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A l§-dimensioiial version of Hopf&apos;s Theorem on the number of ends
of a group

Robert Bieri

1. Introduction

If G is a finitely generated group then the first cohomology group with group
ring coefficients H1^; ZG) is known to be free-Abelian. H. Hopf [7] has shown
that its Z-rank, rk H\G;ZG)9 attains only the values 0,1 or », and the
celebrated structure theorem of Hopf-Stallings [7], [12], classifies thèse three
cases in terms of the group theoretic structure of G.

Of course the cohomology group H1(G;ZG) carries much more information
than just its Abelian group structure. As the coefficient module ZG is a bi-module
XH1(G; ZG) inherits the structure of a (right) G-module; and by functoriality one
can consider the restriction maps

res: H\G;ZG)-*]\ H\SX\ZG) (1.1)

where Sf {Sl9 S2,..., Sm} is a finite family of finitely generated subgroups of G.
The relative versions of Stalling&apos;s structure theorem by Swan [13] and Swarup
[14] show that the kernel K of (1.1) is free-Abelian of rank 0,1 or », and classify
thèse three cases in terms of the structure of the pair (G9Sf).

In this paper we consider the cokernel C(G,£f) of the restriction map (1.1),
under the assumption that G is accessible. (For a discussion of accessibility refer
to [4], but we recall that every finitely generated torsion-free group is accessible

by Grusko&apos;s Theorem and that it is unknown whether finitely generated non-
accessible groups exist). We observe that Heinz Mûller&apos;s resuit [9] on the freeness
of the cokernel of the restriction map carries readily over to the case of a finite
family of subgroups, so that C(G, £f) is always free-Abelian in our situation. Our
main resuit asserts that the rank m of C(G9 Sf) is equal to 0,1 or » except in the

very spécial situation when G contains an infinité cyclic subgroup of finite index, in
which case m can attain every value 0^m&lt;oo. Then we classify the three cases

m 0,1, oo in terms of the structure of (G, Sf). The fact that, in view of the long
exact cohomology séquence for the pair (G9Sf)9 the cokernel of (1.1) &quot;lies

between H\G;1G) and H2(G;ZG)&quot; justifies our title.

25
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2. The résulte

2.1. Our main resuit is

THEOREM A. Let G be a finitely generated accessible group and tf —

{S1? S2,..., Sm} a finite non-empty family of finitely generated infinité subgroups of
G, and let rk C(G, if) dénote the rank of the (free-Abelian) cokemel of the

restriction map (1.1). If G contains an infinité cyclic subgroup of finite index then

otherwise rk C(G, if) is equal to 0 or 1, or &lt;».

Note that finite groups in the family if hâve no influence whatsoever on the

cokemel of (1.1) and so we lose no generality by assuming that ail groups in if
are infinité.

Next we classify the three cases rk C(G, #0 0, 1,» by exhibiting necessary
and sufficient conditions for rk C(G, if) to be 0 or 1, respectively, The case

rk C(G9 if) 0 is then, of course, given by exclusion.
2.2. rk C(G, tf) 1. In order to state the resuit when C(G, if) is infinité cyclic

we introduce the following notation. Let (G, if) be a pair consisting of a group G
and a family if {S, | i &lt;= 1} of subgroups (possibly with répétitions!), and let F&lt; G
be an auxiliary subgroup. For each index i e I we choose a System Xx of double
coset représentatives of F\G/St and consider the family

if1 {FH x.S.xr11 x, e Xt, i e I}.

Up to cojugacy within F, if1 is independent of the choice of Xiy i e I. We call (F, if&apos;)

the full subpair of (G, if) given by F&lt;G.

We define the group pair (G, if) to be a virtual Poincaré duality pair if G
contains a subgroup of finite index F^G such that the full subpair of (G, if) given
by F is a Poincaré duality pair in the sensé of [2]. Note that F is necessarily
torsion-free and that the définition of a virtual Poincaré duality pair is indépendant

of the patricular choice of F by [2], Theorem 7.6.

THEOREM B.(1) Let (G, if) be as in Theorem A. Then rk C(G, if) lif and
only if (G, if) is a virtual Poincaré duality pair of dimension 2.

