# Nilpotent completions and Lie rings associated to link groups. 

Autor(en): Kojima, Sadayoshi<br>Objekttyp: Article<br>Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 58 (1983)

PDF erstellt am: 28.05.2024
Persistenter Link: https://doi.org/10.5169/seals-44593

## Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

## Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

# Nilpotent completions and Lie rings associated to link groups 

Sadayoshi Kojima*

## §1. Introduction

The nilpotent completion and the Lie ring associated to a group with finitely generated abelianization are nilpotent invariants derived from its lower central series. In classical link theory, several authors have studied those for a link group, the fundamental group of the complement of a link, since it is much more practical rather than studying a group itself.

On the other hand, Sullivan gave a cohomological and infinitesimal method to compute these invariants when the group is the fundamental group of a polyhedron. Thus as he suggested in [17], Problem 5, it seems interesting to apply his theory to the link theory. In this paper, we are concerned with this vague question. Of course it is hopeless to expect complete algebraic characterization of these invariants for link groups, however it is possible to obtain some general results from infinitesimally computable cases. Such computations are attained in $\S 4$ and $\S 5$.

In §4, we construct a minimal model for a polyhedron which is cohomologically equivalent to a bouquet of circles. We establish, as Corollary 6.3, the equivalence between the freeness of the nilpotent completion of its fundamental group and the vanishing of every Massey product on $H^{1}$. Now, a link complement can never be cohomologically equivalent to a bouquet of circles since $H^{2}$ is non trivial. However, to apply this construction, we do not need trivial $H^{2}$, but we do need just non-existence of decomposable elements in $H^{2}$, and it still has some significance in the link theory. Actually, Milnor [10] proved that the nilpotent completion of a link group is isomorphic to that of a free group iff all the $\bar{\mu}$-invariants vanish, and Porter [15] succeeded in expressing the $\bar{\mu}$-invariant in terms of the Massey product. In particular, we get the equivalence which is eventually a special case of Corollary 6.3.

[^0]In §5, we explicitly construct a family of minimal models for polyhedra which are cohomologically equivalent to the product of a bouquet of circles with a circle. In the special case where the polyhedron is the complement of a link, this cohomological condition is a condition on the linking numbers. Our construction asserts that the structure of the Lie ring associated to the fundamental group of such a polyhedron is very simple while the nilpotent completion is not. Corollary 6.4 , which has been conjectured by K. Murasugi, came up as an application of the construction.

Besides these, several corollaries of the constructions are established in §6. We review nilpotent completions and Lie rings associated to groups in § 2, and Sullivan's theory in $\S 3$.

The content of $\S 4$ is from my thesis supervised by Professor John Morgan. I would like to express my great appreciation for his constant encouragement.

## § 2. Nilpotent completions and Lie rings

Let $G$ be a group and let $G=G_{0} \supset G_{1} \supset G_{2} \supset \cdots$ be the lower central series of $G$ where $G_{p}=\left[G, G_{p-1}\right]$ for $p \geqslant 1$. Here are two invariants of $G$ which come from the lower central series. The first one is the nilpotent completion of $G$. It is the tower of nilpotent groups:

$$
\cdots \rightarrow G / G_{2} \rightarrow G / G_{1} \rightarrow\{e\} .
$$

We will simply denote it by $\operatorname{Nil}(G) \operatorname{Nil}(G)$ is said to be isomorphic to $\operatorname{Nil}(H)$ of a group $H$ up to the $p$ th stage if there is an isomorphism: $G / G_{p} \rightarrow H / H_{p}$. Then it induces an isomorphism: $G / G_{q} \rightarrow H / H_{q}$ for each $q \leqslant p$ and we get isomorphic towers up to the $p$ th stage. We might say that $\operatorname{Nil}(G)$ is isomorphic to $\operatorname{Nil}(H)$ if these are isomorphic up to any stage.

Now, each $G / G_{p}$ is a nilpotent group of index $p$ and a central extension of $G / G_{p-1}$ by the abelian group $G_{p-1} / G_{p}$. The second invariant is formed by these abelian groups. Let $\mathscr{L}_{p}(G)=G_{p-1} / G_{p}$ and $\mathscr{L}(G)=\oplus_{p \geqslant 1} \mathscr{L}_{p}(G)$. Then, the commutator operation determines a well defined bilinear mapping, [ , ]: $\mathscr{L}_{\mathrm{p}}(G) \otimes$ $\mathscr{L}_{q}(G) \rightarrow \mathscr{L}_{p+q}(G)$ such that
(1) $[\alpha, \beta]=-[\beta, \alpha]$ and
(2) $[[\alpha, \beta] \gamma]+[[\beta, \gamma] \alpha]+[[\gamma, \alpha] \beta]=0$.

Hence $\mathscr{L}(G)$ admits a graded Lie ring structure generated by $\mathscr{L}_{1}(G)$. See [7].
Both concepts have rational versions. Say, the rational nilpotent completion of $G$, which will be denoted by $\mathbb{Q}-\operatorname{nil}(G)$, is the tower of $\mathbb{Q}$-nilpotent groups:

$$
\cdots \rightarrow G / G_{2} \otimes \mathbb{Q} \rightarrow G / G_{1} \otimes \mathbb{Q} \rightarrow\{e\}
$$

where each $G / G_{p} \otimes \mathbb{Q}$ stands for the Malcev completion [8] of the nilpotent group $G / G_{p}$. Also taking tensor product by $\mathbb{Q}$ in usual sense, we get a graded Lie algebra $\mathscr{L}(G) \otimes \mathbb{Q}$ associated to $G$.

The first important result concerning the structure of $\mathscr{L}(G)$ may be one for a free group by Witt [18]. See also [7].

PROPOSITION 2.1 (Witt). Let $F_{n}$ be a free group of rank $n$. Then $\mathscr{L}\left(F_{n}\right)$ is a free Lie ring generated by $n$ elements. Here, free means that there are no relations except those generated by (1) and (2). Furthermore, $\mathscr{L}_{p}\left(F_{n}\right)$ is a free abelian group of rank

$$
W(n, p)=\frac{1}{p} \sum_{d \mid p} \mu(d) n^{p / d}
$$

where $\mu(d)$ is the Mobius function.
$W(n, p)$ is called the Witt number.
In general, the nilpotent completion is a stronger invariant than the associated Lie ring, however,

LEMMA 2.2. For any $p \geqslant 1$, if $\mathscr{L}(G)$ is isomorphic to $\mathscr{L}\left(F_{n}\right)$ up to the $p$ th stage, then $\operatorname{Nil}(G)$ is isomorphic to $\operatorname{Nil}\left(F_{n}\right)$ up to the $p$ th stage.

Proof. Since $G / G_{p}$ is a nilpotent group for any $p \geqslant 1$, it is generated by $n$ elements (see [7], Lemma 5.9) and hence we have an epimorphism $\phi: F_{n} \rightarrow G / G_{p}$ which induces an isomorphism: $\mathscr{L}\left(F_{n}\right) \rightarrow \mathscr{L}\left(G / G_{p}\right)$ up to the $p$ th stage. Looking at the commutative diagram for $q \leqslant p$,

we notice that $\phi$ induces an isomorphism: $F_{n} /\left(F_{n}\right)_{q} \rightarrow G / G_{q}$ until $q$ becomes $p$ by the five lemma and the induction on $q$.

LEMMA 2.3. For any $p \geqslant 1$, if $\mathscr{L}(G) \otimes \mathbb{Q}$ is isomorphic to $\mathscr{L}\left(F_{n}\right) \otimes \mathbb{Q}$ up to the $p$ th stage, then $\mathbb{Q}-\operatorname{nil}(G)$ is isomorphic to $\mathbb{Q}-\operatorname{nil}\left(F_{n}\right)$ up to the $p$ th stage.

Proof. Since for any $p \geqslant 1$, there is a homomorphism $\phi: F_{n} \rightarrow G / G_{p}$ which induces an isomorphism: $\mathscr{L}\left(F_{n}\right) \otimes \mathbb{Q} \rightarrow \mathscr{L}\left(G / G_{p}\right) \otimes \mathbb{Q}$ up to the pth stage, the same argument can be applied.

The next lemma will be used in $\S 5$.

LEMMA 2.4. Suppose that $\mathscr{L}_{1}(G)$ is generated by $g_{1}, \ldots, g_{n+r}$ such that
(1) $\left[g_{i}, g_{j}\right] \neq 0$ in $\mathscr{L}_{2}(G)$ for all $i, j \leqslant n$ and
(2) $\left[g_{i}, g_{n+j}\right]=0$ in $\mathscr{L}_{2}(G)$ for all $i, j \geqslant 1$.

Then $\mathscr{L}_{\mathrm{p}}(G)$ is generated by at most $W(n, p)$ elements. If $\mathscr{L}_{p}(G)$ is a free abelian group of rank $W(n, p)$ for all $p \geqslant 2$, then $\mathscr{L}(G)$ is isomorphic to $\mathscr{L}\left(F_{n} \times \mathbb{Z}^{r}\right)$, where $\mathbb{Z}^{r}$ is a free abelian group of rank $r$

Proof. Let $h_{1}, \ldots, h_{n}$ be a basis of $\mathscr{L}_{1}\left(F_{n}\right)$ and define the homomorphism $\phi: \mathscr{L}_{1}\left(F_{n}\right) \rightarrow \mathscr{L}_{1}(G)$ by $\phi\left(h_{i}\right)=g_{i}$. Then $\phi$ naturally induces a homomorphism $\phi_{p}: \mathscr{L}_{\mathrm{p}}\left(F_{n}\right) \rightarrow \mathscr{L}_{\mathrm{p}}(G)$ for each $p$. What we want to show then is that $\phi_{p}$ is onto for $p \geqslant 2$.

