|,, are proper and all interior
leaves of %|y, are non-compact, we can take a staircase around each S; by
Nishimori’s theorem [7]. Precisely, let f:[0,e[—[0,8] be a contracting
diffeomorphism which preserves 0 and X;=S'xIX[0, e[/~ a quotient manifold
where (x,0,t)~(x, 1, f(t)), and let ¥, be a foliation on X; induced from the
product foliation {S*' X I X t},cj0.f on S'XIx[0, g[. Then there exists an embed-
ding h : X;— M, such that h(S'xXIX0/~)=S; and h*F = &, It follows from this
description that there exists a torus in M; which is transverse to %|,, and is
parallel to S; that is, there exists an embedding ¢:T?XI— M, such that
@(T?*x0)=S; and ¢(T?X 1) is the torus. In fact, one can construct it in a staircase
h(X;) as follows: Let &' <e, and let ¢:S'XI— S'xXIX[0, ¢[ be an embedding
defined by ¢(x, t) = (x, t, (f(¢')— ')t + &'). Then after rounding corners (S* X I)/~
is a smooth torus in X; which is transverse to %;. Therefore we have tori in M;
which are transverse to % and are parallel to respective boundary components.
Let Ty,..., T, be the tori. Let M| be the closure in M; of the connected
component of M; —|Ji_, T; which does not contain dM;. Then aM;=J}, T, and
dM; is transverse to the restricted foliation F|py. Let F' be any leaf of %|p; and let
F be the leaf of %|y; such that F'c F. Then F is a non-compact proper leaf and
U. L.(F) = L(F) =Cly,(F)—F. By Lemma 3.4, L,(F) contains a boundary com-
ponent of M; for each end ¢ of F. Note that L_(F) consists of just one leaf if and
only if € is a tame end of depth 1 by a result of Nishimori [9]. This is the case. All
ends of F are isolated by assumption so that they are cut off by cutting M; along
transversal tori T;’s. Therefore F’ is compact. Consequently all leaves of F|y, are
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compact and one can construct a fibration =;:M;— S' such that &l =
{w{7'(6)| 6 € S'}. It is clear that m; extends into Int M; so that &,y is a bundle
foliation. This implies (a) of (iv). One can see that % satisfies the condition (b) by
a similar observation.

Next assume (iv). For each non-compact leaf F of %, Cly,(F)—F=L(F)=
U. L.(F) and L(F) consists of compact leaves by the conditions (a) and (b). This
implies d(%)=2.

Assume d(%)=2. Then % is almost without holonomy, that is, all non-
compact leaves have no holonomy (see Theorem 1 in [8]). Moreover each leaf of
F satisfies the assumption of Theorem 6 in [8], so we conclude that all leaves of
F are proper and that each end of a non-compact leaf is isolated. This can be
proved directly without difficulty and is an easy case of Nishimori’s theorem. This
completes the proof.

Proof of Proposition 1. Let M; be the submanifold represented by a white
vertex with the index (1, 0, 0). M, is a knot exterior. Let T be a transversal torus
parallel to the boundary of M; and let M; be as in the proof of Theorem 3. First
we prove the following assertion:

Assertion. For any leaf F' of & |y, 0F' = F' MM is connected. In fact, 0F' is a
longitude of dM;.

Proof of Assertion. Let n be the number of connected components of dF’.
Note that n# 0. By construction of T,dF'=1[,U- - - U1, is a torus link in M, that
is, I;’s are all parallel in the torus dM; and each [; is a generator of m (0M}).
Moreover each orientation of [, induced from F' is the same since % is trans-
versely orientable. Therefore, let d: H,(M}, dM’) — H,(dM;) be the boundary
homomorphism, then 9[F']=[0F']=[l,]+" - -+[l.]=n[l], where [ ] means the
homology class and [ is one of [;’s. Moreover n(i [l]) =i (n[l])=i,-d[F']=0€e
H(M)=1Z where i, :H,(0M;)— H;(M) is induced by the inclusion. Since
n#0,i,l]=0 so that | is a longitude of aM;. Next, let I:H,(M;,oM)®
H,(M})— Z be the intersection form and p € H,(M}) be a generator of H,(M;)
represented by a meridian loop. Then we can assume I([F'], w)=n. There is a
section o : S' — M of the fibration 7}, that is a simple transversal loop in M| such
that o(S")N G’ is one point for any leaf G'e€ F|y;. [0]#0 in H;(M;)), since
(m)ulol=(7),  0,{S']=[S'] is the fundamental class. We can assume
I(F'],[e]D)=1. On the other hand [oc]=mu € H;(M]), where m#0. Then 1=
I(F'L,[c)=mI(F'], n))=m - n, therefore m =n =1 so that oF’ is connected.