Thus in view of [2] Theorem 9.3 we hâve rk C(G9 if) l if and only if G

1Eckmann and Mûller hâve recently obtained a différent proof of Theorem B and a direct
description of ail virtual Poincaré duality pairs of dimension 2. See &quot;Plane motion groups and virtual
Poincaré duality of dimension 2&quot;. Preprmt, Forschungsinstitut fur Mathematik 1981, ETO, Zurich.
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contains a free subgroup of finite index, each S, contains an infinité cyclic
subgroup of finite index, and the relative cohomology group H2(G, Sf; 1G) is =Z.

It was shown by Eckmann and Mûller [5] that the 2-dimensional Poincaré

duality pairs are géométrie, that is, given by the fundamental group and the
peripheral subgroup System of a compact surface-with-boundary. This yields the

COROLLARY.(1) Let (G, y) be as in Theorem A and assume G is torsion-
free. Then rk C(G, S) 1 if and only if G is a free group having a basis

{tl912,...,. fm-i, xl9 xn}, such that the subgroups St e¥ are conjugate to the

infinité cyclic subgroups gp(fi),..., gp(tm-i), gp(tx- • -^-ir), where

r [xl9 x2][x3, x4] • • • [x^, xn], n even&gt; 0

if C(G, 50 has trivial G-actiony and

\l - xi, n&gt;0

2.3. rk C(G, ,9) 0. In order to exhibit the structure of (G,^) when the
restriction map (1.1) is surjective we hâve to consider simultanous décompositions
of G and the subgroups S, as fundamental groups of graphs of groups. In order to
handle the family Sf it is convenient to consider graphs of groups (©, X) where the

underlying graph X is not necessarily connected and define its &quot;fundamental

group&quot; ttxC®, X) to be the family of fundamental groups of the connected

components.
In more détail: Let X(z), iel9 dénote the connected components of the

(oriented) graph X, with vertices V(X(0) and (positive) edges E(X(i)), and let
©(0 be the corresponding System of vertex groups Gv, v e V(X(0) and edge

groups Ge &lt; Go(e), Gè &lt; Gt(e), e e E(X(i)). Then tt^©, X) stands for the family of

groups G(0 tti(©(0, X(0), iel. Recall that G(i) is generated by the vertex

groups Gv, v g V(X(0) and stable letters pe, e e E(X(i)), subject to the following
defining relations.

V~eXGeVe G-e9 eeE(X(l))
pe l for ail edges e in a maximal tree of X(i).

So let G tt^©, X), with X connected, and y ir^©, Y) with Y arbitrary,
and let V(X), V(Y) be the set of vertices and E(X), E(Y) the set of (positive)
edges of X resp. Y.

DEFINITION. We say that the décompositions of G and 9 are compatible
(via an orientation preserving graph map /: Y-&gt; X) if there are éléments cv e G,
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v e V(X), such that the following holds

for every vertex veV(Y) (2.1)

co(e)Pf(e) pect(e) for every edge e € E(Y), (2.2)

where pe and pf(e) stand for the stable letters corresponding to the (positive) edges

e resp. /(e).

Note that if G and Sf hâve compatible décompositions via /, G tt^©, X),
Sf ir^©, Y), then the same holds for any family SP {SJ | i e 1} with S[ giT^g,,
g, € G. Indeed, let (©„ Yi), i e I, be the connected components of (©, Y). Then

conjugating each &amp;% ir^©,, Y,)&lt;G by gt yields a décomposition SP tt1(©/, Y)
satisfying (2.1), and (2.2), where for each veV(Yt) and eeE(Yt) cv is to be

replaced by g;xcv and pe by grVeg..
Now we are in a position to state

THEOREM C. Let (G, Sf) be as in Theorem A. Then C(G, 9) 0 if and only

if G and Sf hâve compatible décompositions G ir^©, X), &amp;&gt; ^(S, Y) given fcy a
graph map / : Y -&gt; X wfiich is bejective on the edges, such that the following holds :

(i) ail edge groups of G are finite and coincide with the corresponding (conju-
gate) edge groups of &amp;

(ii) ail vertex groups of Sf hâve ^1 end.

As a spécial case Theorem 3 contains a splitting resuit which is related to those

of Swan [13], Lemma 7.1, and Wall [15].

