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Bases for quadratic différentiels*

Irwin Kra and Bernard Maskit

Let G be a non-elementary finitely generated Kleinian group and q be an
integer bigger than one. It is well known (see, for example, Bers [7]) that every
cusp form of weight -2q is the Poincaré séries of a rational function with pôles
only on the limit set of G. There are at least three interesting problems ail related,
but somewhat independent, associated with the spaces of cusp forms for the group
G and the Poincaré séries opérâtor.

(I) Find necessary and sufficient conditions for the Poincaré séries of a rational
function to vanish identically.

(II) Construct bases for the spaces of cusp forms that vary holomorphically
with moduli.

(III) Construct (finite dimensional) spaces of rational functions that vary
holomorphically with moduli so that the Poincaré séries operator establishes an
isomorphism between thèse spaces and the spaces of cusp forms for the Kleinian
groups.

The first problem is probably the hardest. There are many formai reasons that
force a Poincaré séries to vanish (see, for example, [19]). A computational
algorithm for determining whether or not a Poincaré séries vanishes is more
difficult to obtain. Deep and interesting work of Hejhal [11], [12], [13] has

resulted in one solution to problem (I) for Schottky and Fuchsian groups.
Bers [5] has obtained bases for cusp forms (supported on a single component)

for quasi-fuchsian groups. Earle (private communication) has observed that a set

of global coordinates for Teichmûller space always leads to bases for quadratic
differentials (the case q 2) that vary holomorphically with moduli. Thèse are

partial solutions to problem (II).
In this paper we are mainly concerned with problem (III). In the first part of

the paper, we give an algorithm for determining spaces of rational functions that
solve problem (III) for geometrically finite function groups and for q — 2. Thèse

spaces are constructed via the stratifications we hâve introduced in [18], and
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604 IRWIN KRA AND BERNARD MASKTT

exploit techniques involving the tangent bundle to the déformation spaces of a

Kleinian group.
As a by-product we exhibit large families of rational functions with non-

vanishing Poincaré séries, and we obtain global holomorphic trivializations of the
cotangent bundle of the space of déformations of a finitely generated function
group.

Similar (but by no means identical) bases for spaces of quadratic difïerentials
were obtained previously by Bers [8] and Hejhal [11] for Schottky groups.
Wolpert [27], [28] has shown that lengths of certain finite sets of geodesics are
local coordinates on Teichmùller space. As a conséquence he obtains bases for
spaces of quadratic difïerentials for Fuchsian groups. The work of Earle [9] on
coordinates for Teichmùller space can also be used to obtain such bases for
certain Kleinian groups. Similar constructions enter the unpublished work of Bers
and of Earle and Marden on coordinates for the spaces of Riemann surfaces with
nodes.

The second part of our paper is an investigation of the simplest geometrically
finite Kleinian groups which are not function groups; thèse are the groups with
two components, neither invariant. Spécial cases of such groups appear in [9]. We
show that every such group is a quasiconformal déformation of a Z2-extension of
a Fuchsian group, and we stratify ail such groups.

§1. Déformation spaces and fiber spaces

1.1. Let G be a finitely generated non-elementary Kleinian group (that is, G,
is a discrète group of Môbius transformations which opérâtes discontinuously at
some point of the extended complex plane C). As usual, we dénote the limit set of
G by A =A(G) and the région of discontinuity of G by il (1(G). Let A be a

G-invariant union of (connected) components of il.
The Banach space L°°(G, A) is the space of L°° functions with support in A,

which satisfy

f*g&apos; for ail geG. (1)

In gênerai, a bounded function on C satisfying (1) is called a Beltrami
differential (for G).

In the spécial case that A =/2, we set L0O(G) L0O(G,/2).

A point in the open unit bail M(G9 A) &lt;= V°{G, A) is called a Beltrami
coefficient (for G).

Now let xu x2, x3 be three distinct points of C, and let w be a quasiconformal
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homeomorphism of C. We say that w is normalized ai (xu x2, x3) if w(xl) xl,
i~ 1, 2, 3. Every quasiconformal homeomorphism w has a well defined Beltrami
coefficient jli Wz/wz (we say that w is il-conformai), and conversely, given a

Beltrami coefficient jt; there is a unique jx -conformai homeomorphism w^
normalized at (xl9 x2, x3) (see Ahlfors-Bers [2]).

A quasiconformal homeomorphism w is said to be compatible with G provided
that for ail g g G, w o g o w~l is a Môbius transformation. In this case, w induces an

isomorphism 0w defined by

of G onto another Kleinian group.
For any normalization, w is compatible with G if and only if w a°w^ for

some Beltrami coefficient /x for the group G and some Môbius transformation a.

If w and w* are compatible with G and induce the same isomorphism up to
conjugation (that is, there is a Môbius transformation a so that 0W 0aow*) then we

say that w and w* are équivalent.
The déformation space T(G, A) is defined to be the set of équivalence classes

of compatible quasiconformal homeomorphisms which are conformai off A.

Equivalently, it is M(G, A) factored by the relation: jll ~ fx* if w* is équivalent to
w^*. The map

&lt;P:M(G,A)-*T(G,A)

endows T(G, A) with a topology and complex structure.
It is well known that T(G, A) is a complex manifold (see [6], [15], [21]).
For the case (the primary one that concerns us hère) that A O, we set

A finitely generated Kleinian group is called stratifiable if there are d + 3

distinct points xl9 x2, x3, yu yd eC so that if we use (x1? x2, x3) to normalize
each w*\ then the mapping

defînes a biholomorphic embedding of T(G) onto an open subset of Cd.

The set xl9 x2, x3, yl9..., yd is called a stratification of G; we also say that

*i,..., yd stratify G.

The starting point in this paper is the main resuit of our preceding paper.
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THEOREM (Kra-Maskit) [18]). Every non-elementary geometrically finite
fonction group G is stratifiable.