Now, any element of $\mathscr{L}_{p}(G)$ can be written down as a linear combination of simple $p$-fold brackets of $g_{1}, \ldots, g_{n+r}$, like $\left[\left[\cdots\left[\left[g_{i_{1}} g_{i_{2}}\right] g_{i_{3}}\right] \cdots\right] g_{i_{p}}\right]$. Let us simply denote it by $\left(g_{i_{1}} \cdots g_{i_{p}}\right)$. Suppose that $i_{1}, \ldots, i_{p} \leqslant n$, then this is the image of $\left(h_{i_{1}} \cdots h_{i_{p}}\right)$ by $\phi_{p}$. If $i_{q}>n$ for some $q<p$, then $\left(g_{i_{1}} \cdots g_{i_{q}}\right)=0$ by induction hypothesis and therefore $\left(g_{i_{1}} \cdots g_{i_{p}}\right)=0$. When $i_{p}>n$, We have the Jacobi identity,

$$
\left(g_{i_{1}} \cdots g_{i_{p}}\right)=-\left(\left(g_{i_{p-1}} g_{i_{p}}\right)\left(g_{i_{1}} \cdots g_{i_{p-2}}\right)\right)-\left(\left(g_{i_{p}}\left(g_{i_{1}} \cdots g_{i_{p-2}}\right) g_{i_{p-1}}\right)\right.
$$

The both terms of the right side are zero in $\mathscr{L}_{p}(G)$, and we get $\left(g_{i_{1}} \cdots g_{i_{p}}\right)=0$. Hence $\phi_{\mathrm{p}}$ is an epimorphism for $p \geqslant 2$. If $\mathscr{L}_{p}(G)$ is a free abelian group of rank $W(n, p)$ for all $p \geqslant 2, \phi_{p}$ must be an isomorphism and we are done.

The rational version of this is also established.

LEMMA 2.5. Suppose that $\mathscr{L}_{1}(G) \otimes \mathbb{Q}$ is generated by $g_{1}, \ldots, g_{n+r}$ such that
(1) $\left[g_{i}, g_{j}\right] \neq 0$ in $\mathscr{L}_{2}(G) \otimes \mathbb{Q}$ for all $i, j \leqslant n$ and
(2) $\left[g_{i}, g_{n+j}\right]=0$ in $\mathscr{L}_{2}(G) \otimes \mathbb{Q}$ for all $i, j \geqslant 1$.

Then $\mathscr{L}_{\mathrm{p}}(G) \otimes \mathbb{Q}$ is generated by at most $W(n, p)$ elements. If $\operatorname{dim} \mathscr{L}_{p}(G) \otimes \mathbb{Q}=$ $W(n, p)$ for all $p \geqslant 2$, then $\mathscr{L}(G) \otimes \mathbb{Q}$ is isomorphic to $\mathscr{L}\left(F_{n} \times \mathbb{Z}^{r}\right) \otimes \mathbb{Q}$.

## § 3. Differential graded algebras

A differential graded algebra $\mathscr{A}$ is a graded vector space $A=\bigoplus_{p \geqslant 0} A^{p}$ over a field (always $\mathbb{Q}$ in this paper) with differential $d: A^{p} \rightarrow A^{p+1}$ and associative multiplication $\wedge: A^{p} \otimes A^{q} \rightarrow A^{p+q}$ so that
(1) $d^{2}=0$,
(2) $d(x \wedge y)=d x \wedge y+(-1)^{\operatorname{deg} x} x \wedge d y$ and
(3) $x \wedge y=(-1)^{\operatorname{deg} x \operatorname{deg} y} y \wedge x$.

A d.g.a. is minimal if $d$ is decomposable. This means that the image of any element by $d$ can be written down as a sum of decomposable elements. A Hirsch extension of a d.g.a. $\mathscr{A}$ is an inclusion $\mathscr{A} \rightarrow \mathscr{B}$ of a d.g.a.'s which, when we ignore the differentials, is isomorphic to $\mathscr{A} \rightarrow \mathscr{A} \otimes \Lambda(V)^{p}$ and where the differential of $\mathscr{B}$ sends $V \rightarrow A^{p+1}$. The integer $p$ is the degree of the extension. From now on, we consider a series of Hirsch extensions:

$$
\mathbb{Q} \subset \mathscr{A}_{1} \subset \mathscr{A}_{2} \subset \cdots \subset \bigcup_{p \geqslant 1} \mathscr{A}_{p}=\mathscr{A}
$$

of degree 1 . We should point out here that a d.g.a. generated by elements of degree 1 is always minimal, so is $\mathscr{A}$. The series is called canonical if $\mathscr{A}_{1}$ is generated by all closed 1 -forms of $\mathscr{A}$ and $\mathscr{A}_{p+1}$ is generated by $\mathscr{A}_{p}$ and all 1-forms $x$ such that $d x \in \mathscr{A}_{p}$ for each $p$. The following lemma, which is an immediate consequence of the definition, characterizes a canonical series.

LEMMA 3.1. If $\mathscr{A}: \mathbb{Q} \subset \mathscr{A}_{1} \subset \mathscr{A}_{2} \subset \cdots$ is canonical, then
(1) $H^{1}\left(\mathscr{A}_{p}\right) \rightarrow H^{1}\left(\mathscr{A}_{p+1}\right)$ is an isomorphism for all $p$ and hence $H^{1}(\mathscr{A})=$ $H^{1}\left(\mathscr{A}_{1}\right)$, and
(2) $H^{2}\left(\mathscr{A}_{\mathrm{p}}\right) \rightarrow H^{2}\left(\mathscr{A}_{\mathrm{p}+1}\right)$ is a monomorphism if we restrict it to the image of $H^{2}\left(\mathscr{A}_{\mathrm{p}-1}\right)$.

Let us now consider the 1 -minimal model of Sullivan. Let $X$ be a polyhedron and let $\varepsilon(X)$ be $\mathbb{Q}$-polynomial forms on $X$. The 1 -minimal model for $X$ is a minimal d.g.a. $\mu_{X}$ with a mapping $\rho: \mu_{X} \rightarrow \varepsilon(X)$ of d.g.a.'s such that $\rho^{*}: H\left(\mathcal{M}_{X}\right) \rightarrow H(\varepsilon(X))$ is an isomorphism in degree 1 and injective in degree 2. We can find for instance in [11] §5 how to construct $\mathcal{M}_{X}$ and its several properties. It turns out to be generated by elements of degree 1 and to have a canonical series:

$$
\mathcal{M}_{X}: \mathbb{Q} \subset \mathcal{M}_{1} \subset \mathcal{M}_{2} \subset \cdots
$$

Dualizing the part of degree 1 , we get a tower of $\mathbb{Q}$-Lie algebras:

$$
0 \leftarrow \mathfrak{S}_{1} \leftarrow \mathfrak{G}_{2} \leftarrow \cdots
$$

Each of the Lie algebras $\mathbb{G}_{i}$ is nilpotent and hence the Campbell-Hausdorff formula defines a group structure C.H. $\left(\mathscr{S}_{i}\right)$ on each $\mathbb{S}_{i}$.

THEOREM (Sullivan). If $X$ is arcwise connected and $H^{1}(\varepsilon(X))$ is finite
dimensional, then the tower of nilpotent groups:
$\{e\} \leftarrow$ C.H. $\left(\mathscr{G}_{1}\right) \leftarrow$ C.H. $\left(\mathscr{G}_{2}\right) \leftarrow \cdots$
is isomorphic to $\mathbb{Q}-\operatorname{nil}\left(\pi_{1}(X)\right)$.
Thus knowing the rational nilpotent completion of $\pi_{1}(X)$ is equivalent to knowing the 1-minimal model for $\boldsymbol{X}$. The proof of this theorem can be found in [2].

Let $\mu_{\mathrm{X}}: \mathbb{Q} \subset \mu_{1} \subset \mu_{2} \subset \cdots$ be the 1 -minimal model for a polyhedron $X$ and suppose that $\mu_{p}$ is isomorphic to $\mu_{p-1} \otimes \Lambda\left(V_{p}\right)$ as a vector space. Sullivan's theorem implies

$$
\operatorname{dim} V_{p}=\operatorname{rank} \mathscr{L}_{p}\left(\pi_{1}(X)\right) .
$$

When $\operatorname{dim} H^{1}(\varepsilon(X))=n$, the number above is bounded by the Witt number $W(n, p)$. Since $\mathscr{L}\left(\pi_{1}(X)\right) \otimes \mathbb{Q}$ is free up to the $p$ th stage if and only if $\operatorname{dim} \mathscr{L}_{q}\left(\pi_{1}(X)\right) \otimes \mathbb{Q}=W(n, q)$ for all $q \leqslant p$, we have by Lemma 2.3 that

LEMMA 3.2. If $\operatorname{dim} V_{q}=W(n, q)$ for all $q \leqslant p$, then $\mathbb{Q}-\operatorname{nil}\left(\pi_{1}(X)\right)$ is isomorphic to $\mathbb{Q}$-nil $\left(F_{n}\right)$ up to the $p$ th stage.