COROLLARY. Let G be a torsion-free finitely generated group and &amp;&gt; a finite
family of finitely generated free subgroups of G. Then C(G, $f) 0 if and only if G
is the free product G S\*- • • * S&apos;m* K where S[ &lt; G is a subgroup conjugate to St

1 &lt;i&lt;m, and K^G is an auxiliary subgroup.

Proof. If res is surjective G and $f hâve décompositions G irx(©, X), Sf

ir^©, Y) satisfying the properties (i), (ii) of Proposition 7.2. Hence ail edge

groups are trivial and ail vertex groups Sv of &amp; hâve &lt;1 end. Since Sv is free this
means that Sv 1, and Sf ir^©, Y) is the family of fundamental groups (in the

topological sensé) of the connected components Yt of Y. Since X /(Yt) the
fundamental group of X is free product of iri(f(Yt)) and an auxiliary group Ku
and clearly G^wi(X)*K2 where K2 is the tree product along a maximal tree of
X. Finally 7Ti(/(YI)) &apos;jri(Yï)*IC3I because / identifies certain vertices; note that
one has to choose base points and use conjugation to adapt the éléments c,, g G so
that the last isomorphism involves conjugation.
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3. Two preliminary lemmas

3.1. Let G be a group and K a commutative ring with nontrivial unity. Recall
that a KG-module M is said to be of type (FP)n, where n is an integer &gt;0 or
n «&gt;, if M has a projective resolution which is finitely generated in ail dimensions
&lt; n. If M is of type (FP)^ and of finite projective dimension then M is said to be

of type (JFP). If the trivial G-module K is of type (FP)n (resp. of type (FP)) then

we say that the group G is of type (FP)n over K (resp. of type (FP) over K).

LEMMA 3.1 (Stallings [12]). Let K be a field and assume that G has no
K-torsion. Let Vbe a non-trivial KG-module of finite K-dimension. then we hâve

(a) The KG-module V is of type (FP)n if and only if the group G is of type
(FP)n over K.

(b) The projective dimension of the KG-module V is equal to the chomology
dimension cdKG of G over K.

Proof Let P-»K be a projective resolution of the KG-module K. Then

P®K V is a projective resolution of V. And if P is finitely generated (resp. of
finite length) so is P®KV.

Conversely: Assume first that V is of type (FP)n. By induction one may
assume that Po, Pi,..., Pn_i are finitely generated, hence so are Pt ®K V, i

Let R ker (Pn_x -* Pn_2). Since V is of type (FP)m R®K V is finitely generated

over KG; hence so is R, and therefore G is of type (FP)n over K.
Now assume V is of projective dimension &lt;n. Then JR®KV is a projective

KG-module. Let F be a free KG-module and / : F-» R an epimorphism. There is

a KG-homomorphism g:R&lt;8)KV-*F®K V which splits /® 1. Stallings defines to
such a map g the &quot;transfer trace&quot; gyiR -&gt; V as follows: for every reR and a

fixed basis {vl9 v2,..., vn} of V one has

and we can put

It is easy to check that g$:JR-»F is a KG-homomorphism which does not
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dépend upon the choice of the basis {vu v2, •.., vn}, and that the composite map
/•g$:F—»R is multiplication by n=dimKV. Since G has no K-torsion

— g* : R —» F splits /, and R is projective.
n

3.2. There is an immédiate Corollary which improves Lemma 3.2(b) provided
the cohomology dimension cdK G is known to be finite.

COROLLARY 3.2. Let Kbe a field, G a group of finite cohomology dimension

over K, and M a KG-module containing a non-trivial submodule V&lt;M of finite
K-dimension. Then cdK G is equal to the projective dimension of M.

Proof. Let A be a KG-module such that Ext£G V, A) f 0, where m cdK G.

Since the projective dimension of any KG-module is &lt;m we obtain from the long
exact Ext-sequence

Ext£G (M, A) ^ Ext£G (V, A) -* Ext^M/V, A)

that Ext^o (M, A) £ 0. Hence the projective dimension of M is &gt;m and hence

m cdK G.