It was also proved in the proof of Assertion that a meridian loop can be taken
as another generator of ,(dM}). Specify these longitude and meridian and attach



272 SHIGEAKI MIYOSHI

a solid torus to M! by the orientation-reversing diffecomorphism S'xdD?* — oM
which takes S'x{1} and {0}xdD? respectively to the specified longitude and
meridian of dM.. Then the resulting manifold is S* and =} extends to S> except
the core of the solid torus by natural projections $~' x(D*—0) — S*. This implies
Proposition 1.

§4. Examples and realization of a foliation

Let V be a codimension-zero compact submanifold in S such that dV# ¢ and
each component of 0V is a torus. Let (I, m, n) be the index of V, that is, 0V
consists of (I+m+n)-tori in S* and [-components bound solid tori outside of V,
m-components bound solid tori on the side of V and n-components bound solid
tori on both sides. In this section, we will construct a foliation on V with
boundary components as leaves which has no compact leaves in interior, where V
has an index which is not (0, m,,0) nor (0, m,, 1) where m;=2 and m,=1.
Furthermore we will prove the rest of Theorem 2 using this construction.
Also we will prove Corollary to Theorem 2 and Proposition 2.

EXAMPLE A. In the case that |- m - n=0.

(1) In the case that the index is (I, 0, 0), where [=1: (a) Since a (21, 31)-type
torus link is spinnable (see [12], [S]), on a (21, 3])-type torus link exterior V we
have a spinnable foliation. (b) Let V' be a trefoil (i.e. (2, 3)-type torus knot)
exterior and ' a spinnable foliation on V' by the standard fibration of a trefoil
(see [12]). Take loops a, ..., a;_; transverse to %' which are isotopic to meridian
loops in V' and let N(q;) be a small tubular neighbourhood of q; in V'. Let b; be
a torus knot in dN(q;) and N(b;) a small tubular neighbourhood (see Figure 2).
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Fig. 3
Then set V=V'—J!Z} Int N(b;) and turbulize %' along b;’s so as to have aN(b,),
i=1,...,1—1, as leaves. For the definition of turbulization of a foliation along a

transversal loop, we refer to [14] for example. Let & be the restricted foliation to
V. Then (V, %) is a desired foliated submanifold.

(2) In the case that the index is (0,0, n), where n=1: (a) Let V be an
(n, 2n)-type torus link exterior and ¥ a foliation on V which is a spinnable
foliation with boundary components as leaves. (b) Assume n=2. Let V' be an
exterior of the link indicated in Figure 3. V' is diffeomorphic to T>X L. Let ' be
a foliation on V' by cylinders, that is, for example, let ¥z be a Reeb foliation on
an annulus, then F'=S'X%x={S'XL|Le%g}. Let ay,...,a,, be loops
defined by a;(t) =((i—1)/(n—2), t,5) € (R/Z) X (R/Z) X I, and N(a;) a small tubular
neighbourhood for each i=1,...,n—2. Then V=V'—=J'-7 Int N(a;) and tur-
bulize %’ so as to define a foliation on V with boundary components as leaves
(see Figure 4).

(3) In the case that the index is (0, 1, 0): In this case V is a knotted solid torus
and % must be a Reeb foliation.

(4) In the case that the index is (I, 0, n), where [=1 and n=1: Let V' be a
standard solid torus in S and %' a Reeb foliation on V'. Let V' be framed as

a,

aslice of T%x|

Fig. 4
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S$'xD? and a,,...,a,_; loops in V' isotopic to the core of V' which are
contained in the sub-solid torus V'3)< V', where V') =S'x D?*@3) with respect
to the framing and D?(3) ={x e D?||x|=3}. Let 7 be a (21, 3])-type torus link in
aV'(3) where V'3)=S!'xD?*#%). Note that we can assume a; and 7 to be
transverse to %'. Remove small open tubular neighbourhoods of a;’s and 7, and
turbulize ' so that we have a desired foliation.

