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Lifting idempotents and Clifford theory

Jacques Thévenaz

Let Nbea normal subgroup of a finite group G and let R be a noetherian
complète local commutative ring. Clifïord theory deals with the relationship
between i?G-modules and RN-moâules, using induction from N to G or restriction

from G to N. Since Clifford&apos;s 1937 paper [1], the theory is well understood
for irreducible représentations (see also [2, §11C]). For an indécomposable RN-
module W, several authors hâve proved a going-up theorem describing how
Indg W décomposes (see [2, §19C]).

One purpose of this paper is to prove (in Section 2) a going-down theorem for
indécomposable modules (analogous to Clifford&apos;s theorem), based on a refinement
of the lifting idempotents theorem, presented in Section 1. The going-up and

going-down theorems are actually équivalent in the sensé that each can be derived
as a corollary to the other one. One main assumption is necessary for the
going-down theorem: the RG-module we start from must be projective relative to
H. The whole procédure is presented in the more gênerai context of Clifford
Systems. The paper concludes in Section 3 with another application of the lifting
idempotents theorem, concerning the behaviour of indécomposable modules
under ground ring extensions.

1. lifting idempotents

THEOREM 1. Let A be a ring and J a two-sided idéal contained in Rad A.
Assume that A is complète in the J-adic topology (that is the natural map A —&gt;

lim A/Jn is an isomorphism). Let TI be a finite group acting on A by automorphisms
leaving J globally invariant. Let {ël9..., ën} be a set of orthogonal idempotents of
Â =A/J satisfying XP-i êt l. Assume the following three conditions:

a) The induced action of FI on Â permutes the idempotents ëx transitively.
b) There exists ueA such that Trn(u) 1 where Û is the stabilizer of êx and

c) U commutes with each ët.

Then {ëly..., ën} lifts to a set {el9..., en} of orthogonal idempotents of A which

are permuted by II transitively and such that £r=i e, 1.
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Remarks. 1) If A is the ring of endomorphisms of a représentation V, we shall
see that the condition b) corresponds to a condition of relative projectivity for V.

2) There are two situations where c) is always satisfied: either the idempotents
ëx are central or the order \fl\ of fl is invertible in A in which case one can choose

u to be the central élément \fl\~1.
3) When JJ acts regularly on the idempotents ël9 that is when Q is trivial, one

can take u 1 so that b) and c) are trivially satisfied. This spécial case appears
already in [3].

Proof. It suffices to prove the theorem when / is nilpotent because, since

A lim A/Jn, the lifted idempotents are constructed as limits of idempotents of

AIT for n -* oo.

For cr e J7, write ëa uëx so that êa ëT if and only if au tû. Since IT acts

transitively, every idempotent ëx can be written in that form.
We proceed by induction on the nilpotent index n of /. There is nothing to

prove if n 1. If n ^ 2, let I Jn~l and write a for the image of a g A modulo /.
By induction, there exist idempotents ë^ of A// such that crêT ë^ and

Xo-eir/n K 1- First lift arbitrarily the idempotents ëa to get orthogonal idempotents

e^ of A satisfying Xo-en/n ^ 1- This is well known to be possible (see

[2, §6A]). Of course the notation implies that we keep the convention:

Co- eT if and only if crû rO.

Since aëT ë^, we hâve:

aeT e^ 4- ra/r for some r^T g I.

We list several properties of the éléments r^:
(1) If a&gt;€/2,rCT,T&lt;o=r&lt;T,T.

This follows from 6^ ^ for ail rjelï.

(2) Iren/nr^O.

This follows when o- is applied to l=ZTen/fi£T-

(3) Tîr&lt;rfT=rmriT-rTIf&lt;rr.

This is a conséquence of (r\a)eT r}(crer).

(4) r^^e^r^+r^e^.
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This follows from the equality &lt;rer (creT)2 using also I2 0. Multiplying (4) by
on the right or ex on the left (or both in the first case below), we get:

0 if
r&lt;r.T«n if
eKrar if Ail =fi crr/2 j\fl
0 if A/2 or/2 r\n

(6) If A/2 ^ tA e^r^+ r^e^ 0.

This is a conséquence of (ixex) • (ju-e,,) 0 using again I2 0.

Now define: £. e^ +S\eiï ^x,\-v * «x • Am where m g A satisfies hypothèses

b) and c). By (1), we hâve:

(R\ V f
For

crell/n o-eJT/nAelT

(9) /JT 0 if

/Jt Z «&lt;rTx,x-»A • Aw+ Z ru-&apos;A
&apos; Au • eT.