4. Résolutions of end groups by permutation modules

4.1. Let G be an infinité finitely generated accessible group and 9&gt; {Sl\ie 1}

a finite family of finitely generated subgroups of G. In this section we deduce a

finite resolution of the relative cohomology group Hx(G9Sf; ZG) regarded as a

right G-module. For définitions and notation concerning the cohomology of a pair
(G, Sf) we refer to [2]. Thus we consider the short exact séquence

(4.1)

where Z(G/5f) is an abbreviation for the direct sum of ail permutation modules
ZG/S,, i € I, and e is the obvious augmentation. Then

Hk(G;ZG), ifSP=0
ZG) if,

Note that JFf°(G,Sf; A) 0 for yf0; and replacing the subgroups SteSe by
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conjugates leads to an isomorphic relative group. Finally, we shall use the
abbreviation Hn(Sf\ZG) for the direct product of the groups Hn(SI;ZG), îeI

4.2. Let Jfin (resp. Jmf) dénote the set of ail i e I with S, finite (resp. infinité),
and put

Sfûn {S, 11 e IflJ, &lt;?mf {S, | i g Ilnf}.

From ZG/Sf ZG/#&gt;fin©ZG/#&apos;lnf one easily obtains a short exact séquence of left
G-modules.

and the corresponding Ext-Sequence yields the short exact séquence of right
G-modules.

0 -&gt; H°(srfln; ZG) -&gt; Hl(G, 9&gt;; 1G) -» H\G, 9&gt;mf ; ZG) -&gt; 0. (4.2)

Now, H°(Sffin;ZG) is the direct product of the (right) permutation modules
Z(SAG), ÎG/fin.

4.3. It remains to consider the cohomology group HX(G, 5^mf; ZG), which-by
the long exact séquence for the pair (G, 6^inf) - is isomorphic to the kernel of the
restriction map H\G; ZG) -* H1 (&amp;&gt;„&amp;&gt; 2G). If the kernel is =0 then, by Swarup&apos;s

relative version of Stalling&apos;s Structure Theorem [14] one can replace the groups in
5^mf by suitable conjugates in such a way that G can be written as the fundamental
group of a graph of groups (®, X) with finite edge groups and with every group of
5fmf contained in one of the vertex groups. Let V be the set of vertices and E the
set of positive edges of X. Sfmt can be written as a disjoint union of families Sfv of
subgroups of the edge groups, Gv, veV. If H\GV, Sfv ; ZG) f 0 for some veV
one can repeat the décomposition procédure. But as G is accessible the
décomposition stops after a finite number of steps. Hence we can assume that
H\GV, Sfv ; ZG) 0 for ail veV.

The relative Mayer-Vietoris séquence (cf. [2], Theorems 3.2 and 3.3, which
can be generalized to arbitrary graphs of groups) now yields a short exact

séquence of right G-modules.

0 -» II H°(GW 9&gt;v ; ZG) ^ II H°(Ge ; ZG) -* H\G, &lt;/&gt;inf; ZG) -» 0. (4.3)

Of course H°(GV9Sfv;lG) 0 if either ¥vï0 or GV is infinité. If GV is finite
then SPB
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(4.3) can be written as

0 -* II Z(G,\G) -&gt; II nGe\G) -» H\G, &lt;/&gt;inf ; 1G) -* 0, (4.4)
Vfin E

where V^c y is the set of ail vertices v with Gv finite.
4.4. From the short exact séquence (4.2) and (4.4) we deduce three things.

Firstly, the permutation modules Z(U\G) for a finite subgroup [/&lt;G are of type
(FP)oo. Since the index sets Vfin, E and 1^ are finite it follows that the G-module
HX{G, &amp;\ TG) is of type (FP)^. Secondly, when tensored with Q, a permutation
module Z(L/\G), U finite, becomes a projective QG-module. Hence using (4.4)
and (4.2) one can construct a finite projective resolution of HX(G, SF\ QG). This
yields a bound for the projective dimension and the Euler characteristic of this
QG-module. Using the notation of [3] (in fact extending it slightly) we write x(M)
for the Hattori-Stallings-rank of a QG-module of type (FP) - recall that *(M) is a

finite Q-linear combination of conjugacy classes in G-and jul(M)€Q for its

coefficient of le G.