To establish the above theorem, we use Maskit&apos;s description of geometrically
finite function groups to obtain generators for G. Appropriate fixed points of
thèse generators appear in the stratification for G (see also §6). We hâve

essentially produced an algorithm for obtaining a stratification of G, once one
knows how G is built up from simpler groups.

1.2. Given the Kleinian group G, a point x eC is called sturdy if the following
holds. Whenever w, w* are compatible with G and 0W 0W*, then w(x) w*(x).
We remark that limit points are always sturdy; points of û which are not fixed

points are never sturdy; fixed points of elliptic éléments of order &gt;2 are always

sturdy; fixed points of elliptic éléments of order 2 are sometimes sturdy and
sometimes not. We note that if G has exactly two components, then elliptic fixed

points of order 2 are sturdy.

1.3. Let Gbea non-elementary Kleinian group, and let xl9 x2, x3 be distinct
sturdy points for G. Let A be an invariant union of components of G.

For each /ut g M(G, A), we set

where w* is normalized at (xl9 x2, x3). Also, for each ge G, we set

and we dénote the isomorphism g •-* g* by 6^ instead of 6W».

1.4. We need the Bers fiber space

It is easy to see that F(G&gt; A), is a complex manifold of dimension

T(G,d)+l.
We dénote the projection on the first factor by



Bases for quadratic difïerentials 607

The group G opérâtes on F(G,A), so as to préserve the fiber of this
projection: if g € G,

g(*(ft), z) (4&gt;0x), g*(z)), n e M(G, A), z e w»(A).

The quotient space V(G, A) F(G, A)/G is also a complex manifold of the
same dimension, but not necessarily connectée V(G, 4) has the same number of
components as A/G).

If A (l9 we use the notation:

T(G) T(G, O), F(G) F(G, Ù\ V(G) V(G, il).

§2. Quadratic différentes

2.1. Let G be a non-elementary stratifiable Kleinian group, and let y, xu x2,
x3 be four distinct sturdy points for G. We normalize each w*1 at (xu x2, x3).

We define the function &lt;py : F{G) -* C as follows (hère /ut € Af(G), z e w

(2)

(z-x1)(z-x2)(z-x3)&apos;

=(z-x1)(z-x2)(z-w^(y))&apos; ^ X3~°°&apos;

:, if X2 oo;

=(z-x2)(z-x3)(z-w*(y))&apos; ^ Xl=0°&quot;

Using the well known fact [2] that w^ is holomorphic in fx, one sees at once
that &lt;py is a holomorphic map F(G) -» Ù.

It is also quite easy to see that &lt;py is integrable over each fiber of F(G); that is,

&lt;00

(in fact, the rational function &lt;py(^(/ut), •) is integrable over ail of C).
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We now define the Poincaré séries operator 0 by the formula

z) I &lt;py(&lt;W, g»(z))(-J- g^z))- (3)

It is a routine computation to see that this séries converges uniformly and

absolutely on compact subsets of F(G).
For each fixed /la, the séries (3) is a classical Poincaré séries on (l* and

@&lt;py(&lt;f&gt;(/x), z) is an integrable quadratic differential in z on O*; that is,

(£ J y), z), (4)

for ail g s G; also

JJ (5)

a»

We remark that @&lt;py(&lt;$(/m,), z) is holomorphic even if y or some ^ is an elliptic
fixed point in O(G). To see this, we fix jx and renormalize so that w^(y) 0 (or
x,=0), and the maximal elliptic subgroup of G^ with fixed point at 0 is

{z »-&gt; e2/nip/qz, p 0,..., q -1}. We let Jf be the corresponding subgroup of G and we

write the sum in (3) as first a sum over H, then a sum over G/H. It suffices to show

that the sum over H is regular at 0. We rewrite (2) in its partial fraction
décomposition, and note that the coefficient of 1/z for (py(&lt;P(ix), z) is l/x2x3
(assuming x2j=0Oi=x3). Then the sum over H of the singular terms reduces to

For each n eM(G), we let Q(G*) be the space of holomorphic integrable
quadratic differentials for G** (that is, the space of holomorphic functions on
/^(G1*) satisfying (4) and (5)). We dénote the dimension of this space by d (of

course, d is independent of /ut); it is well known that d dim T(G).
Our main resuit is the following:

THEOREM 1. Let G be a stratifiable Kleinian group with stratification

*u *2&gt; *3&gt; yi&gt; • • • &gt; Vd- Then for each /ll €Àf(G), the d functions

defined on «(G*&quot;), form a basis {over C) for
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As remarked before, for fixed jll the restriction of 0 to Û{G*) is the classical
Poincaré 0 operator. In this situation, we will write &lt;çy(z) for &lt;py(&lt;£(jx), z), etc.

2.2. We now fîx /m, and consider the space R* of rational functions /(z),
where the pôles of / are ail simple and occur only at some of the points:
{xi, x2, x3, wMi(y1),. w^Cya)}; we require further that /(z) O(|z|&quot;4) near oo, if
oo is not one of thèse points, and we require f(z) O(|z|~3) if oo is one of thèse

points. One easily sees that the vector space JR^ has dimension d.

Our theorem asserts that the Poincaré séries operator establishes an isomorph-
ism between R* and Q(G*).

Since {xu yd} is a stratification for G, the space JR^ dépends, not on jul, but
on &lt;P(ll)eT(G). Then JR^ and Q(G*) are the fibers of trivial d-dimensional
vector bundles over T(G).

2.3. We again return to the case that A is an invariant union of components of
G. We let Q(G,A) be the subspace of Q(G) consisting of those quadratic
differentials supported on A.

For (p e Q(G, A) and jx eL°°(G, A), we introduce the pairing

A/G

and we set

O(G, A)x {fie LX(G, A) | &lt;&lt;p, n) 0 for ail &lt;p e Q(G, A)}.

The pairing gives us a canonical isomorphism between the dual space
O(G, A)* of Q(G, A) and L~(G, A)IQ(G, A^ (see [14, Chapter III]).