Ae/Ï AeIT

By hypothesis c), Aw • êT A(w • êA~iT) A(êÀ~iT • û) êT • Au. Hence Au commutes
with er modulo J. Since / • J Jn~1 • J 0, we hâve r • Au • er r • eT • Au for ail

r€l and so we can permute Au and er in the second sum. Therefore, the only
non-zero terms appear for A g ril. By (5), the same holds for the first sum.
Consequently:

JaJr £4 \^(r&apos;roi,(o~x &quot;&quot; &apos;TO)t&lt;ii~lr~x&lt;T^rta)^r&lt;o
&apos; T^W.

Now apply (6) with tj 1, /ul rco and A o&gt;~1t&quot;1o-, using also (1). The condition
kQ^y\û is équivalent to orÛ^rO. We get /&lt;T/T 0, as required.

Clearly (8) and (9) imply that /a is idempotent. There remains to prove the
additional property we are looking for:

(10) if^fn.
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By (3), we hâve:

Xefl

Since I2 0, we get:

XelT
TjCr(l - X er\ &apos; tAu

using Trn(u) 1 and Y,^nm e» 1.

2. Clifford theory

Let Nbea normal subgroup of a fînite group G and S G/N. Throughout this
section, R dénotes a noetherian local commutative ring which is complète in its
natural topology of local ring. Thèse assumptions are made in order to hâve the

following properties:
(i) Every finitely generated RG-module is a direct sum of indécomposable

submodules.

(ii) If M is an indécomposable RG-module, then EndRGM is a local ring.
Hence Krull-Schmidt theorem holds for RG -modules.

In order to study the restriction to N of an indécomposable RG -module, we
consider the more gênerai case of an S-graded Clifford System A =®sesAs over
R, in the sensé of [2, §11C]. The case of group algebras corresponds to A =RG
and AX RN. Recall that there exist units aseAs such that As asAx~ Axas.

Also asata~tleA1 because AsAt =Ast.
For the rest of this paper, ail modules will be finitely generated left modules.

For an A^module W, dénote by WA the induced module lnd/XlW A®AlWy
while for an A-module V, we dénote by VAl the restriction Res^V. If V is an

A-module, then S acts on EndAl V by sf asfa~1 and the set of fixed points is

exactly EndA V.

DEFINITIONS. 1) An A-module V is said to be projective relative to Ax if V
is a direct summand of a module induced from A! which actually can be chosen to
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be (VAl)A. This is équivalent to the existence of an endomorphism ueEndAi V
such that Trs(u)= 1 where Trs(u) XsesSM- The équivalence of thèse définitions
is well known in the case of group algebras [2, §19A], but the proof can be carried
over without change to the case of Clifford Systems.

2) If W is an Ax-module, then as &lt;8&gt; W has a natural structure of Ai-module
and is called a conjugate of W.

3) Let M ©u MtJ be a décomposition of a module M into indécomposable
summands such that Mt] Mlk for ail i, j, k and Mt] ^ Mkm if i ± k. Then Mt
©jM,, is called a homogeneous component of M. Contrary to the case of semi-
simple modules, note that in gênerai Mx is not uniquely determined by M.

Now we can state the going-down theorem analogous to Clifïord&apos;s theorem:

THEOREM 2. Let A be an S-graded Clifford System over R and V an
indécomposable A-module. Assume that V is projective relative to Al5 that is there

exists an indécomposable summand W of VAl such that V is a direct summand of
WA. Let T {t € S | a, ® W= W) be the inertial subgroup of W and let {su sn}

be a set of coset représentatives of T in S. Finally let B ©teT At be the T-graded
subalgebra of A. Then:

(0 VAl is isomorphic to a direct sum of conjugates of W.

(ii) {aSi ® W | i 1,..., n} is a complète set of non-isomorphic conjugates of W
and each appears with the same multiplicity in a décomposition of VAl.

(iii) There exists a décomposition VAi= ©T=i Ut into homogeneous components
which are permuted transitively by {as \ s e S} and such that {a, 11 e T} stabilizes

(iv) Ux is an indécomposable B-module and V is isomorphic to Ut-

Beside Theorem 1, the main ingrédient for the proof of Theorem 2 is the

following:

PROPOSITION 3. Let A be an R-algebra, finitely generated as R-module,
and M an A-module. Penote by a bar the réduction modulo the radical of EndA M.
Let M ©r=i M, (respectively M ©r=i MO be any décomposition of M corres-

ponding to idempotents eu en e EndA M (respectively e\,..., e&apos;n).