We summarize:

THEOREM 4.1. Let G be a finitely generated infinité accessible group and
&amp; {S, | i e 1} a finite family of finitely generated subgroups of G. Then the right
G-module H\G99\1G) is of type (FP)oo. The QG-module H\G,sr;QG) is of
type (FP) and of projective dimension &lt;2; and its Euler characteristic is given by

li(H\G,!f;QG)) Z±-Z±+Z± (4.5)
e \Ge\ Vfin\Gv\ jJS,!

Proof. If K is a finite group then the trivial QK-module Q is projective and

has Euler characteristic jx(Q) V\U\. If U is a subgroup of G then QG is free as

a QU-module, hence Q®QLrZG=Q(l7\G) is QG-projective; and by the
covariance property of x (and mO we get jll(Q([/\G)) jut(Q). Using the behaviour
of x (anc* f*) with respect to exact séquence yields formula (4.5).

4.5. Remark. For the proof of the main resuit we shall actually only need the

case 5^ 0 of Theorem 4.1. In this case (4.2) is irrelevant and hence the

projective dimension of H1(G;QG) is even &lt;1.

5. The cokernel C(G, S) of res is free-Abelian

5.1. Next we observe that H. Miiller&apos;s resuit [9] on the cokernel of the
restriction map extends to the case of a family of subgroups:
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THEOREM 5.1 (H. Mùller). Let Gbe a finitely generated accessible group and
y&gt; {S1,S2,...,Sm} a finite family of finitely generated subgroups. Then the

cokernel C(G, 9) of the restriction map H\G; 1G) -» H\Sf\ 1G) is free-Abelian.

Proof. Following the proof of [9], Corollary 1.9 one can embedded St into a

certain accessible group Sx with C(SU S^ free-Abelian and such that there is a

short exact séquence

C(G, &amp;)&gt;-* C(G, 9)&lt;8&gt;G 1G -* C(SU Sx) ®SlZG,

where G stands for the amalgamated free product G^G^s^ and Sf for the

family Sf {Sl9 S2,..., Sm} of subgroups of G. Hence it suffices to prove that
C(G, #0 is free-Abelian. Repeating the argument shows that we may assume that
ail subgroups Sl9..., Sm are accessible. The proof of [9], Corollary 1.4 now
carries over.

6. The case when 0&lt;rk C(G,#O&lt;°°

6.1. Throughout this section we assume G to be a finitely generated accessible

group and 9&gt; {Sl9..., Sm} a finite non-empty family of finitely generated infinité
subgroups such that the cokernel C(G,9) of (1.1) is of finite Z-rank&gt;0.

LEMMA 6.1. Under thèse assumptions the restriction map (1.1) is injective, so

that one has the short exact séquence of G-modules.

H\G;ZG) ^H\^;lG)-^C(G,Sf). (6.1)

Proof. If not, then by Swarup&apos;s relative version of Stalling&apos;s structure theorem
[14], after replacing the groups S, by suitable conjugates, the pair (G, Sf) décomposes

non-trivially as an amalgamated product of two pairs (G,, Sft), i 1,2 or as

an HNN-extension over a pair (G1? S^), where in either case the amalgamated
(associated) subgroup is finite. Writing Q for the cokernel C(Gt, SO we obtain the

following commutative diagram with exact rows.

HX(G;ZG) -^ HH

a is the restriction which occurs in the Mayer-Vietoris séquence for G; hence, as

the amalgamated subgroup is finite, a is epimorphic. tf is the disjoint union of Sfx
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and 5^2 ; hence |8 is the identity. It follows by the 5-Lemma that y is an

isomorphism. Therefore one of the G-modules C,®GiZG is of finite Z-rank &gt;0.

But this implies that Gt is of finite index in G which is impossible.

6.2. Dunwoody&apos;s accessibility criterion [4] asserts that a group G is accessible

if and only if the cohomology group H1(G;ZG) is finitely generated as a right
G-module. From our assumption that G is acessible and C(G, Sf) free-Abelian of
finite rank it thus follows that H\Sf;2G) and hence each /**($; ZG)ss
H1^ ; ZSJ ®Sl1G is finitely generated over ZG. As ZG is a free ZS,-module we
can infer that H1(SI;ZSI) is finitely generated over ZS,. Hence ail groups S,, 1^
i &lt; m, are accessible by the criterion again.