It is well known (see for example [16] and the literature quoted there) that the

tangent space to T(G,A) at &lt;P(ia) is canonically isomorphic to O(G^, 4**)*, and

(using the pairing) the cotangent space is (canonically isomorphic to) Q(G*, A*).

2.4. We now proceed to the proof of our theorem. For ease of computation
we assume first that x3 oo. it was shown by Ahlfors and Bers [2] that for fixed

jtt €M(G, A), for r1 &gt;||jx|U and for fixed z f xl9 x2, x3, the function t «-&gt; wtlx(z) is

a holomorphic function of t. They further showed that for x3 oo,

(6)
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We fix |x e M(G) and we choose vl9..., vd e L^iG*) so that vl9..., vd forms
a basis for L00(GM&apos;)/CKG|I&apos;)-L.

We return to our map V:T(G)-&gt; Cd, since x3 », ^ : T(G) -* Cd, and we need

to study the difïerential DW at the point &lt;f&gt;(jx). We consider a point ^(^(/ll)) €
Cd, and we write W^... ,^d as natural parameters on Cd. Regarding
L00(G)/Q(G|i&gt;)-L as the tangent space to T(G), an arbitrary tangent vector to T(G)
at ^(/Lt) can be written as ]Td=i zti&gt;t with z, €C. Then formula (6) yields

2=0

=™ (^(y^-xa) JJ

We showed in [18] that ^ is a holomorphic injection (onto an open set); hence

DW is a linear isomorphism. Since the vk span the tangent space to T{G) at &lt;P(il),

the functions 0(py(4&gt;(fi), •) must span the cotangent space. We hâve shown that
for every jx, the functions &amp;&lt;pyf(&lt;P(ix), •), / 1, •.., d, are linearly independent.

In order to complète the proof of our theorem, it remains only to remove the
restriction Jt3 oo. We do this by choosing a Môbius transformation a with
a(xx) xu a(x2) x2, and a(œ)=x3. An easy computation shows that there is a

constant c, depending only on a, so that the quadratic diflEerentials @&lt;pyi,..., ®&lt;pVd

for G, and ©&lt;pa(yi)&gt; • • • &gt;
®&lt;Pa(yd) f°r ûGû&quot;1 are related by

),z),

where

2.5. For any finitely generated Kleinian group, T(G) is a domain in Cn (see

[18]), hence the cotangent space is trivial. We hâve shown the following.



Bases for quadratic differentials 611

COROLLARY 1. Let G be a stratifiable Kleinian group, with dim T(G) d.

Then there are d holomorphic fonctions &lt;pu &lt;pd on F(G), so that 0&lt;pu @&lt;pd

exhibits a global holomorphic trivializaîion of the cotangent bundle of T(G).

2.6. We now turn to the case where we hâve selected an invariant union of
components A. Since T(G, A) is a submanifold of T(G), the cotangent space of
T(G, A) is a subspace of the cotangent space of T(G). This yields the following.

COROLLARY 2. Let G be a stratifiable Kleinian group and let A be an
invariant union of components. Let r dim T(G, A). Then there are r fonctions
i^i,..., &lt;fv meromorphic on F(G, A), so that for any jul eM(G, A), the fonctions

ly ...,0ilfr form a basis for Q(G*, A*) and vanish identically on fîl*\4M&apos;.

§3. Fuchsian groups

3.1. Let F be a finitely generated Fuchsian group of the first kind operating on
the upper half plane U (and on the lower half plane 17*). We assume that
d =dim T(F, U)&gt;0. We showed in [18] that F can be stratified by real points,
xl9 x2, x3, yl9..., y2d, and that the Fuchsian groups in T(F) are precisely those

points for which the 2d coordinates w^(yt) are ail real.
One easily sees that if F* is Fuchsian, and w^Cy,) are ail real, then for each /,

^, z) 0&lt;py,(4&gt;(/x), f).

We restate our main resuit in this case as follows.

THEOREM 2. Let F be a finitely generated Fuchsian group of the first kind,
with dim T(F, U) d. Let xl9 x2, x3, yl9..., y2a be a real stratification for F. Let
jut € M(F) be such that F&quot; is Fuchsian. Then the fonctions &amp;&lt;pyi,..., @&lt;py2d

(a) commute with complex conjugation, (b) form a basis over C for Q(F*), and
(c) form a basis over R for Q(F», U).

We remark that conclusion (a) is false if F14 is not Fuchsian; conclusion (b) is

true even if F* is quasifuchsian. Nothing is known about conclusion (c) if F* is

not Fuchsian.

3.2. Our main theorem asserts that certain sets of Poincaré séries form a basis

for quadratic differentials; in particular, thèse Poincaré séries do not identically
vanish.
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CORROLLORY 3. Let F be a finitely generated Fuchsian group of the first
kind, and let xu x2, x3, y be part of a stratification for F. Then the Poincaré séries

&amp;&lt;py(Q, •) does not vanish identically in U or in U*.

We showed in [18], that every elliptic fixed point can be made part of a

stratification of a Fuchsian group. Hence we obtain:

COROLLORY 4. Let y be an elliptic fixed point of the Fuchsian group of the

first kind F. Then there are real points xu x2, x3 so that the Poincaré séries @&lt;py(0, •)
does not vanish identically in both U and U*.

One often can choose both fixed points of an elliptic élément as part of a

stratification set.

COROLLORY 5. Let xu x2, x3, y be part of a stratification set for the Fuchsian

group of the first kind F, where {xl5 x2, x3, y} is invariant under complex conjuga-
tion. Then the Poincaré séries 0&lt;py(O, •) does not vanish identically in either U or [/*.

Remarks. (1) Let F be a torsion free Fuchsian group operating on U such

that U/F is a compact surface of genus g &gt;2. In [27], Wolpert constructs 6g-6
Poincaré séries that form a basis for Q(JT, 17) over R. Further, by using the
Petersson scalar product and a géométrie interprétation of the Poincaré séries he

constructs, he is able to sélect 3g— 3 séries that form a basis over C.