This can be also proved by constructing isomorphisms for extensions of each stage.

LEMMA 3.3. If $\mathscr{L}_{1}\left(\pi_{1}(X)\right)$ is a free abelian group of rank $n$, then $\operatorname{dim} V_{q}=$ $W(n, q)$ for all $q \leqslant p$ iff $\operatorname{Nil}\left(\pi_{1}(X)\right)$ is isomorphic to $\operatorname{Nil}\left(F_{n}\right)$ up to the $p$ th stage.

Proof. Since $\mathscr{L}_{1}\left(\pi_{1}(X)\right)$ is generated by $n$ elements, $\mathscr{L}_{q}\left(\pi_{1}(X)\right)$ is generated by at most $W(n, q)$ elements by Proposition 2.1. Thus if $\operatorname{dim} V_{q}=W(n, q)$ for each $q \leqslant p$ and hence $\operatorname{dim} \mathscr{L}_{q}\left(\pi_{1}(X)\right) \otimes \mathbb{Q}=W(n, q)$, then $\mathscr{L}_{q}\left(\pi_{1}(X)\right)$ must be a free abelian group of rank $W(n, q)$, which means that $\mathscr{L}\left(\pi_{1}(X)\right)$ is isomorphic to $\mathscr{L}\left(F_{n}\right)$ up to the $p$ th stage. The result follows from Lemma 2.2.

The next lemma will be used in § 5 .
LEMMA 3.4. Suppose that $\mathscr{L}_{1}\left(\pi_{1}(X)\right)$ admits a system of generators as in Lemma 2.5. Then if $\operatorname{dim} V_{p}=W(n, p)$ for all $p \geqslant 2$, then $\mathscr{L}(G) \otimes \mathbb{Q}$ is isomorphic to $\mathscr{L}\left(F_{n} \times \mathbb{Z}^{r}\right) \otimes \mathbb{Q}$.

Proof. Since $\operatorname{dim} V_{p}=\operatorname{dim} \mathscr{L}_{p}\left(\pi_{1}(X)\right) \otimes \mathbb{Q}$, this is a corollary of Lemma 2.5.

LEMMA 3.5. Suppose that $\mathscr{L}_{1}\left(\pi_{1}(X)\right)$ is a free abelian group of rank $n+r$ and admits a system of generators as in Lemma 2.4. Then if $\operatorname{dim} V_{p}=W(n, p)$ for all $p \geqslant 2$, then $\mathscr{L}\left(\pi_{1}(X)\right)$ is isomorphic to $\mathscr{L}\left(F_{n} \times \mathbb{Z}^{r}\right)$.

Proof. Since $\operatorname{dim} V_{p}=W(n, p)$ means that $\mathscr{L}_{p}\left(\pi_{1}(X)\right)$ is a free abelian group of rank $W(n, p)$ in this case, this is a corollary of Lemma 2.4.

## § 4. The 1-minimal model for $S^{1} \vee \cdots \vee S^{1}$

Our goal of this section is to construct the 1-minimal model for a cohomology bouquet of $n$ circles.

Let $A_{p}$ be the vector space over $\mathbb{Q}$ generated by the $n^{p}$ elements, $x_{i_{1} \cdots i_{0}}$ 's where $i_{1} \cdots i_{p}$ ranges over all sequences of integers of length $p$ such that $1 \leqslant i_{j} \leqslant n$ for all $1 \leqslant j \leqslant p$. Consider the exterior algebra of the direct sum $A=\bigoplus_{p \geqslant 1} A_{p}$. We define the differential $d$ by

$$
d x_{i_{1} \cdots i_{p}}=\sum_{k=1}^{p-1} x_{i_{1} \cdots i_{k}} \wedge x_{i_{k+1} \cdots i_{p}},
$$

on a basis of $A$ and extend it linearly to all of $A$ and then extend it to all of $\Lambda(A)$ by the Leibnitz rule. Then

LEMMA 4.1. $d^{2}=0$

Proof. It suffices to check this for a generator.

$$
\begin{aligned}
d\left(d x_{i_{1} \cdots i_{p}}\right)= & d\left(\sum_{k=1}^{p-1} x_{i_{1} \cdots i_{k}} \wedge x_{i_{k+1} \cdots i_{p}}\right) \\
= & \sum_{k=1}^{p-1} \sum_{m=1}^{k-1} x_{i_{1} \cdots i_{m}} \wedge x_{i_{m+1} \cdots i_{k}} \wedge x_{i_{k+1} \cdots i_{p}} \\
& -\sum_{k=1}^{p-1} \sum_{m=k+1}^{p-1} x_{i_{1} \cdots i_{k}} \wedge x_{i_{k+1} \cdots i_{m}} \wedge x_{i_{m+1} \cdots i_{p}} \\
= & \left(\sum_{m=1}^{p-1} \sum_{k=1}^{m-1}-\sum_{k=1}^{p-1} \sum_{m=k+1}^{p-1}\right) x_{i_{1} \cdots i_{k}} \wedge x_{i_{k+1} \cdots i_{m}} \wedge x_{i_{m+1} \cdots i_{p}} \\
= & 0 .
\end{aligned}
$$

Let $I_{p}$ be the subspace of $A_{p}(p \geqslant 2)$ inductively defined by $\left\{u \in A_{p} ; d u=0\right.$ in $\left.\Lambda^{2}\left(A_{1} \oplus A_{2} / I_{2} \oplus \cdots \oplus A_{p-1} / I_{p-1}\right)\right\}$, denote $A_{p} / I_{p}$ by $\bar{A}_{p}$ and also denote $A_{1} \oplus$
$\bar{A}_{2} \oplus \cdots \oplus \bar{A}_{p}$ by $\overline{\bar{A}}_{p}$. Then, $\mu_{p}=\Lambda\left(\overline{\bar{A}}_{p}\right)$ with the induced differential (we use the same symbol $d$ ) produces a series of Hirsch extensions of minimal d.g.a.'s:

$$
\mathbb{Q} \subset \mathcal{M}_{1} \subset \mathcal{M}_{2} \subset \cdots \subset \bigcup_{p \geqslant 1} \mathcal{M}_{p}=\mathcal{M}
$$

of degree 1 . Our first claim is
LEMMA 4.2. The inclusion induces an isomorphism: $H^{1}\left(\mathcal{M}_{\mathrm{p}-1}\right) \rightarrow H^{1}\left(\mathcal{M}_{\mathrm{p}}\right)$ for all $p>1$.

Proof. We use the induction on $p$. Suppose that this is true for $p-1$, which means that any closed 1 -form of $\mu_{\mathrm{p}-1}$ is contained in $\boldsymbol{\mu}_{1}$. Now, $\boldsymbol{\mu}_{\mathrm{p}}=$ $\mu_{p-1} \otimes \Lambda\left(\bar{A}_{p}\right)$ as a vector space and since $I_{p}$ is nothing but the kernel of $\left.d\right|_{A_{p}}: A_{p} \rightarrow \Lambda^{2}\left(\overline{\bar{A}}_{p-1}\right)$, the induced differential $\left.d\right|_{\bar{A}_{\mathrm{p}}}: \bar{A}_{p} \rightarrow \Lambda^{2}\left(\overline{\bar{A}}_{p-1}\right)$ is injective. The image of this is contained in $\oplus_{i+j=p} \bar{A}_{i} \wedge \bar{A}_{j}$, however the image of $\Lambda^{1}\left(\overline{\bar{A}}_{p-1}\right)$ by $d$ is contained in $\oplus_{i+j<p} \bar{A}_{i} \wedge \bar{A}_{j}$, and they have no common points except zero. In other words, the Hirsch extension $\boldsymbol{\mu}_{\mathrm{p}-1} \subset \boldsymbol{\mu}_{\mathrm{p}}$ does not produce new closed 1 -forms.

Let $W_{p}$ be the image of $A_{p}$ by $d$ in $\Lambda^{2}\left(\overline{\bar{A}}_{p-1}\right)$. That is to say, $W_{p}$ is a subspace of $\Lambda^{2}\left(\overline{\bar{A}}_{p-1}\right)$ generated by the closed 2 -forms, $\sum_{k=1}^{p-1} x_{i_{1} \cdots i_{k}} \wedge x_{i_{k+1} \cdots i_{\mathbb{i}}}$ 's. Since the subspace of exact forms in $\Lambda^{2}\left(\overline{\bar{A}}_{p-1}\right)$ is contained in $\oplus_{i+j<p} \bar{A}_{i} \wedge \bar{A}_{j}, W_{p}$ can be identified with a subspace of $H^{2}\left(\mathcal{M}_{p-1}\right)$, and also since $W_{p}$ is the image of $A_{p}$ by $d$, it is mapped to 0 in $H^{2}\left(\mu_{p}\right)$ by the inclusion.