(i) The modules Mx are homogeneous components of M if and only if ël9..., ën

are the primitive central idempotents of EndA M.
(ii) Assume the modules M, and M[ are homogeneous components ofM, labelled

in order to hâve Mt s M[ for ail i. Then there exists fe AutA M such that /(M) M[
for ail i and f 1.

(iii) Assume the modules M% and M[ are homogeneous components of M. Then

Mx Mi if and only if ët ë\.
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Proof. (i) If the modules Mt are homogeneous components of M, write
with N, indécomposable. Let El=EnéANl and D^EndAJV,. By

Fitting&apos;s theorem [2, §19C, lemma], there is a commutative diagram

E EndA M

Since e, is the unit matrix of Mm(Et) (with zéros in ail other components), ê, is the
unit matrix of M^D^, i.e. ë, is a primitive central idempotent of EndAM.

If conversely êx is primitive central, décompose it into primitive idempotents
é»== éii + &quot; &apos; &apos; + ^m, and lift them to get ex — elX + • • • + etmt. Now euJE s= elkE because

ëirË êlkR Therefore:

ex]M etJjE ®EM elkE ®EM ;

So e,M= ©î^i eEJM is a homogeneous décomposition of e,M into indécomposable
summands. If some indécomposable summand of e,M was isomorphic to a

summand of ekM for fc ^ i, there would be less than n homogeneous components
in M and so, by the first part of the proof, less than n primitive central idempotents
in Ê.

(n) Consider again the commutative diagram

EndAM

EndAM

nEndAMl

We emphasize that not only q but also p is surjective. Choose an isomorphism
g, : Mt -» M[ for each i and define an automorphism g of M by g |Mi gr Since g is

invertible, so is q(g) and since p is onto, there exists fieFI^i EndAM, such that
p(h) q(g)-\ Clearly / g • j(h) satisfies f(Mt) M[ and f 1.

(iii) By (ii), if Mi M&apos;u there exists feAutAM such that f(Ml) M[,
i[ and f=l. It follows easily that e[=felf~1 and therefore

Conversely suppose ê[ ëv By Krull-Schmidt theorem, M[ Mt for some i. By
the first part of this proof, ê[ êt. Hence êt ëx and so i 1. ¦

Proof of Theorem 2. (i) Write VAl=©Ui W, with the Wt indécomposable.
Since V is a direct summand of WA, VAl is a summand of WA)Al s ©seS as ® W.

By Krull-Schmidt theorem, each W, is isomorphic to some as ® W.
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(ii) Changing notations write VAi ©&quot;=1 mlWl where m^ dénotes the direct
sum of m, copies of Wt and Wl^W] if i^j. By (i), Wt^as®W for some s.

Applying as to V, we get:

0 mtWt s VAl (o,V)Al s 0 m.to,

Comparing the multiplicities of Wt in both décompositions, we get m^mi. The

same argument applied with an arbitrary as shows that as ® W must be isomor-
phic to some Wv Therefore, by définition of T, {aSi® W\ i 1,. n} is a

complète set of non-isomorphic conjugates of W.

(iii) Let E EndAi V and Ë E/rad (JET). The group S acts on E via sf
asfa~l and induces an action on Ë which necessarily permutes the primitive
central idempotents of Ë.

Let VAl=©r=i Ut be a décomposition of VAl into homogeneous compo-
nents, corresponding to idempotents el9..., en. Assume W is a summand of Uv
For se S, VAi ©r=i asUt is also a décomposition of VAl into homogeneous
components, corresponding to idempotents asela~l-sel. By Proposition 3(i),
{ëu ën} are the primitive central idempotents of Ë. Since asUx ^as®U1=Ut
for some i, we hâve sêx êx by Proposition 3(iii). Moreover each Ut is isomorphic
to some asUt by part (i) and (ii). This implies that S acts transitively on the set

{êl9..., ën}. Since W is a summand of Uu T is the stabilizer of ëx (again by
Proposition 3(iii)).

Now since V is projective relative to Ax, there exists v eEndAi V such that
Trs(v) 1. Let u =Xin=i rxv where rt,..., rn are représentatives of the cosets Tr.