(2) In [13], Hejhal studies Poincaré séries of rational functions that are
invariant under conjugation. He produces finite spanning sets for Q(JT) (and
hence also Q(F, U)) that are not necessarily linearly independent. His methods

are not limited to quadratic difïerentials, but also work for q-difïerentials, q &gt; 2.

§4. Other applications

4.1. If G is a stratifiable function group with invariant component à, where

T(G) =T(G,A) (for example G might be a Schottky group, or G might be such

that ail the components other than A are thrice punctured sphères), then a

stratification gives us global coordinates for T(G), and Theorem 1 gives us a

global holomorphic trivialization of the cotangent space. In the spécial case that A

is simply-connected, we get global coordinates for the Teichmuller space (every
Teichmùller space can be so realized; see Maskit [24]).

4.2. We also remark that if G is as in the preceding section, we can achieve

the same resuit with functions which are not necessarily rational. To this end, we
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let F be the Fuchsian model of G; that is, there is a holomorphic projection
h:U-&gt;A, where for each yeF, there is a ge G so that h°y g°h. This
projection map induces a holomorphic covering T(F, U) —? T(G, A), (see [6], [15],
[21]) and this map can be further extended to a fiber preserving holomorphic
covering H:F(F, U)-*F(G9A) (see, for example, [10]).

The map H induces a map H* from functions on w^iA) to functions on w°&quot;(L0

(where jul and a are appropriately related). If we transform functions as quadratic
difïerentials (that is, H*cp(z) &lt;p(h(z))h&apos;(z)2), then, denoting the Poincaré séries

operator for G by 0G, an easy computation shows that @G°H* — H%°0r. We
choose &lt;pl9..., &lt;pd so that ©r&lt;Pi, -. •, 0r&lt;Pd form a basis for Q(F, U). Then
&amp;GH%&lt;pi,..., 0GH%&lt;pd form a basis for O(G), and conversely a basis for Q(F, 17)

can be obtained from a basis for Q(G).

§5. Extensions of Fuchsian groups of the second kind

5.1. In this and the next section we give stratifications for ail Z2-extensions of
quasifuchsian groups of the first kind. In this section we focus on certain groups
which are Z2-extensions of Fuchsian groups of the second kind.

Let F be a finitely generated, non-elementary Fuchsian group of the
second kind. There are standard generators for F of the form Au Bu
Ag, Bg, El9..., En, Fu Fm, where the A,, Bx and F, are hyperbolic and
the Ej are elliptic or parabolic. The signature of F is (g, n, m; vu vn) where vx

is the order of Ex if Ex is elliptic, and vx 00 if Ex is parabolic. Since F is of the
second kind, m &gt; 0. The defining relations for F are

E?=l, if

where as usual

One easily sees that viewing F as a Kleinian group, {2(F)/r is a surface of

genus 2g + m -1 with 2n distinguished points on it. Hence dim T(F)

5.2. We want to adjoin square roots fp of the éléments Fp, where fp

interchanges upper and lower half planes. We do this as follows.
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We choose some Fp(l^p^m) and we let Ip dénote the axis of Fp in U. We
dénote reflection in the real axis by /, and set

Cp Ip U/(IP) U{fixed points of Fp}.

The circle Cp bounds two dises; one of them, call it Dp is precisely invariant
under Fp in F (that is, if A eF is not a power of Fp then A(DP)DDP 0).

Since Fp is hyperbolic, there are two distinct Môbius transformations whose

square is Fp. One square root is hyperbolic and it préserves Dp ; call the other fp.

We let Fo F, and for p 1,..., m, we define Fp to be generated by Fp_! and

/p. The construction of Fp from Fp_x and fp requires a version of Combination
Theorem II (see, for examplç, [22]) which is unfortunately not in print. We briefly
outline the proof hère.

We let û)p be a fundamental domain for Fp (acting on O(FP)), where (opnDp+1
is a fundamental domain for the action of &lt;FP+1) on Dp+l, p 0,1,..., m — 1. We
dénote the complément of Dp by Dp.

LEMMA. For p=0, ...,m — 1, the group Fp+1 is discrète; Dp+1C\ù)p is a
fundamental domain for Fp+1; the relations in Fp+1 are the relations of Fp together

Proof. Any élément of Fp+1 can be written as A Ak+1° /p+i° Ak°- • •©

fpli°Au where AuAk+1 might be trivial, but otherwise no A, is a power of
Fp+1 (there is also the easy case A =fpl1°Flp+1). Let z be a point of Dp+1nwp.
Then Ai(z)£û&gt;p (if A, f 1) and A(z)eDp^; f^A^^D^, A2o/pt|1o
A!(z)€Dp+1\û)p, etc.

We hâve shown that no two distinct points of a)p CïDp+1 are équivalent under

any word of the above form; hence Fp+1 is discrète, and the relations are as

stated. The remainder of the proof that Dp+Ino&gt;p is a fundamental domain is

standard (see for example [22]).
We will later need a similar version of Combination Theorem II, where

instead of /p Fp € Gp, we hâve /p 1. The proof is almost identical and is left to
the reader.

Looking at the identifications of the sides of the fundamental domains, we see

that for p&lt;m, O(FP) is connected and the surfaces f2(Fp)/Fp are ail surfaces of
the same conformai type (2g + m-l,2n).

However fî(Fm) has two components U and 17*, but Q(Fm)IFm is still just one
surface of the same conformai type (2g + m-l,2n). In particular the spaces

T(FP) ail hâve the same dimension.

5.3. THEOREM 3. The Kleinian groups Fp are ail stratifiable.
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Proof. For p&lt;m9 thèse are geometrically finite function groups and so there is

nothing to prove [18].
We now assume that p~mt and notice that the two components of Fm are

simply connected. Hence T(fm) is simply connected and so for every élément 7 of
Fm, trw^ow&quot;1, the trace of w^ow&apos;1 is well defined on T(Fm) once we hâve
chosen tr 7.