LEMMA 4.3. $\operatorname{dim} \bar{A}_{\mathrm{p}} \geqslant W(n, p)$.
Proof. Define the multiplication - on A by

$$
x_{i_{1} \cdots i_{b}} \cdot x_{j_{1} \cdots i_{q}}=x_{i_{1} \cdots \cdots_{j} j_{1} \cdots i_{q}} .
$$

Then, $\boldsymbol{A}$ becomes an associative but not commutative graded algebra. The usual bracket operation on $A$ :

$$
[x, y]=x \cdot y-y \cdot x,
$$

defines a graded Lie algebra structure on $A$. Let $L$ be the graded Lie subalgebra of $A$ generated by $x_{1}, \ldots, x_{n}$. Then, $L_{p}$, the intersection of $L$ and $A_{p}$, is the set of Lie elements of degree $p$.

The symmetric group $\mathbb{S}_{p}$, which consists of the permutations of integers $1, \ldots, p$, naturally acts on $A_{p}$ by $\sigma x_{i_{1} \cdots i_{p}}=x_{i_{\sigma(1)} \cdots i_{(\rho)}}$ for $\sigma \in \mathbb{S}_{p}$. This extends to the
action of the group ring $\mathbb{Q}\left[\Xi_{p}\right]$ on $A_{p}$. We now define a specific element $\Omega_{\mathrm{p}} \in \mathbb{Q}\left[\varsigma_{p}\right]$ in terms of the cyclic permutations $\sigma_{j}=(12 \cdots j)$ for $j=2, \ldots, p$, by

$$
\Omega_{p}=\left(1-\sigma_{2}\right)\left(1-\sigma_{3}^{2}\right) \cdots\left(1-\sigma_{p}^{p-1}\right) .
$$

$\Omega_{\mathrm{p}}$ then determines a linear mapping: $A_{\mathrm{p}} \rightarrow A_{p}$.
It is known that $\mathscr{L}_{p}\left(F_{n}\right)$ is generated by simple brackets $\left(g_{i_{1} \ldots} g_{i_{0}}\right)$, where $g_{1}, \ldots, g_{n}$ are generators of $F_{n}$, and the mapping:

$$
\begin{aligned}
& \mathscr{L}_{p}\left(F_{n}\right) \otimes \mathbb{Q} \rightarrow L_{p} \subset A_{p} \\
& \left(g_{i_{1}} \cdots g_{i_{p}}\right) \quad \Omega_{p} x_{i_{1} \cdots i_{p}}
\end{aligned}
$$

is an isomorphism. See for instance [7], Theorem 5.12. In particular the linear mapping $\Omega_{p}$ maps $A_{p}$ onto $L_{p}$ and we have
(1) $\operatorname{rank} \Omega_{p}=\operatorname{dim} L_{p}=W(n, p)$.

Take an element $u=\sum_{i_{1} \cdots i_{v}} a^{i_{1} \cdots i_{p}} x_{i_{1} \cdots i_{p}}$ of $A_{p}$ where the summation ranges over all sequences of length $p$, and let us compute a necessary condition for $d u=0$ in $\Lambda^{2}\left(\overline{\overline{\mathrm{~A}}}_{p-1}\right)$, i.e. $u \in I_{p}$. Suppose that $d u=0$ there. Then since

$$
\begin{aligned}
d u= & \sum_{i_{1} \cdots i_{\mathrm{p}}} a^{i_{1} \cdots i_{\mathrm{p}}} d x_{i_{1} \cdots i_{\mathrm{p}}} \\
= & \sum_{i_{1} \cdots i_{\mathrm{p}}} a^{i_{1} \cdots \mathrm{v}_{\mathrm{p}}}\left(x_{i_{1}} \wedge x_{i_{2} \cdots i_{\mathrm{p}}}+\cdots+x_{i_{1} \cdots i_{\mathrm{p}-1}} \wedge x_{i_{\mathrm{p}}}\right) \\
= & \sum_{i_{\mathrm{p}}}\left(\sum_{i_{1} \cdots i_{i_{\mathrm{p}}-1}}\left(\left(1-\sigma_{p}^{p-1}\right) a^{i_{1} \cdots i_{\mathrm{p}}}\right) x_{i_{1} \cdots i_{\mathrm{p}-1}}\right) \wedge x_{i_{\mathrm{p}}} \\
& +\left(\text { the terms contained in } \bigoplus_{i_{, j \geqslant 2}} \bar{A}_{i} \wedge \bar{A}_{\mathrm{j}}\right),
\end{aligned}
$$

if we let

$$
u_{i_{p}}=\sum_{i_{1} \cdots i_{p-1}}\left(\left(1-\sigma_{p}^{p-1}\right) a^{i_{1} \cdots i_{p}}\right) x_{i_{1} \cdots i_{p-1}}
$$

$u_{i_{p}}$ must be an element of $I_{p-1}$ for all $1 \leqslant i_{p} \leqslant n$. Repeating the same procedure $p-1$ times, we eventually obtain the condition that $\Omega_{p} a^{i_{1} \cdots i_{p}}=$ $\left(1-\sigma_{2}\right)\left(1-\sigma_{3}^{2}\right) \cdots\left(1-\sigma_{p}^{p-1}\right) a^{i_{1} \cdots i_{p}}=0$ for all sequences $i_{1} \cdots i_{p}$.

We now think of the conjugate element $\bar{\Omega}_{p}$ of $\Omega_{p} \in \mathbb{Q}\left[\widetilde{S}_{p}\right]$ by the conjugation $\sigma \leftrightarrow \sigma^{-1}$. Again $\bar{\Omega}_{p}$ determines a linear mapping: $A_{p} \rightarrow A_{p}$ which can be iden-
tified with the induced mapping of $\Omega_{\mathrm{p}}$ on the dual space $A_{\mathrm{p}}^{*}=\operatorname{Hom}\left(A_{\mathrm{p}}, \mathbb{Q}\right)$, and we have

$$
\begin{aligned}
\bar{\Omega}_{\mathrm{p}} u & =\sum_{i_{1} \cdots i_{\mathrm{p}}} a^{i_{1} \cdots i_{\mathrm{o}}} \bar{\Omega}_{\mathrm{p}} x_{i_{1} \cdots i_{\mathrm{o}}} \\
& =\sum_{i_{1} \cdots i_{\mathrm{p}}}\left(\Omega_{\mathrm{p}} a^{i_{1} \cdots i_{\mathrm{o}}}\right) x_{i_{1} \cdots i_{\mathrm{p}}} .
\end{aligned}
$$

Suppose that $d \bar{\Omega}_{\mathrm{p}} u=0$ in $\Lambda^{2}\left(\overline{\bar{A}}_{\mathrm{p}-1}\right)$, then recalling the formula $\Omega_{\mathrm{p}}^{2}=p \Omega_{\mathrm{p}}$ in $\mathbb{Q}\left[\varsigma_{\mathrm{p}}\right]$ (see [7], p. 365) and the necessary condition above, we get

$$
\Omega_{\mathrm{p}}\left(\Omega_{\mathrm{p}} a^{i_{1} \cdots i_{\mathrm{i}}}\right)=p \Omega_{\mathrm{p}} a^{i_{1} \cdots i_{\mathrm{p}}}=0
$$

for all sequences $i_{1} \cdots i_{p}$. This means nothing but $\bar{\Omega}_{\mathrm{p}} u$ being zero itself and hence the restriction of $d$ to the image of $\bar{\Omega}_{p},\left.d\right|_{\bar{\Omega}_{p}\left(A_{p}\right)}: \bar{\Omega}_{p}\left(A_{p}\right) \rightarrow W_{p} \subset \Lambda^{2}\left(\bar{A}_{p-1}\right)$, is injective. In particular we have
(2) $\operatorname{dim} \bar{A}_{p}=\operatorname{dim} W_{p} \geqslant \operatorname{dim} \bar{\Omega}_{p}\left(A_{p}\right)$.

On the other hand, we have
(3) $\operatorname{dim} \bar{\Omega}_{\mathrm{p}}\left(A_{\mathrm{p}}\right)=\operatorname{rank} \bar{\Omega}_{\mathrm{p}}=\operatorname{rank} \Omega_{\mathrm{p}}$.

Combining (1), (2) and (3), we complete the proof.
The main result of this section is
THEOREM 4.4. Let $X$ be a polyhedron whose cohomology ring with rational coefficients is isomorphic to $H^{*}\left(S^{1} \vee \cdots \vee S^{1} ; \mathbb{Q}\right)$. Then $\mathcal{M}: \mathbb{Q} \subset \mathcal{M}_{1} \subset \mathcal{M}_{2} \subset \cdots$ is isomorphic to the canonical series of the 1-minimal model $\mu_{\mathrm{X}}$ for $X$.