Thus the absolute version of Theorem 4.1 applies for both G and S,, 1 &lt; i &lt; m.

Hence the G-modules HX(G; ZG) and H1^; ZG) are of type (fP)«, and in view
of the short exact séquence (6.1) so is C(G9Sf). Moreover the QG-modules
H\G;QG) and H\!f;QG) are of type (JFP) and of projective dimension &lt;1.

Hence the short exact séquence (6.1), when tensored with Q, shows that
CQ(G, 9&gt;) C(G, Sf) ®ZQ is a QG-module of type (FP) and of projective dimension

^2.
By Lemma 3.1 we can now infer that the group G is of type (FP)oo over Z and

of type (FP) with ccIq G&lt;2 over Q.
6.3. Our next aim is to show that the kernel A=AG/cf of the augmentation

map erZG/^-^Z (4.1) is a G-module of type (FP)X. To that end take an

arbitrary direct power \\TLG of copies of ZG, and apply TorJG(T[ZG, -) to the
short exact séquence (4.1). This yields the commutative diagram with exact rows

TorfG (n /G, z) -* (fi ZG) ®oà-+ (il ZG) ®oZ(G/y) -&gt; (il ZG) ®g Z -&gt; 0

^4 ^i *3l
o -^n^ -^ rizG/y -&gt; riz ^o

where the vertical arrows stand for the limiting homomorphism (e.g., jutidl^i®
d)==nA.,d, A,€ZG, de4). Since Z is of type (fP)» as a G-module
Tor?G(TlZG, Z) 0 and jul3 is an isomorphism. Sf is a finite family of finitely
generated subgroups of G, hence ZG/Sf is of type (FP)1 and /x2 is an isomorphism.
It follows that jut! is an isomorphism, whence A is of type (FP)1 (see e.g. [1],
chapter I).

6.4. From Section 6.3. we infer that the QG-module AQ A ®Q is of type
(FP)t. So let us choose a QG-projective resolution

P2 -1l+ Pl ^i^ Po »Aq (6.2)
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which is finitely generated in dimensions 0 and 1, and which we can use to
compute the relative cohomology groups Hn(G, tf\ QG) for n 1 and 2. Also, we
hâve the long exact séquence for the pair (G, Sf)

; QG) -^ H\G, Sf\ QG) -* H\G\ QG) -^
H\&amp;\ QG) -* H2(G, &lt;f\ QG) -»

where res is injective by Lemma 6.1. Since ail groups in Sf are infinité
H°(^; QG) 0 and hence H\G, Sf; QG) 0. This shows that

0 -» PJ -&gt; Pî -* coker (a?) -» 0,

with P* =HomQG (P,, QG) is a short exact séquence. But P* and P* are finitely
generated projective right QG-modules, hence coker (df) is a QG-module of
projective dimension &lt;1. Clearly coker (a?) contains ker af/im a* H2(G, &amp;\ QG)
which, in turn, contains the submodule CO{G,SP) of finite Q-dimension. By
Corollary 3.2 this implies that the cohomology dimension of G over Q is in fact
^l.(2) Hence by Dunwoody&apos;s generalization of Stallings&apos; theorem [4] G contains a

free subgroup of finite index.
We summarize

THEOREM 6.2. Let G be a finitely generated accessible group and tf a finite
family of finitely generated subgroups of G. If the cokernel C(G, Sf) of the restriction

map

is of finite Z-rank &gt;0 then G contains a free subgroup of finite index.

Remark. It follows, in particular, that in the situation of Theorem 6.2 one has

H2(G;ZG) 0. Hence the long exact séquence for (G, Sf) shows that

6.5. It remains to examine the situation when G is a finitely generated infinité
free-by-finite group and y a finite family of m infinitely generated, infinité
subgroups. Then G can be thought of as the fundamental group of a finite graph

2 This type of argument was used by Farrell [6]
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(©, X) of finite groups. Let V dénote the set of vertices and E the set of positive
edges of X. Then Theorem 4.1 yields the formula

But this is precisely the négative of the formula for the Euler characteristic
(e.g. [3], Theorem 2). Hence we hâve

and similar for S,,

H(H\S, ; QG)) (tCHHS, ; QS,)®^ ZG)