There are several cases to consider.

Case I. g&gt;0.

For i 1,..., m, let za and zx2 be the attractive and répulsive fixed points,
respectively of Fx.

For i 1,..., g — 1, we let xltl,..., xl&gt;6, be respectively, the attractive fixed
point of A,, the répulsive fixed point of A,, the attractive fixed point of B,, the
répulsive fixed point of Bn Ax(z1A), and B,(zltl).

We let C be the commutator [Ag, Bg]; we set ut Ag (attractive fixed point of
C), u2 Ag (répulsive fixed point of C), M3 Bg (attractive fixed point of C).

For i 1,..., n, we let yu, yl2 be the fixed points of Ex if Ex is elliptic; if Ex is

parabolic, we let ylA be the fixed point of Et, and yl2 Ht(zi,i).
Finally for i 1,..., m, we set z1&gt;3 /,(w1).
We note that we hâve defined 6g-6 +3 + 2n + 3m =dim T(Fm) + 3 complex

parameters.
Let w be some déformation in T(Fm). We need to show that the parameters

w(*i,i), •. •, w(zm&gt;3) détermine the generators weA^w&quot;1,..., w°/m ° w&quot;1 of
wF^jW&quot;1. By changing the origin of the déformation space, this and ail similar

arguments in subséquent cases, are reduced to showing that the parameters

*i,i» • • • &gt; zm,3 détermine the generators Ai,..., fm of Fm.

Obviously Al9 Bl9..., Ag_i, Bg_i, El9...9 En, fl9...,fm are ail determined.
Hence C is determined; the choice of tr C&quot;1 together with ul9 u2, u3, détermine

Ag and Bg [18].

Case IL g 0, n&gt;2.

For i 1,..., m, we define zu and zl&gt;2 as above. Then for i - 1,..., n - 2, we
define ya and yl&gt;2 as above, and we let y be a fixed point of £!„_!. Finally, for
i 1,..., m, we define zu3 fx(y).

The éléments El9..., En-2&gt; /i&gt; • • • » /m are ail determined. Hence £:„__!°En is

determined. It was shown in [18] that En-i°Eny together with y détermine En^x

and En.

Case III. g=0, n l.
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We remark that in this case m &gt;2, and we choose our parameters as follows.
Let y be a fixed point of E1. For i 1,..., m -1, let zlA, zly2, zlj3 be, respectiveîy,
the attractive fixed point of F,, the répulsive fixed point of F,, and /,(y). Let zm be

the attractive fixed point of Fm.

We hâve defined 3m — 1 =dim T{rm) + 3 parameters. We see at once that

/i, ...,/m-i are determined. We normalize Fm so that zm-o°, y=0; we write

Since T(Fm) is simply connected, we can choose K, a, b, c, d so that in SL(2; C)

IK 0 \/a b\/a 0\ /a&quot;1 ~P\
\p K^Ac d)\0 cT1/ \ 0 a

)&apos;

This yields

(D
(2)
(3) a

Since aa/0, we can solve (3) for p. Equation (1) yields a up to sign. We can
solve (2) to obtain |3 -(Kb/l + &lt;ûQa~~1. Hence fm is determined in PSL(2;C)
(note that 1 + aX^O; since otherwise b =0 which is impossible).

Case IV. g 0, n 0.

In this case m&gt;3. Let yx be the répulsive fixed point of Ft. For i
2,..., m — 1, we let za, zl&gt;2, zl3 be, respectiveîy, the attractive fixed point of F,,
the répulsive fixed point of F,, /t(yi). Let y2 be the répulsive fixed point of Fm, and
let y3 /i(y2).

We look at a déformation of Fm and we note that /2,..., /m_i are determined
by the zxy We normalize Fm so that yi 0, y2 œ, y3=l. Then we can write

1, where a, b, c, d are known, and the choice is made so that

(K 0 \/K 0 \(a b\(a &amp; \ /a&quot;1 ~^\
Vk rvU jrvVc dÀo a-vlo a)

(that is, we choose a, b, c, d, K, a, 0 for the original Fm so that this relation holds;
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then we can regard a, b, c, d, K, a, |3 as functions on T(jTm), where this relation
continues to hold; since T(Fm) is simply connectée, the functions are well
defîned).

From routine calculation we obtain the following four équations:

(1) K2aa=a~\

(2) K2ap + K2ba~1 -^
(3) (K2+l)aa+K-2ca=0,

(4) (K2

Since a ^ 0, we can solve (3) for K2 and obtain

Since |K|&gt;1, we can never hâve cla=\, hence on T(JHm) there is a unique
solution for K2, and equally well for K.

We then solve (1) for a2 and (2) for /3 in terms of a&quot;1; hence as above, we can
solve for a and |3.

§6. Global coordinates of Teichmùller spaces II: Earle slices

6.1. Let G be a finitely generated Kleinian group with exactly two compo-
nents, neither of them invariant. We shall see (Lemma 6.3) that such a group must
be a Z2-extension of a finitely generated quasifuchsian group of the first kind. It
was remarked by Earle [9] that T(G), the déformation space of G, is in this case

the Teichmùller space of 40/G0, where

A =one of the components of O(G),

Go stabilizer of A in G, and

A0 {zeA; z is not a fixed point of an elliptic élément of Go}.

In this section we shall prove the following.

THEOREM 4. Let G be a finitely generated Kleinian group with two components

and îl(G)IG connected. Then the group G is stratifiable.
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6.2. The results of the next two sections, while apparently obvious, hâve, to
the best of our knowledge, never appeared in print. The proofs seem to require
deep results. For the convenience of the reader, we include complète détails.

LEMMA. Let Go be a finitely generated quasifuchsian group with components
A and 4*. Then there exists a unique extremal quasireflection J:C—&gt;C which
commutes with every élément of Go and which maps A onto A*.