Proof. We prove this by induction on the length of a series. Suppose that $\mathbb{Q} \subset \mathcal{M}_{1} \subset \mu_{2} \subset \cdots \subset \mathcal{M}_{\mathrm{p}-1}$ is isomorphic to the $p-1$ st stage of the canonical series of $\mu_{\mathrm{X}}$. Then we have a d.g.a. mapping $\rho_{\mathrm{p}-1}: \mu_{\mathrm{p}-1} \rightarrow \varepsilon(X)$ such that $\rho_{\mathrm{p}-1}\left(x_{i_{1} \cdots i_{q}}\right)=$ $\omega_{i_{1} \cdots i_{q}}$ for $q \leqslant p-1$, and $H^{2}\left(\mu_{p-2}\right) \rightarrow H^{2}\left(\mu_{p-1}\right)$ is a zero map by the property of a canonical series, Lemma 3.1, (2). Also since $\operatorname{dim} H^{1}\left(\mu_{1}\right)=n$ and $H^{2}\left(\mu_{p-1}\right)$ is generated by decomposable elements, Sullivan's theorem implicitly says that $\operatorname{dim} H^{2}\left(\mu_{p-1}\right)$ cannot exceed $\operatorname{dim} \mathscr{L}_{p}\left(F_{n}\right) \otimes \mathbb{Q}=W(n, p)$, that is
(1) $W(n, p) \geqslant \operatorname{dim} H^{2}\left(\mu_{p-1}\right)$.

To see that $\mu_{\mathrm{p}-1} \subset \mu_{\mathrm{p}}$ is isomorphic to the $p$ th stage of the canonical series of $\mu_{X}$, we need to construct a d.g.a. mapping $\rho_{p}: \mathcal{M}_{p} \rightarrow \varepsilon(X)$ and to show that the restriction of $H^{2}\left(\mu_{p}\right) \rightarrow H^{2}(\varepsilon(X))$ to the image of $H^{2}\left(\mu_{p-1}\right)$ is injective. First of
all, since $\rho_{p-1}\left(\sum_{k=1}^{p-1} x_{i_{1} \cdots i_{k}} \wedge x_{i_{k+1} \cdots i_{p}}\right)=\sum_{k=1}^{p-1} \omega_{i_{1} \cdots i_{k}} \wedge \omega_{i_{k+1} \cdots i_{0}}$ is a closed 2 -form of $\varepsilon(X)$ and $H^{2}(\varepsilon(X))=0$, there exists a 1 -form $\omega_{i_{1} \cdots i_{p}}$ of $\varepsilon(X)$ so that

$$
d \omega_{i_{1} \cdots i_{0}}=\sum_{k=1}^{p-1} \omega_{i_{1} \cdots i_{k}} \wedge \omega_{i_{k+1} \cdots i_{0}} .
$$

We define $\rho_{p}: \mu_{p} \rightarrow \varepsilon(X)$ as an extension of $\rho_{p-1}$ by mapping $x_{i_{1} \cdots i_{p}}$ to $\omega_{i_{1} \cdots i_{p}}$. Since $\left.d\right|_{\bar{A}_{p}}: \bar{A}_{p} \rightarrow W_{p}$ is an isomorphism and $W_{p}$ can be identified with a subspace of $H^{2}\left(\mu_{p-1}\right)$, by Lemma 4.3 we have

$$
\operatorname{dim} H^{2}\left(\mathcal{M}_{p-1}\right) \geqslant \operatorname{dim} W_{p}=\operatorname{dim} \bar{A}_{p} \geqslant W(n, p)
$$

These inequalities become equalities by (1) and $W_{p}$ can be identified with $H^{2}\left(\mathcal{M}_{p-1}\right)$ itself. Since $W_{p}$ was the image of $A_{p}$ by $d, H^{2}\left(\mathcal{M}_{p-1}\right) \rightarrow H^{2}\left(\mu_{p}\right)$ turns out a zero mapping, and we are done by induction.

Remark. Since $\operatorname{dim} \bar{A}_{p}=W(n, p), \mathbb{Q}-\operatorname{nil}\left(\pi_{1}(X)\right)$ turns out to be isomorphic to $\mathbb{Q}-\operatorname{nil}\left(F_{n}\right)$ by Lemma 3.2. This consequence also follows from the result of [16].

## § 5. The 1 -minimal model for $\left(S^{1} \vee \cdots \vee S^{1}\right) \times S^{1}$

In this section, we consider a family of minimal models for polyhedra which are cohomologically equivalent to the product of a bouquet of $n$ circles with a circle.

We define the vector space $B_{1}$ over $\mathbb{Q}$ by adding one more generator, $x_{n+1}$, to $A_{1}$ and let $B_{p}$ be equal to $A_{p}$ for $p \geqslant 2$. The specific basis, $x_{i_{1} \cdots i_{p}}$ 's, of $A_{p}$ determines a homomorphism: $A_{p} \rightarrow A_{p}^{*}=\operatorname{Hom}\left(A_{p}, \mathbb{Q}\right)$ and let $I_{p}^{*}$ be the image of $I_{p}$ by this mapping. Consider the subset $\Delta_{p}=\left\{x \in A_{p} ; f(x)=0\right.$ for all $\left.f \in I_{p}^{*}\right\}$. Choose $n$ elements from $\Delta_{p}$ for each $p \geqslant 3$ to form a set $\theta$ which will be called a system of twisting coefficients. Let us denote by $\theta_{j}^{i_{1} \cdots i_{\mathrm{p}}}$ the coefficient of the $x_{i_{1} \cdots i_{p}}$-component of the $j$ th element of degree $p$ in $\theta$. The system of twisting coefficients with $\theta_{j}^{i_{j} \cdots i_{p}}=0$ for all $1 \leqslant j \leqslant n, 1 \leqslant i_{1} \cdots i_{p} \leqslant n$ and $p \geqslant 3$, will be denoted by 0 . We now define the differential $d_{\theta}$ by

$$
\begin{aligned}
d_{\theta} x_{i_{1} \cdots i_{p}}= & \sum_{k=1}^{p-1} x_{i_{1} \cdots i_{k}} \wedge x_{i_{k+1} \cdots i_{p}} \\
& -\sum_{j=1}^{n} \sum_{m=2}^{p-1} \sum_{k=1}^{p-m} \theta_{j}^{i_{j} \cdots i_{k+m}} x_{i_{1} \cdots i_{k-1} j i_{k+m+1} \cdots i_{\mathrm{p}}} \wedge x_{n+1}
\end{aligned}
$$

on a basis of $B=\bigoplus_{p \geqslant 1} B_{p}$ first of all and extend it to all of the exterior algebra $\Lambda(B)$ by linearity and the Leibnitz rule. Notice that $d_{0}$ is the same as $d$ in $\S 4$ for $p \geqslant 2$.

LEMMA 5.1. $d_{\theta}^{2}=0$
Proof. It suffices to show this for a generator.

$$
\begin{aligned}
d_{\theta}^{2} x_{i_{1} \cdots i_{\mathrm{p}}}= & d_{\theta}\left(d_{0} x_{i_{1} \cdots i_{\mathrm{o}}}\right) \\
& -\sum_{j=1}^{n} \sum_{m=2}^{p-1} \sum_{k=1}^{p-m} \theta_{j}^{i_{k} \cdots i_{k+m}} d_{\theta}\left(x_{i_{1} \cdots i_{k-1} j i_{k+m+1} \cdots i_{\mathrm{p}}} \wedge x_{n+1}\right) .
\end{aligned}
$$

Since $d_{0}^{2}=0$ by Lemma 4.1, the first term of the right side becomes

$$
\begin{aligned}
& d_{\theta}\left(d_{0} x_{i_{1} \cdots i_{p}}\right) \\
& =\sum_{s=1}^{p-1}\left(\left(d_{\theta}-d_{0}\right) x_{i_{1} \cdots i_{s}} \wedge x_{i_{s+1} \cdots i_{p}}-x_{i_{1} \cdots i_{s}} \wedge\left(d_{\theta}-d_{0}\right) x_{i_{s}+1} \cdots i_{\mathrm{o}}\right) \\
& = \\
& \quad \sum_{s=1}^{p-1} \sum_{j=1}^{n}\left(\sum_{m=2}^{s-1} \sum_{k=1}^{s-m} \theta_{j}^{i_{k} \cdots i_{k+m}} x_{i_{1} \cdots i_{k-1}-1 i_{k+m+1} \cdots i_{s}} \wedge x_{i_{s+1} \cdots i_{p}}\right. \\
& \left.\quad+\sum_{m=2}^{p-s-1} \sum_{k=s+1}^{p-m} \theta_{j}^{i_{k} \cdots i_{k+m}} x_{i_{1} \cdots i_{s}} \wedge x_{i_{s+1} \cdots i_{k-1} i i_{k+m+1} \cdots i_{\mathrm{p}}}\right) \wedge x_{n+1} .
\end{aligned}
$$

On the other hand, since

$$
\begin{aligned}
d_{\theta} & \left(x_{i_{1} \cdots i_{k-1} j i_{k+m+1} \cdots i_{p}} \wedge x_{n+1}\right) \\
& =d_{0} x_{i_{1} \cdots i_{k-1} j i_{k+m+1} \cdots i_{p}} \wedge x_{n+1} \\
= & \left(\sum_{s=1}^{k-1} x_{i_{1} \cdots i_{s}} \wedge s_{i_{s+1} \cdots i_{k-1} j i_{k+m+1} \cdots i_{p}}\right. \\
& \left.+\sum_{s=k+m}^{p-1} x_{i_{1} \cdots i_{k-1} j i_{k+m+1} \cdots i_{s}} \wedge x_{i_{s+1} \cdots i_{v}}\right) \wedge x_{n+1}
\end{aligned}
$$

the second term of the first identity becomes

$$
\begin{aligned}
& \sum_{j=1}^{n} \sum_{m=2}^{p-1} \sum_{k=1}^{p-m} \theta_{j}^{i_{k} \cdots i_{k+m}} d_{\theta}\left(x_{i_{1} \cdots i_{k-1} j i_{k+m+1} \cdots i_{p}} \wedge x_{n+1}\right) \\
& =\sum_{j=1}^{n} \sum_{m=2}^{p-1} \sum_{k=1}^{p-m} \theta_{j}^{i_{k} \cdots i_{k+m}}\left(\sum_{s=1}^{k-1} x_{i_{1} \cdots i_{s}} \wedge x_{i_{s+1} \cdots i_{k-1} j i_{k+m+1} \cdots i_{p}}\right. \\
& \left.\quad+\sum_{s=k+m}^{p-1} x_{i_{1} \cdots i_{k-1} j i_{k+m+1} \cdots i_{s}} \wedge x_{i_{s+1} \cdots i_{p}}\right) \wedge x_{n+1}
\end{aligned}
$$