(5)* In the case that the index is (0, m, n), where m=1 and n=2: Let
T>?=R3/Z> be a 3-torus. Let T,, T, and T, be tubular neighbourhoods of x-axis,
y-axis and z-axis in general position, respectively. It is known ({4], [13]) that
T?>—Int (T, UT,UT,) is diffeomorphic to an exterior of Borromean rings (see
Figure 5). Furthermore this diffeomorphism takes the curves a,, @, and «, (as in

—

Fig. 5

Figure 6) to the longitudes of the rings, and takes a circle that is parallel to an axis
and lie on one of the tubes to a meridian of one of the rings. On the other hand,
T?—1Int T, is an S'-bundle over punctured torus. By Proposition 7.1 of [18], for
an irrational rotation p, there exist orientation-preserving diffeomorphisms f and
g of S (in fact they are in SL(2,R) acting on S') such that p=f-g-f~'-g7
Consider the foliated S '-bundle over punctured torus which is determined by the
total holonomy diffeomorphisms f and g. Then we have a foliation on T>—1Int T,
which is transverse to x-axis, y-axis and the boundary 47T, and induces on 3T, the
irrational linear foliation by p. We have transversal loops aq,..., a,_; which
are isotopic to a, in T?>—Int (T, UT,UT,) (see Figure 7) since the foliation
induces an irrational linear foliation on 9T,. Furthermore loops by,...,b,_»
which are parallel to x-axis (Figure 7) are also transverse to the foliation.

* The author wishes to thank Professor T. Mizutani and N. Tsuchiya for repairing the original
examples in this case which are only of class C°.
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Fig. 6 Fig. 7

Let N(a;) and N(b) be small tubular neighbourhoods and let M=
T>~Int (T, UT,U T, U™ N(a,))UUZE N(by))). M is diffeomorphic to an
exterior of the link indicated in Figure 8. By turbulizing the foliation along x-axis,
y-axis, a;’s and b;’s, we can make 9T, dT,,dN(a;) and IN(b;), where i=
1,...,.m—1and j=1,...,n-2, leaves of the new foliation. One can wind the
irrational linear foliation on 47T, in order to make 3T, a leaf. Finally we have a
foliation ¥ on M which has the boundary components as leaves and whose
interior leaves are all non-compact. We have a foliated submanifold which has the
index (0, m, n) by embedding (M, ) into S* as follows: Let L = J™" K, be the
link indicated in Figure 8. Recall that M is an exterior of L. Note that each
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component of L is a trivial knot in S>. Consider M as an exterior of the link L’
=L — K3 in a solid torus which is an exterior of the component K; (see Figures 8
and 9). Now we construct an embedding. Let U; be a slice of M which contains
dN(K;,;) and a part of aN(K,) and oN(K3), and does not contain any other
boundary components (see Figure 10). We denote by P a two-punctured disc and
by A an annulus. Then U, is diffeomorphic to (P X I)|J, (A XI) where a :9A X
I— 3P X is an embedding which takes dA X {3} to 8P x{3, 3}, where 0,P is a
component of dP (see Figure 11). Note that the meridian of the solid torus is the
longitude of K;. First we embed P X I so as to make a local knotted P X1 just
between two components of a(dA X I). Then we attach A XI so as to cover the
knotted part (see Figure 12). Now we have an embedding U; — S>. We join these
embeddings for 1=i=m—1 and embed the other slice of M such that the
boundary torus of the solid torus, that is, aN(K3) is embedded to be the boundary
of a knotted solid torus in S> (see Figure 9). Then we have a desired embedding
M- S>,

(6) In the case that the index is (I, m,0), where [=1 and m=1: We will
construct an example of this type in Example B.

EXAMPLE B. Inthe case that |- m - n#0 and that [ - m# 0 and n =0 ((6) of
Example A).

We apply the technique in Example A (2) (b) and A (1) (b). We also apply a
similar construction of an embedding in Example A (5). Let (M',%') be the
foliated manifold (V’, ") in Example A (2) (b). Precisely, M' = (R/Z) X (R/Z) X I
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Fig. 12

and F'=S!'xFg ={S'XL |L e %} where ¥y is a Reeb foliation on an annulus.
Let by,...,bmin— be loops defined by b;(t)=((i—1)/(1+m+n—2),t3e
(R/Z)X(R/Z)X I and N(b,), ..., N(b+n—2) small tubular neighbourhoods. Let
Ci,...,C-1 be torus knots in dN(b,.,),...,dN(bm+n_) respectively and
N(cy),...,N(¢-y) small tubular neighbourhoods. Set M=M'—Int
(Ur P N(b,))U (UiZ} N(c;))) and & a foliation which is obtained by turbulizing
%' along b,,...,b,,.-1 and ¢4,...,¢_;, and has dN(b,),..., ON(b,+n-1) and
dN(c,),...,0N(c¢_,) as leaves. Then we may embed (M, %) into S* whose image
is a desired foliated submanifold. The construction of an embedding is essentially
the same as Example A (5). Let U, =(2i-3)/2(l+m+n-2),
Ri—-D2(+m+n-2)]x(R/Z)XI)NM. Then, for n+1=i=m+n—1, embed
U; into S> as the same way in Example A (5) except that we replace the
two-punctured disc with a punctured disc. For the other U;’s, embed as it is. We
join these embedding so that the torus which is the image of a connected
component of dM' <M is the boundary of a knotted solid torus (see Figure 13).
In the above construction, set n =0, then we have an example of the type (I, m, 0),
where [Z1 and m=1.