Proof. As usual let U be the upper half-plane and / : A -&gt; 17, a Riemann map.
Define the finitely generated Fuchsian group Fo of the first kind by F0 fGf~1.
Let 17* be the lower half-plane and let j(z) z. We let /*:[/*-? A* be the
unique Teichmûller (extremal) mapping that induces the isomorphism

Define

jo/(z), zeAUA(G),
Hz) \^ ,__t, v ZG^*UA(G).

It is easy to see that J commutes with every élément of Go. Since J préserves the
fixed points of éléments of Go, / is the identity on A(G). Hence / is a global
quasireflection. Further J has minimal maximal dilatation among ail quasireflections
commuting with Go, and / is the unique quasireflection with thèse properties.

We shall call / the extremal quasireflection for Go.

6.3. LEMMA. Let G be an arbitrary finitely generated Kleinian group with two

components, neither of them invariant Then there exists a X2-extension Fofa finitely
generated Fuchsian group of the first kind so that G is a quasiconformal déformation

ofF.

Proof Let A and 4* be the two components of G, and let Go be the stabilizer
of A (therefore also of 4*). We conclude that Go is a finitely generated

quasifuchsian group of the first kind (see, for example, [20] or [17]) and that G is

a Z2-extension of Go.

Let g be some élément of G\G0. Let / be the extremal quasireflection for Go.

Since J is unique, g°/°g~1=J; that is, g commutes with J. Hence (g°/)2 g2e
Go; that is, g°J acts as an orientation reversing (quasiconformal) involution on
A/Go. It is classical (see&gt; for example, [4]) that there is a Z2-extension F of a

finitely generated Fuchsian group of the first kind Fo by an orientation reversing
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conformai self-map of U which topologically uniformizes A/G&apos;, where G&apos; is the

group generated by Go and g°J. Thus there exists a quasiconformal map
f:A-+U that conjugates G&apos; to F. For zeA*, we define f(z) j°f&lt;&gt;J(z)y and
observe that / extends to a global quasiconformal homeomorphism which conjugates

G&apos; onto F [1]. Obviously / conjugates J to / and Go to Fo, and so
f°g°f~1:=(fogoJof~1)o(foJof~1) is a fractional linear transformation interchang-
ing U and 17*, where (fog°f1)2eF0. Finally, we let F be the group generated by
Fo and /ogof1.

6.4. Using Lemma 6.3, we conclude that to prove Theorem 4, it suffices to
assume that G is a Z2-extension of a finitely generated Fuchsian group Go of the
first kind acting on 17, and that the extra generator of G interchanges U and 17*.

We shall assume that we are in a slightly more gênerai situation. We are studying
extensions G of non-elementary finitely generated Fuchsian groups of the first or
second kind Go acting on U by an élément g0 that maps U onto 17*. We let
g g G \ Go, and we form the group G&apos; generated by Go and / ° g. Then G&apos; acts as a

group of conformai and anti-eonformal automorphisms of 17, G&apos; is isomorphic to
G, and G&apos; is independent of our choice of the élément geG\GQ. Furthermore

j°g induces an anti-conformal involution J on S — U/Go.
It is classical that SU is a surface, perhaps non-orientable, of some genus, with

some number of boundary curves and some number of cross-caps. We give this a

précise statement, and for the convenience of the reader, we include a proof.
There is a unique closed orientable surface S which conformally contains S;

the différence S\S is a finite set of parabolic punctures.

LEMMA. There is a finite set of simple disjoint loops wt9..., ws on S with the

following properties.
(1) The loops wu ws divide S into two subsurfaces; J interchanges thèse two

subsurfaces and keeps each wt invariant.
(2) For each i, J either fixes every point of wh or has no fixed point on wf.

(3) If J fixes every point of wh then wt may pass through some elliptic
ramification points or parabolic punctures. Off thèse punctures, wt is a
géodésie on SQ S\{ramification points}.

(4) IfJ has no fixed point on wh then w{ is a smooth géodésie on So, (and doesn&apos;t

pass through any elliptic or parabolic punctures).
(5) Every fixed point of J is a point of some wt.

Proof. We look at the set of fixed points in U of éléments of G&apos;; thèse consist

of fixed points of elliptic éléments of Go and fixed axes of orientation reversing
éléments of G&apos;. A point of intersection of two or more of thèse axes is necessarily
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an elliptic fixed point. Looking at ail thèse axes near an elliptic fixed point; one
sees that they project onto a simple path on S. We conclude that the projection of
the fixed axes is a set of simple disjoint paths.

We next show that if A is the line of fixed points of the élément geG&apos;; then
either A is the axis of a hyperbolic élément of Go, or both endpoints of A are
parabolic fixed points. Let x and y be the endpoints of A, and assume x is not a

parabolic fixed point. Then [3] x is a point of approximation for Go and so there is

a séquence gn of distinct éléments of Go, with gn(x)-^x&apos;, gn(y)—? y&apos;/x&apos;. Since
G&apos; is discrète, we must hâve gn(x) x&apos;, gn(y) y&apos; for almost ail n; that is, for
fixed m and n sufficiently large gn ° g~x(x) x, gn &lt;&gt; g^\y) y.

We hâve shown that the projection to S of the set of fixed points of reflections
in G&apos; is a set wl5..., wq of simple disjoint loops.

By looking at paths Connecting thèse loops one easily sees that wl9..., wq

divides S into at most two surfaces.

If wl9..., wq does not divide S then there is a homotopically non-trivial loop
v on S, where v is disjoint from ail wf and the élément of Go corresponding to v
is hyperbolic (this follows easily from the fact that Go is non-elementary). Let h

be some hyperbolic élément of Go whose axis is disjoint from ail reflection axes in
G&apos;, and let r be some reflection in G&apos;. Normalize G&apos; so that r(z) -z, and

h — A ad — bc 1, a, b, c, d real; then — bc &gt;0, and \a H- d\ &gt;2. Observe that
\c dJ

=\c
a2-bc b(d-a)
{a-d) d*-bc

If this were the identity, then we would hâve a d, -bc&gt;0 and a2-bc 1, so

that |a + d|&lt;2. We hâve shown that if wl9..., wq does not divide S, then S/J is

non-orientable, or equivalently, that G&apos; contains freely acting orientation revers-
ing éléments.