Thus since

$$
\sum_{s=1}^{p-1} \sum_{m=2}^{s-1} \sum_{k=1}^{s-m}=\sum_{m=2}^{p-1} \sum_{k=1}^{p-m} \sum_{s=k+m}^{p-1}
$$

and

$$
\sum_{s=1}^{p-1} \sum_{m=2}^{p-s-1} \sum_{k=s+1}^{p-m}=\sum_{m=2}^{p-1} \sum_{k=1}^{p-m} \sum_{s=1}^{k-1},
$$

both are cancelled each other and we are done.

Let $J_{p}$ be the subspace of $B_{p}(p \geqslant 2)$ inductively defined by $\left\{u \in B_{p} ; d_{\theta} u=0\right.$ in $\left.\Lambda^{2}\left(B_{1} \oplus B_{2} / J_{2} \oplus \cdots \oplus B_{p-1} / J_{p-1}\right)\right\}$. We simply denote it without $\theta$ because $J_{p}$ actually does not depend on $\theta$ as we will see in Lemma 5.3. Again denote $B_{p} / J_{p}$ by $\bar{B}_{p}$ and $B_{1} \oplus \bar{B}_{2} \oplus \cdots \oplus \bar{B}_{p}$ by $\overline{\bar{B}}_{p}$. Then $\mathcal{M}_{p}^{\theta}=\Lambda\left(\overline{\bar{B}}_{\mathrm{p}}\right)$ with the induced differential (we use the same symbol $d_{\theta}$ ) produces a series of Hirsch extensions of d.g.a.'s:

$$
\mathbb{Q} \subset \mathcal{M}_{1}^{\theta} \subset \mathcal{M}_{2}^{\theta} \subset \cdots
$$

of degree 1 . Let us denote $\bigcup_{p \geqslant 1} \mathcal{M}_{p}^{\theta}$ by $\mathcal{M}^{\theta}$. Then
LEMMA 5.2. The inclusion induces an isomorphism: $\boldsymbol{H}^{1}\left(\mathcal{M}_{p-1}^{\theta}\right) \rightarrow H^{1}\left(\mathcal{M}_{p}^{\theta}\right)$ for all $p \geqslant 2$.

LEMMA 5.3. $J_{p}$ is equal to $I_{p}$. In other words, $d_{0} u=0$ in $\Lambda^{2}\left(\overline{\bar{B}}_{p-1}\right)$ for some $u \in B_{p}$ iff $d_{\theta} u=0$ in $\Lambda^{2}\left(\overline{\bar{B}}_{p-1}\right)$. In particular, $\operatorname{dim} \bar{B}_{p}=\operatorname{dim} \bar{A}_{p}=W(n, p)$ for $p \geqslant 2$.

Both lemmas are obvious when $p=2$. We prove these by mixed induction on $p$. Let us assume that both are true for $p-1$.

Proof of Lemma 5.3. Suppose that $u$ is an element of $B_{\mathrm{p}}$ so that $d_{0} u=0$ in $\Lambda^{2}\left(\overline{\bar{B}}_{\mathrm{p}-1}\right)$. By the definition of $d_{\theta}$, we can decompose $d_{\theta} u$ as

$$
d_{\theta} u=d_{0} u+\nabla \wedge x_{n+1}
$$

where $\nabla$ is an element of $\Lambda^{1}\left(\overline{\bar{B}}_{p-1}\right)$. Since $d_{\theta}^{2}=0$ and $d_{0} u=0$, we have

$$
0=d_{\theta}^{2} u=d_{\theta}\left(\nabla \wedge x_{n+1}\right)=d_{\theta} \nabla \wedge x_{n+1}=d_{0} \nabla \wedge x_{n+1},
$$

which implies that $d_{0} \nabla=0$. Because $\nabla$ was in $\Lambda^{1}\left(\overline{\bar{B}}_{\mathrm{p}-1}\right)$, we get $d_{\theta} \nabla=0$ by induction hypothesis. Since we also assumed that Lemma 5.2 is true for $p-1$, any closed 1 -form of $\mathcal{M}_{p-1}^{\theta}$ is contained in $\mathcal{M}_{1}^{\theta}$, in particular so is $\nabla$. Therefore if we let $\theta_{j}^{p}=\sum_{i_{1} \cdots i_{i}} \theta_{j}^{i, \cdots i_{p}} x_{i_{1} \cdots i_{0}}$, then $\nabla=\sum_{j=1}^{n} u^{*}\left(\theta_{j}^{p}\right) x_{j}$. However since $u^{*} \in I_{p}^{*}$ and $\theta_{j}^{p} \in \Delta_{p}$, $u^{*}\left(\theta_{j}^{p}\right)$ must be zero for all $1 \leqslant j \leqslant n$, which means that $\nabla=0$ itself. The converse is obvious and we are done

Proof of Lemma 5.2. Let $U_{p}^{\theta} \subset \Lambda^{2}\left(\overline{\bar{B}}_{p-1}\right)$ be the image of $B_{p}$ by $d_{\theta} . W_{p}$ of the last section can be naturally identified with a subspace of $\bigoplus_{i+j=p} \bar{B}_{i} \wedge \bar{B}_{j}$, and we have the commutative diagram:

where the vertical line is the projection to the direct summand. Then since $J_{\mathrm{p}}$ is the kernel of $\left.d_{\theta}\right|_{B_{p}}: B_{p} \rightarrow \Lambda^{2}\left(\overline{\bar{B}}_{p-1}\right)$ and $J_{p}$ is equal to $I_{p}$ by Lemma 5.3,

becomes the commutative diagram of isomorphisms. In particular, $U_{p}^{\theta}$ and $\bigoplus_{i+j<p} \bar{B}_{i} \wedge \bar{B}_{j}$ have no common points except zero. And since $\mathcal{M}_{p}^{\theta}=\mathcal{M}_{p-1}^{\theta} \otimes$ $\Lambda\left(\bar{B}_{p}\right)$ and the image of $\Lambda^{1}\left(\overline{\bar{B}}_{p-1}\right)$ by $d_{\theta}$ is contained in $\bigoplus_{i+j<p} \bar{B}_{i} \wedge \bar{B}_{j}$, the Hirsch extension $\mathcal{M}_{\mathrm{p}-1}^{\boldsymbol{\theta}} \subset \mathcal{M}_{\mathrm{p}}^{\boldsymbol{\theta}}$ produces no new closed 1 -forms.

LEMMA 5.4. The image of $H^{2}\left(\mathcal{M}_{1}^{\theta}\right) \rightarrow H^{2}\left(\mathcal{M}_{2}^{\theta}\right)$ is injectively mapped to $H^{2}\left(\mathcal{M}^{\theta}\right)$.

Proof. $U_{p}^{\theta}$ and $\bigoplus_{i+j<p} \bar{B}_{i} \wedge \bar{B}_{j}$ have no common points except zero, and hence the new exact 2 -forms of $\mathcal{M}_{p}^{\theta}$ have no common points with $\bigoplus_{i+j=2} \bar{B}_{i} \wedge \bar{B}_{j}$ except zero for $p \geqslant 3$. Since the image of $H^{2}\left(\mu_{1}^{\theta}\right) \rightarrow H^{2}\left(\mu_{2}^{\theta}\right)$ is actually generated by $x_{i} \wedge x_{n+1}$ 's by the definition of $d_{\theta}$, these do not become exact in $\mathcal{M}_{p}^{\theta}$ for any $p \geqslant 3$ and hence in $\mathcal{M}^{\theta}=\bigcup_{p \geqslant 1} \mathcal{M}_{p}^{\theta}$

The main theorem of this section is

THEOREM 5.5. Let $X$ be a polyhedron whose cohomology ring with rational coefficients is isomorphic to $H^{*}(\overbrace{S^{1} \vee \cdots \vee S^{1}}^{n}) \times S^{1} ; \mathbb{Q})$. Then there exists a system of twisting coefficients $\theta$ so that $\mathcal{M}^{\boldsymbol{\theta}}: \mathbb{Q} \subset \mathcal{M}_{1}^{\theta} \subset \mathcal{M}_{2}^{\theta} \subset \cdots$ is isomorphic to the canonical series of the 1 -minimal model $\mathcal{M}_{\mathrm{X}}$ for $X$.