First we prove Corollary to Theorem 2.

Proof of Corollary to Theorem 2. Let (M,, %,) and (M,, %,) be Reeb knot
exteriors. We can assume that each boundary leaf has the flat holonomy by
adjusting the given holonomy if necessary. In Example B, set =1, m =2 and
n =0. That is, let X = T>x I—1Int N()), where A :[0, 1]— (R%*/Z?) X I is defined by
A(t)=(0,t,3) and N(A) is a small tubular neighbourhood of A, and let ¥ be a
foliation on X constructed from (T?x I, ') in Example A (2) (b) by turbulizing
along A. Note that, in Example B, each boundary component corresponding to the
second component of the index can be embedded to be the boundary of any
knotted solid torus in S3. Then there exists an embedding of X into S* which
patches M, and M, together so as to construct S* by adding one Reeb component
(compare Figure 13). We have a foliation on S> which consists of %,, #,, % and a
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n times

~———m-| times

Fig. 13

Reeb component so that the resulting Reeb knot is the composite knot of the
given two Reeb knots.

Proof of Theorem 2. Part 2. Let I be a graph satisfying conditions (i)—(vi). We
can assume I' has no black vertex. For, we can replace a compact leaf with a
foliated I-product over a torus at will. Then there exists a vertex whose index is
(1,0, n). In fact, since I is a directed finite tree, there must exist a “‘source’’ in I'.
Let v,..., v?o be all such vertices. We can construct foliated submanifolds of S3
corresponding to v{,...,vo. Precisely, we can construct foliated manifolds
(M{, #9) and embeddings f9: M9 — S? such that each f}(M?9) has the index of v?
by Example A (1) (a), (2) (a) and (4). Note that all knotted boundary-tori in
f9(M9)’s are boundaries of tubular neighbourhoods of trefoils. If v? is connected
to v{ by one edge, then they are connected to each other by an edge with both
direction. This means the boundary components of fJ(M?) and f9(M?) which are
corresponding to the edge are unknotted. Therefore we can glue fO(M?) and
f3(M?9) on the boundary components by deforming f? and f9 by isotopy. Next, let
vy, ..., 0V, be vertices which are connected to v{’s by one edge. Then the second

components of the indices of these vertices are positive and the vertices are
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connected to v{’s by the edges corresponding to the second components of the
indices. Let (M}, %) and f}: M} — S° be a foliated manifold and an embedding
respectively corresponding to v} as Example A (3), (5) and Example B (1=j=y5,).
In this stage, we can construct the embedding f} so that all boundary components
of fi(M3}) which are corresponding to edges with only one-sided directions are
boundaries of tubular neighbourhoods of trefoils in S* (compare Example A and
B). Therefore, by isotopy, we can glue f}(M]) to some of f(M})’s according to
I'. By the same reason, there is no problem for gluing at the vertex which is a
“confluence”, that is, the second component of the index of the vertex is greater
than one. This construction works well inductively. Consequently we have a
foliation on S*? whose graph is the given one. This completes the proof of
Theorem 2.

In order to prove Proposition 2, we need the following (see [12], Chapter
10-H, Corollary 9):

LEMMA 4.1. Let K be a spinnable knot in S>. Then the Alexander polynomial
of K, A(K:t) is monic, that is, the leading coefficient of A(K;t) is +1.

Proof of Proposition 2. Let K, be any knot in S* and let K be a doubled knot
with the companion K, with twisting number n. Precise construction of K is as
follows: Let L = K; U K, be Whitehead’s link (see Figure 14) and N(K,) a tubular
neighbourhood of K; in S*. Then $?—Int N(K,) is a solid torus with a knot K,.
Let h, :S>—Int N(K,) = N(K,) be the diffeomorphism such that h, (longitude) =
longitude + n(meridian) and set K = h,(K,). K is also called a twisted double of
K, with a certain twisting number. For the details, we refer to [12]. Then, as is
well known fact, A(K;t)=n-t*—(2n=+1) - t+n, where A(K; t) is the Alexander
polynomial of K (see [12], [17]). On the other hand, Whitehead’s link is spinnable
(see [12]). Therefore a twisted double of any Reeb knot is a Reeb knot. Set the
twisting number n# +1, then we have Proposition 2.

2 Q)\/ Ky

Fig. 14
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