Let u be the shortest orientation-reversing loop on (SXiWi U • • U wq))/J. Then
u2 wq+i, is a simple loop on S\(wi U • • • U wq) which is invariant under /.

If Wi,..., wq+1, does not divide S, then we repeat the above argument; after a

finite number of steps we arrive at the required wl9..., ws.

6.5. In proving Theorem 4 under the simplifying assumption of §6.4, we first
take up the case that none of the loops Wi,..., vvs is pointwise fixed by J.

This means that /©g has no fixed points in 17, for any choice of geG\G0.
Every élément g e G \ Go is either loxodromic or elliptic of order 2; one easily

sees that g is elliptic if and only if /°g has fixed points in 17. Hence / has no fixed

points if and only if every élément of G\G0 is loxodromic.
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We look at ail lifts of ail w,; thèse divide U into régions; we choose one of
thèse régions, call it jR, and let F be the stability subgroup of R in Go. One sees at
once that R/F is one of the halves of S eut along wu ws. Hence F is a finitely
generated Fuchsian group of the second kind representing a surface of some
genus, with some number of elliptic or parabolic punctures, and s holes. We
observe that for each primitive FeF representing one of thèse holes, there is an
élément fe G, with f2 F, and / interchanges upper and lower half planes (that is,

j°f préserves the axis of F but interchanges the two non-euclidean half planes
bounded by it).

We choose Fu..., Fs to be non-conjugate primitive such éléments and let

/i,..., /s be their square roots. Then the group G generated by F and fu /s is

a subgroup of G, has two components, neither invariant, and, as we observed in
§5, fl{G)IG is the two halves of S with their boundaries glued together; that is,

n(G)/G n(G)IG. We conclude that G G and hence, using §5.3, G is

stratifiable.

6.6. We turn now to the case that J has fixed points on S. As we remarked
earlier, this is équivalent to there being an involution geG, which interchanges
the upper and lower half planes. We conjugate G so that g(z) -z.

Then the involution / is induced by j°g : z »-» -z ; it has the positive imaginary
axis as fixed point set. Let w be the fixed loop of / on S containing the projection
of the positive imaginary axis, and let n be the number of elliptic and parabolic
punctures on w. There are several cases to consider.

Case V. n 0.

In this case w is a simple closed curve. Let se be the set of ail translates in
both U and U* of {Re z 0, Im z &gt;0} under G. Let R be the subset of £ eut out
by si, where R is bounded by the imaginary axis and lies in the right half plane.
Let Gx be the stabilizer of i? in G and let G0l GXC\Go.

Exactly as in §5.2 (except that g2= 1), we can form the group G generated by
Gx and g. We know that G a G, G has two components, neither invariant, and

Q(G)IG is homeomorphic to OiG^/G^ Since Gx has one component and
contains no degenerate subgroups, it is stratifiable. The fixed points of g are
hyperbolic fixed points of Gx; hence G is stratifiable. It remains to show that
G G

If w does not divide S U/GOj then jR PI l//GOi, and R H l/*/GOi, are both equal
to S eut along w. Then there is some loop wl5 disjoint from w, which is also

invariant under /. Lifting / so that it keeps a lift Ce R n U of wx invariant, we get
an orientation reversingélément g^e G&apos;, which keeps RHUinvariant. Then /°g,
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maps R fl [/onto RHU*; that is, ; ° gx g Gv We conclude that R/Gt R H U/G0l is

S eut along w. Hence 0(0)/G £2(G)/G, so G G.

If w divides S, then JR H l//GOi and R (1 U*/Gol are either equal or they are the
two halves of s eut along w. Since j(R H U) JR H [/*, it must be the latter. The resuit
now follows as above.

Case VI. n l.

We let P be the point of ramification or the puncture on w. Deforming w to lie
on &quot;either side&quot; of P, we get two non-homotopic simple loops on S; we let w&apos; and
w&quot; be the geodesics on S in the corresponding homotopy classes (such geodesics
exist except when S is a sphère with three elliptic or parabolic punctures in which
case dim T(G) 0).

We note that J(wt) wrr. The loops wr and w&quot; bound a subsurface S2&lt;^S,

where PeS2. We let S1 S\S2.
We let C be a géodésie in U lying over w&apos;. For the sake of definiteness we

assume that C&quot; is in the first quadrant. We extend C to be a complète circle in C,
and let si - U7«=g y(C&apos;). As before si is a G&apos;-invariant union of disjoint circles
accumulating at ail points of R. Let Rx be the région in the first quadrant eut out
by si, bounded in part by C\ where the projection of Rx to U/Go does not
contain the curve w.

As before we let Gx be the stabilizer of Rx U jRx in G, and Gol be the stabilizer
of Rx in Go.

The surface Sx may or may not be connected. If Sx is not connected, then

R1/G0l is half of Sx and (R^jRJ/G^ St. In this case GQl Gx. If Sx is

connected then G! is a Z2-extension of G01 and Ri/G01 S1 (R1UjRl)/G1. In
either case û{Gx)IGx is St with a tube attaching the two boundary components;
that is, {i(Gi)/Gi is the surface S with the point P no longer a puncture or
ramification point. We conclude that

We also remark that Gx is a function group - it is either a finitely generated
non-elementrary Fuchsian group of the second kind or a Z2-extension of such a

group. In particular, every structure subgroup of G! is elementary. Hence Gx is

geometrically finite [23], and so it is stratifiable [18]. We let xl9..., xd+2 be a

stratification of Gi.
We now let R2 be the région eut out by si on the other side of C. Observe

that the projection of R2 to S contains the curve w. As before we let G2 be the
stabilizer of R2UjR2 in G and G02 be the stabilizer of R2 in Go. Note that R2
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contains the positive imaginary axis, and that hence G2 is G02 extended by

g:z*-*-z. Thus S2 R2IG02 (R2U jR2)IG2. Observe that R2 is invariant under
the map z *-* —z. As a matter of fact R2IG02 is a sphère with two holes and one
point of ramification order v(2 &lt; v &lt; «), JS2 S2, / has the reflection line w on S2,

this line passes through the ramification point F, and J interchanges the two holes.