Proof. By the assumption, there are 1 -forms $\omega_{1}, \ldots, \omega_{n+1}$ of $\varepsilon(X)$ which
generate $H^{1}(\varepsilon(X))$ such that
(i) $\left[\omega_{i} \wedge \omega_{j}\right]=0$ for all $i, j \leqslant n$ and
(ii) $\left[\omega_{i} \wedge \omega_{n+1}\right]$ 's form a basis of $H^{2}(\varepsilon(X))$.

The dual basis $g_{1}, \ldots, g_{n+1}$ of $\mathscr{L}_{1}\left(\pi_{1}(X)\right)$ with respect to $\omega_{1}, \ldots, \omega_{n+1}$ satisfies the conditions of Lemma 2.5. We then prove this theorem by induction on the length of a series.

Suppose that $\mathbb{Q} \subset \mathcal{M}_{1}^{\theta} \subset \cdots \subset \mathcal{M}_{p-1}^{\theta}$ is isomorphic to the $p-1$ st stage of the canonical series of $\mathcal{M}_{\mathrm{X}}$ for some $\theta$. Notice that since $\mathcal{M}_{p-1}^{\theta}=\Lambda\left(\overline{\bar{B}}_{p-1}\right)$, we only need a system of twisting coefficients up to degree $p-1$. Then we have a d.g.a. mapping $\rho_{p-1}: \mathcal{M}_{p-1}^{\theta} \rightarrow \varepsilon(X)$ so that $\rho_{p-1}\left(x_{i_{1} \cdots i_{q}}\right)=\omega_{i_{1} \cdots i_{q}}$ for $q \leqslant p-1$, and the image of $H^{2}\left(\mathcal{M}_{p-2}^{\theta}\right) \rightarrow H^{2}\left(\mathcal{M}_{p-1}^{\theta}\right)$ is equal to the image of $H^{2}\left(\mathcal{M}_{1}^{\theta}\right) \rightarrow H^{2}\left(\mathcal{M}_{p-1}^{\theta}\right)$ by the inclusions because of Lemma 3.1, (2), Lemma 5.4 and the structure of $H^{2}(\varepsilon(X))$. Also by Lemma 2.5 and Sullivan's theorem, we have
(1) $W(n, p) \geqslant \operatorname{dim} H^{2}\left(\mathcal{M}_{p-1}^{\theta}\right)-n$
where $n$ means the dimension of $H^{2}(\varepsilon(X))$.
To see that $\mathcal{M}_{p-1}^{\theta} \subset \mathcal{M}_{\mathrm{p}}^{\theta}$ for some $\theta$ is isomorphic to the $p$ th stage of the canonical series of $\mathcal{M}_{X}$, we need to find appropriate $n$ elements of $\Delta_{p}$ for $\theta$, to construct a d.g.a. mapping $\rho_{p}: \mathcal{M}_{p}^{\theta} \rightarrow \varepsilon(X)$ and to show that the restriction of $H^{2}\left(\mathcal{M}_{\mathrm{p}}^{\theta}\right) \rightarrow H^{2}(\varepsilon(X))$ to the image of $H^{2}\left(\mathcal{M}_{\mathrm{p}-1}^{\theta}\right)$ is injective. First of all, since

$$
\begin{aligned}
\rho_{p-1} & \left(\sum_{k=1}^{p-1} x_{i_{1} \cdots i_{k}} \wedge x_{i_{k+1} \cdots i_{p}}\right. \\
& \left.-\sum_{j=1}^{n}\left(\sum_{m=2}^{p-1} \sum_{k=1}^{p-m}-\binom{k=1 \text { and }}{m=p-1}\right) \theta_{j}^{i_{k} \cdots i_{k+m}} x_{i_{1} \cdots i_{k-1} j i_{k+m+1} \cdots i_{p}} \wedge x_{n+1}\right) \\
= & \sum_{k=1}^{p-1} \omega_{i_{1} \cdots i_{k}} \wedge \omega_{i_{k+1} \cdots i_{p}} \\
& -\sum_{j=1}^{n}\left(\sum_{m=2}^{p-1} \sum_{k=1}^{p-m}-\binom{k=1 \text { and }}{m=p-1}\right) \theta_{j}^{i_{k} \cdots i_{k+m}} \omega_{i_{1} \cdots i_{k-1} j i_{k+m+1} \cdots i_{p}} \wedge \omega_{n+1}
\end{aligned}
$$

is a closed 2-form of $\varepsilon(X)$ for each $i_{1} \cdots i_{p}$, and $H^{2}(\varepsilon(X))$ is generated by $\omega_{i} \wedge \omega_{n+1}$ 's, it is cohomologous to

$$
\sum_{j=1}^{n} \theta_{j}^{i_{1} \cdots i_{0}} \omega_{j} \wedge \omega_{n+1}
$$

for some $\left\{\theta_{j}^{i_{j} \cdots i_{p}}\right\}_{j=1}^{n}$. For each $j, \sum_{i_{1} \cdots i_{p}} \theta_{j}^{i_{1} \cdots i_{\mathrm{p}}} x_{i_{1} \cdots i_{p}} \in A_{p}$ must be contained in $\Delta_{p}$ because $\rho_{\mathrm{p}-1}$ is a d.g.a. mapping. Adding $\theta_{i}^{i} \cdots i^{i}$,s to $\theta$, we get a system of twisting
coefficients up to degree $p$. Then

$$
\begin{aligned}
& \sum_{k=1}^{p-1} \omega_{i_{1} \cdots i_{k}} \wedge \omega_{i_{k+1} \cdots i_{p}} \\
& \quad-\sum_{j=1}^{n} \sum_{m=2}^{p-1} \sum_{k=1}^{p-m} \theta_{j}^{i_{1} \cdots i_{p}} \omega_{i_{1} \cdots i_{k-1}-i i_{k+m+1} \cdots i_{p}} \wedge \omega_{n+1}
\end{aligned}
$$

becomes an exact form and there exists a 1 -form $\omega_{i_{1} \cdots i_{\mathrm{p}}}$ of $\varepsilon(X)$ such that $d \omega_{i_{1} \cdots i_{\mathrm{p}}}$ is equal to it, where $d$ is the differential of $\varepsilon(X)$. Mapping $x_{i_{1} \cdots i_{p}}$ to $\omega_{i_{1} \cdots i_{p}}$, we define $\rho_{p}: \mathcal{M}_{p}^{\theta} \rightarrow \varepsilon(X)$ as an extension of $\rho_{p-1}$.

We finally show that the image of $H^{2}\left(\mathcal{M}_{p-1}^{\theta}\right) \rightarrow H^{2}\left(\mathcal{M}_{\mathrm{p}}^{\theta}\right)$ is equal to the image of $H^{2}\left(\mathcal{M}_{1}^{\theta}\right) \rightarrow H^{2}\left(\mathcal{M}_{p}^{\theta}\right)$ because if so, the proof is completed by Lemma 5.4. Since $U_{p}^{\theta}$ can be identified with a subspace of $H^{2}\left(\mathcal{M}_{p-1}^{\theta}\right)$ and has no common points with the image of $H^{2}\left(\mathcal{M}_{1}^{\boldsymbol{\theta}}\right)$ except zero, we have by Lemma 5.3 that

$$
\operatorname{dim} H^{2}\left(\mathcal{M}_{p-1}^{\theta}\right)-n \geqslant \operatorname{dim} U_{p}^{\theta}=\operatorname{dim} \bar{B}_{p}=W(n, p)
$$

Thus by (1), the inequality becomes an equality and $H^{2}\left(\mathcal{M}_{p-1}^{\theta}\right)$ can be identified with the direct sum of the image of $H^{2}\left(\mathcal{M}_{1}^{\theta}\right)$ and $U_{\mathrm{p}}^{\boldsymbol{\theta}}$. Since $U_{\mathrm{p}}^{\theta}$ is the image of $B_{\mathrm{p}}$ by $d_{\theta}$, the image of $H^{2}\left(\mathcal{M}_{p-1}^{\theta}\right) \rightarrow H^{2}\left(\mathcal{M}_{p}^{\theta}\right)$ turns out the image of $H^{2}\left(\mathcal{M}_{1}^{\theta}\right) \rightarrow H^{2}\left(\mathcal{M}_{p}^{\theta}\right)$, and we are done.

Here are corollaries of Theorem 5.5, Lemma 3.4 and Lemma 3.5.

COROLLARY 5.6. Let $X$ be a polyhedron such that $H^{*}(X ; \mathbb{Q})$ is isomorphic to $H^{*}\left(\left(S^{1} \vee \cdots \vee S^{1}\right) \times S^{1} ; \mathbb{Q}\right)$ as a ring. Then $\mathscr{L}\left(\pi_{1}(X)\right) \otimes \mathbb{Q}$ is isomorphic to $\mathscr{L}\left(F_{n} \times \mathbb{Z}\right) \otimes \mathbb{Q}$.

COROLLARY 5.7. Let $X$ be a polyhedron as in Corollary 5.6. If $\mathscr{L}_{\mathrm{p}}\left(\pi_{1}(X)\right)$ is free abelian for $p=1$ and 2 , then $\mathscr{L}\left(\pi_{1}(X)\right)$ is isomorphic to $\mathscr{L}\left(F_{n} \times \mathbb{Z}\right)$.