Then TrT(u) Y,t&lt;=T tu — Trs(v) 1. Moreover û commutes with êx for êx is central.
Therefore the hypothèses of Theorem 1 are satisfied. It follows that there exist

orthogonal idempotents fl9... ,/n of E (lifting ëu ën) which are permuted
transitively by S and such that T stabilizes fv

By Proposition 3(i), the modules ftVAl are homogeneous components of VAl.
The équation /» s/1 as/1aj1 means exactly that as(/1VAl)==/lVAi. This
complètes the proof of part (iii).

(iv) Since {at\teT} stabilizes U1 f1VAl, U1 is a B-module. Now V
©r=i O&apos;sJ^x which is the définition of an induced module. Finally Ux is indécomposable

otherwise V would be decomposable. ¦
Counter-example. Without the assumption of relative projectivity for V,

Theorem 2 does not hold any more. Take K a field of characteristic 2, G
C4,N C2 and V K[X]/(X-1)3 (the generator of C4 acting by multiplication
by X). Then: ResN V S1®S2 where S, =K[Y]/(Y-1)1 (the generator of C2
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acting by multiplication by Y). Since St and S2 do not hâve the same dimension,
they cannot be conjugate. In fact, the two primitive central idempotents of
End^ V are fixed under the action of S — GIN, and each of them can be lifted in
four ways in End^ V. But no idempotent of EndKiV V is fixed by S.

Now we can recall the going-up theorem, which we shall prove to be

équivalent to Theorem 2.

THEOREM 4 (Conlon, Tucker, Ward [2, §19C]). Let A be an S-graded
Clifford System over R, W an indécomposable Ax-module, T the inertial subgroup of
W and B ©teT At. If WB ©t&quot;li Zx is a décomposition of WB into indécomposable

B-modules, then each ZA is an indécomposable A-module, that is WA

©î^i ZA gives a décomposition of WA into indécomposable A-modules.

Proof The notation X | Y will mean: X is a direct summand of Y. Let Z be an

indécomposable summand of WB. Since T is the inertial subgroup of W,

(WB)Ai |T| • W and so ZAi is a multiple of W. Since Z | (ZA)B, there exists an

indécomposable summand V of ZA such that Z | VB. Then V \ WA and W \ VAl.
By Theorem 2, there exists an indécomposable B-module U such that Vs UA
and UAl is a multiple of W. Now U \ (ZA)B because V | ZA and U | (UA)B VB.

But Z is the only indécomposable summand of (ZA)B whose restriction to Ax is a

multiple of W, for (ZA)Ai ©r=i aSt® ZAl (where {su sn} is a set of coset
représentatives of T in S) and aSi ® ZAl is a proper conjugate of ZAl (a multiple
of a proper conjugate of W). It follows that L/ Z and so ZA l/A V is

indécomposable. ¦
Equivalence of Theorems 2 and 4. If Theorem 4 is proved independently (e.g.

by the proof of [2, §19C]), then Theorem 2 can be derived as corollary in the

following way: Let V be an indécomposable A-module which is a summand of
WA for some indécomposable summand W of VAl. Let T be the inertial
subgroup of W. By Theorem 4, there exists an indécomposable summand U of
WB such that V=UA. Now UAi mW for some m because (WB)At |T| W.

Then clearly Vs ©r=i aSi® U and VA] ©r=1 m(aSi®W) where su sn are

coset représentatives of T in S. This complètes the proof of Theorem 2. ¦
3. Ground field extensions

Let K be a field and A a finite dimensional K-algebra. Let F be a finite Galois
extension of K, with Galois group 17, and consider the F-algebra F® A (note that

throughout this section ® will always mean ®K). Every élément ae II induces a

semi-linear automorphism cr:F® A-*F® A. If W is an F® A-module, one

can define a new F® A-module structure on W by scalar extension via or (or
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equivalently restriction via cr&quot;1). Explicitly the new structure is given by a • w
o-~\a)w9 aeF®A,weW. This module is called a Galois conjugate of W.