We conclude that G02 is a Fuchsian group of signature (0,1,1; y). We also see

that Q(G2)IG2 is a torus with one ramification point of order v.

We let H be the stabilizer of C in G. Then H is a hyperbolic cyclic group with
generator h; also H= GxC\ G2. It is quite easy to see that G2 is generated by h and

g, and that thèse satisfy the relations

(y°° 1 means that y is parabolic). (One can see from this that there is a loop v on
fî(G2)/G2, where v cuts w, w&apos;, w&quot; each exactly once, and v2 lifts to a loop on
/2(G2). This in fact proves that there can be no other relations in G2 (see [23],
[25]).)

We show finally how to extend the stratification of Gi by adding one

parameter to obtain a stratification of G. Our last parameter is

y g (attractive fixed point of h).

Note that h e Gx; hence h is determined by the stratification of Gx. We must show

that the extra parameter détermines the extra generator of G. We normalize so

that

y g(O) i.

(We can assume that t is determined since T(G) is simply connected.) Hence

(because g2 1)

The second of the relations (7) implies that
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is constant on T(G). Since h2 is loxodromic, the last two équations détermine afi
and a2 uniquely. Hence thèse two équations hâve solutions (a, fi) and (-a, -fi),
and so we hâve determined g from our parameters. This complètes Case VI.

Case VIL n&gt;\.

We let Px and P2 be two adjacent ramification points or parabolie punctures
on some reflection arc w of the anti-conformal involution / on S. We dénote the
orders of thèse ramification points by vp 2&lt; i/, &lt;&lt;», and we find a simple loop v on
S with the following properties. The loop v divides S into two subsurfaces Sx and
S2; both invariant under /. The subsurface S2 has genus 0, contains the two points
Pt and P2 and no other ramification points or punctures.

We may assume that d(G)&gt;0 (as otherwise there is nothing to prove). Then
there is a shortest géodésie in the homotopy class of v. We now replace v by the
géodésie in its équivalence class and note that the statement that Px and P2 are
adjacent means that if v1&lt;&lt;^, v2&lt;œ, then S2 contains exactly two fixed points of
/. We remark that if vx 2 v2, then the géodésie is no longer a loop, but a

segment between the ramified points, and ail our arguments require minor
modifications, which we will ignore.

Exactly as before, we let C be a lift of v, where C&quot; intersects the positive
imaginary axis; we complète it to a circle and let si {JyeG y{C). We let Rx and
R2 be the régions in U eut out by si with the boundaries of JRX and jR2 containing
C&quot; so that the projections of thèse régions are Sx and S2 respectively. Both Rx and

R2 are j°g-invariant. As in the preceding cases, for î l, 2 we let G, be the
stabilizer of R^jR, in G, and let GOl be the stabilizer of Rt in Go. We know that
Rt is invariant under the reflection ;°g, and thus (JR, U y&apos;JRJ/G, RJGOv Further
RJGOl are two parts of S eut along v. We also know that /°g is a reflection that
conjugates Gol into itself, and that the fixed Une of j°g cuts C. If we let Ho be

the hyperbolic cyclic group stabilizing C, then we see that gHog&quot;1 Ho, and we
conclude that the stabilizer H of C in G± is a non-abelian Z2-extension of Ho;
that is, as a Fuchsian group acting on the inside of C, H represents a dise with
two ramification points each of order 2. We conclude that O(Gi)/G1 is

homeomorphic to Q(G)/G as a surface with ramification points, except that the

points Pt (î l, 2) no longer hâve ramification index vt; now they both hâve
ramification index 2. Hence

Of course Gx is a geometrically finite function group; hence stratifiable. We let

xl9..., xd+3 be a stratification for Gt.
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We repeat the above analysis for G2 and we conclude that /2(G2)/G2 is a

sphère with four ramification points of indices vl9 v2, 2, 2. We choose gênerators
gx, g2 for G02, where g/= 1 (i l,2), g2ogi K a generator for Ho, and
(g°j)ogio(goj) gî1- Then G2 is generated by gls g2, g. Thèse satisfy the
relations gï1 gï2 g2 (g°g2°gi)2 (g°gi)2= 1. (We remark that from the
theory of signatures of Kleinian groups [26], we know il(G2)/G2, and so G2 has a

présentation of three elliptic or parabolic generators where a product of two of
them is elliptic, parabolic or the identity, and a product of ail three is elliptic or
parabolic.)

We must show that the stratification of Gx already stratifiés G. The stratification

of Gi détermines h and g. Again we change normalization so that (Go is no
longer Fuchsian)

Ho A g=U o&gt;

We write

gi

Now tr gj and tr g2 are known constants. But

tr g2 tr h o gî1 tô 4- r~xa,

tr g! a + ô.

Hence we can solve for a and 8. Since (g°gi)2 1, we also hâve 7 /3. Finally to
solve for 7 we use 72 aô-l. In gênerai we hâve two solutions (note that
a8j= 1). The connectivity and simply connectivity of T(G) force the sélection of

square root.
This complètes the proof of Theorem 4.

Remark. The cuts we made in the surface S had to be chosen with care. For

example, had we chosen in the last case to eut S along a simple non-dividing loop
v where / has exactly two fixed points on v, then we would hâve obtained a group
Gi with d(G1)&gt;d(G).
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