From the short exact séquence (6.1) we now obtain the formula

n(G)- I n(S.) (6.3)

On the other hand C^G,^) is a QG-module of finite Q-dimension, whence
^(CQ(G,5^)) dimCQ(G,y)-fx(G) (see e.g. [3], Lemma 8). Together with (6.3)
this yields the équation

n(G)(rkC(G, ?)-!) + £ n(Sl) 0. (6.4)
i=i

Let F be a free subgroup of finite index in G and n the rank of F. Then
1 - n \G : F\ • jul(G). This shows that /x(G) is &lt;0 and jn(G) 0 if and only

if G is infinité cyclic-by-finite. Of course the same holds for ii(St); hence we can
deduce from (6.4) that ^(5^ 0 for l&lt;i&lt;m and either /ul(G) 0 or
rk C{Gy y) 1. In other words: ail groups S,, 1 &lt; i &lt; m, contain an infinité cyclic
subgroup of finite index and either the same holds for G itself or one has

C(G, y) ssZ.

Remark. Instead of using Euler characteristics A. Freudenberger [Diplomar-
beit 1982, University of Freiburg im Breisgau, Germany] obtains formula (6.4) by
Computing the Q-dimensions in the long exact homology séquence of G with
coefficients in (6.1) tensored with Q.
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6.6. The proof of Theorems A and B is now easily completed: If G is infinité
cyclic-by-finite then the index |G:SJ is finite for ail l&lt;i&lt;m, H\G;ZG)^19
and H1(^;/G) nH1(Sl;/Sl)®SlZG Z(^\G) is free-Abelian of rank
X \G :S,|. By the short exact séquence (6.1) we thus hâve

rk C(G, y)
1 1

On the other hand, if jul(G)^O and hence C(G9^) Z we consider a free
subgroup F of finite index in G and the full subpair (F, S?) of (G, Sf) given by F
(cf. Section 2.2). By [2], Proposition 7.5, we hâve

Hence (F, S?) is a 2-dimensional Poincaré duality pair by the PD2-criterion [2]
Theorem 9.3.

7. The case when C(G, &lt;f) 0.

7.1. Hère we hâve to consider compatible décompositions of the pair (G, 50 as

defined in Section 2.3. That is, both G and îf are &quot;fundamental groups of graphs
of groups&quot; G 7r1(®, X) SP iti(@, Y) - where the graph Y is not necessarily
connected - and there is given an orientation preserving graph map / : Y -&gt; X and

for each vertex v of Y a group élément cveG such that the équations (2.1) and

(2.2) are satisfied.
One feature of compatible décompositions is a natural homomorphism be-

tween the Mayer-Vietories séquences of G and Sf. Indeed one has the commuta-
tive diagram of G-modules.

&gt;ZGIS

(7.1)
© iG/se &gt;—

E(Y)

1&quot;

0 ZG/Ge&gt;—

E(X)

—&gt; © zgisv
V(Y) |

r
—&gt; © ZG/G,

V(X)

where V(X), V(Y) stand for the set of vertices and E(X), E(Y) for the set of
positive edges of X resp. Y. The rows are the short exact séquences [9], p. 168
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and the vertical maps are given by

/o(gSo) gcvGf(v)

Commutativity of the diagram is guaranteed by (2.2). Applying the functor
Ext|G (—, A), A an arbitrary G-module, and using the Shapiro Lemma thus yields
the commutative ladder

•Hk(G;A)-+ [] Hk(Gu;A)-&gt; fi Hk(G€; A)-&gt;Hk+1(G; A)-* • • •

V(X) E(X)

I I M
• --Hk(Sf;A)-+ 1| Hk(Sv;A) -» fi Hk(Se;A) -» Hk+1(^; A) -&gt; • • •

V(Y) E(Y)

7.2. We are now in a position to prove

PROPOSITION 7.1. LetGbea group and y a family of subgroups. Assume
that G and y hâve compatible décompositions G ir^®, X), Sf ir^©, Y), via a

graph map / : Y —&gt; X which is injective on the edges, and such that the following
two conditions hold

(i) S^ Gf(e) /or every edge e e E(y)
(ii) a// uertex groups Sv of Sf hâve &lt;1 end.

Then the restriction map H1(G;lG)-+H1(Sf;ïG) is surjective.