Now if V is a finitely generated indécomposable A-module, then F® V has a

natural structure of F® A-module. Moreover, FI acts on F® V via a(f®v)
of®v,aeII,feF,veV. This action is semi-linear with respect to F® A, i.e.

a(aw) cr(a)cr(w),creI7, aeF®A, weF® V. If F® V ©r=i W, is a

décomposition of F® V into homogeneous components, then so is F® V ©r=i crWr
One can readily check that crW, is a Galois conjugate of Wr By Krull-Schmidt
theorem, aWt W, for some j. Moreover, it is easy to see that for given î and /,
there exists a e II such that aWl Wr The purpose of this section is to dérive
from Theorem 1 a stronger resuit, namely that for a suitable choice of the
submodules Wl9 one can replace this isomorphism by an equality:

PROPOSITION 5. In the above notations, there exists a décomposition

F® V 0r=i Wt of F® V into homogeneous components such that the modules

Wt are permuted transitively under the natural action of II on F®V.
Proof. Let E EndA V and É - E/Rad E. Since V is indécomposable, É is a

division algebra containing K in its center. Now F®E EndF&lt;8)A(F® V) and let

F®E F® E/Rad (F®E). Since F/K is separable, F®E=F®Ê. Let F® V
©r=a W, be a décomposition of F® V into homogeneous components corres-
ponding to idempotents el9..., en e F ® E. The décomposition F ® V
©r=i aWt corresponds to the idempotents ae^&apos;1,..., c^cr&quot;1 (where a is viewed

as a semi-linear automorphism of F® V).
Now n acts on F ® E via a • (/ ® e) crf ® e, cr e II, f e F, e e E. We claim that

azar~l €r • zforallzeF®E. Indeed, if z =/® e,feF, eeE, and if g® veF® V,
then:

® v) cr(f ® eXa&quot;^ ® u) cr(/ • a~xg) ®ev crf &gt; g®ev

e)(g ® t?) (o- • z)(g ® «).

It follows that {cr • ex,..., a • en} are the idempotents corresponding to the

décomposition F® V ©r=i &lt;*Wr By Proposition 3(i), {ëu ...,ën}
{cr • e cr • en} is the set of primitive central idempotents of F®Ë. Now II
acts transitively on {ëu ën} for if {ël9..., ëk} is a /T-orbit, then ë S!c=i ^k is

an idempotent, invariant under JT, hence lies in K®É É. Since 1 is the only
idempotent of É, we get ê 1 and so k n.

Since F/K is separable, TrF/K is surjective. Therefore there exists x e F such

that TrF/K(x) X^ejj crx 1. In particular, if Q dénotes the stabilizer of êx and

cri, ...,crn are coset représentatives of il in /J, then u YZ=\&amp;iX satisfies
1- Also u®\eF®Ê commutes with every ëv Therefore u®l€F®E
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satisfies the hypothèses of Theorem 1. Consequently {ëu ën} lifts to a set of
orthogonal idempotents fl9..., fn of F® J5 which are permuted transitively by II
and such that Zr=i/i l- By Proposition 3(i), the modules W[=fl(F®V) are

homogeneous components of F® V. Finally, since aft /, for some j, we hâve:

o-W; o-(/;(F&lt;g&gt; V)) (o/kt&quot;1)(F® V) (&lt;r • /t)(F® V) /,(F® V)=W&apos;r ¦
Remarks. 1) If one replace homogeneous components of F ® V by indécomposable

summands, then one must consider sets of primitive idempotents
{et,..., ên} of É instead of primitive central idempotents of Ë. If one can show
that there exists such a set which is stable under the action of II (this happens
quite often), then the whole proof works without change, so that there exists a

décomposition F® V ©r=i W, into indécomposable submodules such that the
modules Wt are permuted transitively under the natural action of 17 on F ® V.

2) Proposition 5 holds more generally if one replaces the field K by a complète
discrète valuation ring JR and the extension F by an unramified Galois extension S

(so that the Galois group of SIR is isomorphic to the Galois group of the residue
field extension). Moreover, A must be an i?-algebra which is finitely generated as

R -module.
3) The similarity between restriction to a normal subgroup (Theorem 2) and

ground field Galois extension (Proposition 5) extends a little further. If £2 dénotes
the stabilizer of the homogeneous component Wx of F ® V and if L is the fixed
field of il, then Wl is realizable over L, that is there exists an L®K A -module U
such that FQ^U^Wi. Moreover, by analogy with part (iv) of Theorem 2

(replacing group induction by scalar restriction), one can easily show that V
ResK U.

REFERENCES

[1] Clifford, A. H., Représentations induced in an invariant subgroup, Ann. Math. 38 (1937),
533-550.

[2] Curtis, C. W. and Reiner, L, Methods of Représentation Theory, Vol. I, Wiley-Interscience, New
York, 1981.

[3] Thévenaz, J., Extensions of group représentations from a normal subgroup, Comm. in Algebra, to
appear.

Institut de Mathématiques
Université de Lausanne
CH-1015 Lausanne -Dorigny
Switzerland

Received May 3, 1982


	Lifting idempotents and Clifford theory.