Proof. The condition (i) implies that the vertical map /x in the diagram (7.1) is

the injection of a direct summand. Hence HomG (/1,ZG) /Î is surjective and
(7.2) with A =ZG yields the commutative diagram with exact rows

11 H°(Ge ; ZG) H\G ; ZG) &gt;\\ H\GV ; ZG)

-I -I i
II H°(Se ; ZG) -U H\9&gt;; ZG) &gt; fl H\SV ; ZG)

Now, condition (ii) asserts that H1(St);ZG) 0 for ail ve V(Y); hence 8 is an

epimorphism and so is res.

7.3. It remains to prove the following converse of Proposition 7.1.
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PROPOSITION 7.2. Let G be a finitely generated group and 9&gt; {Sl\ieI} a

finite family of finitely generated accessible subgroups. If the restriction map
res : HX{G\ ZG) -&gt; H1^; ZG) is surjective then G and &amp; hâve compatible
décompositions G ttxC®, X), ¥ TTiC©, Y) via an orientation preserving graph

mapf: Y—&gt;X which is bijective on the edges and such that
(i) for every edge eeE(Y) the edge group Ge is finite and coincides with St&lt;**\

(ii) ail vertex groups Sv of &amp; hâve &lt;1 end.

Proof. Since ^ is a finite family of finitely generated accessible groups 5f can
be written as the &quot;fundamental group&quot; of some finite graph of groups (©, Y) with
ail edge groups Se finite and ail vertex groups Sv having &lt;1 end. If we arrange
(S, Y) such that ail embedlings Se &lt; Go(e) are proper, then the number of edge

pairs of Y is an invariant of Sf which we call the complexity.
We shall prove Proposition 7.2 by induction on the complexity of Sf. If the

complexity is 0 then every S, has &lt;1 end and the proposition holds with X
consisting of one vertex and no edges and Y consisting of an isolated vertex for
every iel If Sf has complexity &gt;0 then H\Sf;ZG)^0. So assume

H1(S1;ZG)ï0, and put &amp; &amp;-{S1}. Since res is surjective H. Miiller&apos;s first
décomposition Theorem applies ([7], Corollary 3.1.). Thus after replacing the

groups in ïï by suitable conjugates the pair (G, HT) and the subgroup Sx hâve a

proper simultaneous décomposition in the following sensé. Either G G1*KG2
and S1 S11*KS12 where K is finite. Su&lt;Gt (i l,2), and 9&quot; is the disjoint of
families 3~t, ?F2 of subgroups of Gl9 resp. G2; or G^G^*^ is an HNN-group
with stable letter p and finite associated subgroups K,pKp~~x, 2T consists of
subgroups of Gb and Sx is either =Su*Kp or =5&apos;11 *kPS\iP~X&gt; w^tn ^n» ^i2^^i-
Note that ail thèse décompositions of G and Sx are compatible in the sensé of
Section 2.3.

We restrict the discussion to the first case, the other cases being similar. By
(7.2) we hâve a map between the Mayer-Vietoris séquences for G and Sl9 and

adding H1^, ZG) to the latter yields the commutative diagram with exact rows

H°(K;ZG)-&gt; H\G;ZG)-&gt; è&gt;H\Gx\ZG) -&gt;0

res ©resj

H°(X; ZG) -* H1^; ZG) - ,© **^; ZG)®H\V; ZG) -* 0

from which we deduce that the restriction map

res,:H1(GI;ZG1)-*H1(yu{S11};ZGl)
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is surjective for i 1, 2. Now the complexity of 3T, U{SU} îs less than that of Sf

Hence, by induction, G, and 2T, U{Slt} hâve a compatible décomposition satisfying
the assertion of Proposition 7.2. Putting thèse together yields a compatible
décomposition of G and &amp;&gt; with the required properties.

Remark. Instead of assuming that the subgroups in 5f are accessible in
Proposition 7.2 one could also assume that the group G is accessible. Indeed, by
Dunwoody&apos;s criterion [4] this would mean that H1(G; ZG) is finitely generated as

a right G-module. Smce res:H1(G;ZG)-&gt;H1(^;ZG) is assumed to be surjective

the same holds for Sf, implying that every S, € Sf is accessible
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