Proof. Since $\mathscr{L}_{1}\left(\pi_{1}(X)\right)$ is free abelian, we can choose a set of generators of $\mathscr{L}_{1}\left(\pi_{1}(X)\right)$ as in Lemma 2.5. Furthermore since $\mathscr{L}_{2}\left(\pi_{1}(X)\right)$ is also free abelian, it satisfies the conditions in Lemma 2.4. Thus this is an corollary of Theorem 5.5 and Lemma 3.5.

Remark. The condition of this corollary seems equivalent to saying that $X$ is an integral cohomology $\left(S^{1} \vee \cdots \vee S^{1}\right) \times S^{1}$ while I have no proof for this.

## § 6. Applications

To state corollaries of Theorem 4.4, following Kraines [6], let us define the Massey product on the first cohomology group. Given elements $\gamma_{1}, \ldots, \gamma_{p} \in$ $H^{1}(\varepsilon(X))$, suppose that a collection of 1 -forms $S=\left\{\omega_{i j} \in \varepsilon(X) ; 1 \leqslant i \leqslant j \leqslant p\right.$, $j-i<p-1\}$ satisfies the conditions
(1) $\omega_{i i}$ is a closed form representing $\gamma_{i}$ for $1 \leqslant i \leqslant p$, and
(2) $d \omega_{i j}=\sum_{k=i}^{j-1} \omega_{i k} \wedge \omega_{k+1, j}$ if $i<j$.

Then the $\mathbb{Q}$-polynomial 2-form $\sum_{k=1}^{p-1} \omega_{1 k} \wedge \omega_{k+1, p}$ turns out to be closed. We call $S$ a defining system. The Massey product $\left\langle\gamma_{1}, \ldots, \gamma_{p}\right\rangle$ is defined as a subset of $H^{2}(\varepsilon(X))$ consisting of all elements produced by such systems. When $p=2$, it is nothing but the wedge (cup) product. The Massey product $\left\langle\gamma_{1}, \ldots, \gamma_{p}\right\rangle$ will be understood as a cohomology class if it contains a single element. It is known that if any $(p-1)$-tuple Massey product on $H^{1}(\varepsilon(X))$ vanishes, that is, contains only the zero element, then every $p$-tuple Massey product contains a single element. See [9], Proposition 2.4 for the proof. We now have equivalent conditions for the vanishing of every p-tuple Massey products.

LEMMA 6.1. Every p-tuple Massey product vanishes iff every q-tuple Massey product for any $1<q \leqslant p$ vanishes.

Proof. If every $p$-tuple Massey product vanishes, then for each $1<q \leqslant p$, every $q$-tuple Massey product must contain the zero element. Thus any binary Massey product vanishes because it has no indeterminacy. Assume by induction that every ( $q-1$ )-tuple Massey product on $H^{1}(\varepsilon(X))$ vanishes, then every $q$-tuple Massey product contains a single element which is zero and we are done.

Here are corollaries of Theorem 4.4.

COROLLARY 6.2. Let $X$ be a polyhedron of $\operatorname{dim} H^{1}(\varepsilon(X))=n$. Then, every p-tuple Massey product on $H^{1}(\varepsilon(X))$ vanishes iff $\mathbb{Q}$-nil $\left(\pi_{1}(X)\right)$ is isomorphic to $\mathbb{Q}-\operatorname{nil}\left(F_{n}\right)$ up to the $p$ th stage.

Proof. To construct the 1-minimal model for $X$, we can use the vanishing of Massey products instead of the vanishing of $H^{2}(\varepsilon(X))$. Actually, the closed 2-forms in $\mu_{q}$ were generated by $\sum_{k=1}^{a-1} x_{i_{1} \cdots i_{k}} \wedge x_{i_{k+1} \cdots i_{q}}$ 's for $q \leqslant p$ which are mapped to $\sum_{k=1}^{a-1} \omega_{i_{1} \cdots i_{k}} \wedge \omega_{i_{k+1} \cdots i_{a}}$ of $\varepsilon(X)$ by $\rho_{q}$. This is nothing but the Massey product $\left\langle\omega_{i_{1}}, \ldots, \omega_{i_{9}}\right\rangle$.

Conversely, suppose that, for some $q \leqslant p$, some $q$-tuple Massey product does not vanish while every $r$-tuple Massey product does vanish for all $1<r<q$. Then
$\rho_{q}^{*}: H^{2}\left(\mathcal{M}_{q}\right) \rightarrow H^{2}(\varepsilon(X))$ is not a zero map and rank $\mathscr{L}_{q}\left(\pi_{1}(X)\right)=\operatorname{dim} \operatorname{Ker} \rho_{q}^{*}$ is strictly less than $\operatorname{dim} H^{2}\left(\mu_{q}\right)=W(n, q)$. Thus $\mathbb{Q}$-nil $\left(\pi_{1}(X)\right)$ cannot be isomorphic to $\mathbb{Q}$-nil $\left(F_{n}\right)$ at the $q$ th stage.

By virtue of Lemma 3.3, we have
COROLLARY 6.3. Let $X$ be a polyhedron such that $\mathscr{L}_{1}\left(\pi_{1}(X)\right)$ is a free abelian group of rank $n$, then every p-tuple Massey product on $H^{1}(\varepsilon(X))$ vanishes iff $\operatorname{Nil}\left(\pi_{1}(X)\right)$ is isomorphic to $\operatorname{Nil}\left(F_{n}\right)$ up to the $p$ th stage.

Remark. If we start with the Massey product on $H^{1}\left(\pi_{1}(X)\right.$ ), this has been known by Dwyer [4], Corollary 4.5. I would like to thank the referee for pointing out this reference. For the link complement, there are much more detailed studies by Milnor [10] and Porter [15].

Remark. In [14] and [5], some higher intersectional properties of compact 4 -manifolds have been detected by the nilpotent completion and the Massey product respectively. This corollary shows that these results are equivalent.

Let $L=K_{1} \cup \cdots \cup K_{n}$ be a link of $n$ components in $S^{3}$. Then $H^{1}\left(S^{3}-L ; \mathbb{Q}\right)$ is generated by the Alexander duals $\xi_{i}$ to the component $K_{i}$ for $i=1, \ldots, n$, and $H^{2}\left(S^{3}-L ; \mathbb{Q}\right)$ is generated by the Lefshetz duals $\gamma_{i j}$ to the path which connects $K_{i}$ with $K_{j}$. These are subject to the relations in $H^{*}$ :

$$
\xi_{i} \wedge \xi_{j}=l k\left(K_{i}, K_{j}\right) \gamma_{i j}
$$

and

$$
\gamma_{i j}+\gamma_{i k}=\gamma_{i k} .
$$

The next corollary has been conjectured by Murasugi.
COROLLARY 6.4. Let $G$ be a link group, $\pi_{1}\left(S^{3}-L\right)$. If $l k\left(K_{i}, K_{j}\right)=1$ for all $i \neq j$, then $\mathscr{L}(G)$ is isomorphic to $\mathscr{L}\left(F_{n-1} \times \mathbb{Z}\right)$. In particular, $\operatorname{rank} \mathscr{L}_{\mathrm{p}}(G)=$ $W(n-1, p)$ for all $p \geqslant 2$.

Proof. Let $\omega_{i}=\xi_{i}-\xi_{n}$ for $i=1, \ldots, n-1$ in this case. Then $\omega_{i} \wedge \omega_{j}=0$ for all $i, j \leqslant n-1$ and $\omega_{i} \wedge \xi_{n}$ 's form a basis of $H^{2}\left(S^{3}-L: \mathbb{Q}\right)$, and hence $S^{3}-L$ is clearly a rational cohomology $\left(S^{1} \vee \cdots \vee S^{1}\right) \times S^{1}$. Also $\mathscr{L}_{1}\left(\pi_{1}(X)\right)$ and $\mathscr{L}_{2}\left(\pi_{1}(X)\right)$ are free abelian because of Alexander duality and Chen's computations [3], Corollary 2, respectively. Thus we can apply Corollary 5.7 to this case.

COROLLARY 6.5. Let $L$ be a link of 3 component such that linking numbers of any two components are zero. Then $\mathscr{L}(G) \otimes \mathbb{Q}$ is isomorphic to $\mathscr{L}\left(F_{2} \times \mathbb{Z}\right) \otimes \mathbb{Q}$.

Proof. Let $\quad \omega_{1}=l k\left(K_{2}, K_{3}\right) \xi_{1}-l k\left(K_{1}, K_{2}\right) \xi_{3} \quad$ and $\quad \omega_{2}=l k\left(K_{1}, K_{3}\right) \xi_{2}-$ $l k\left(K_{1}, K_{2}\right) \xi_{3}$. Then $\omega_{1} \wedge \omega_{2}=0$ and $\omega_{1} \wedge \xi_{3}, \omega_{2} \wedge \xi_{3}$ form a basis of $H^{2}\left(S^{3}-L ; \mathbb{Q}\right)$ and hence $S^{3}-L$ is a rational cohomology $\left(S^{1} \vee S^{1}\right) \times S^{1}$. Applying Corollary 5.6, we are done.
$\mathscr{L}(G)$ is nilpotent if $\mathscr{L}_{p}(G)=0$ for some $p$. This is equivalent to $G / G_{\omega}$ being nilpotent, where $G_{\omega}=\bigcap_{p \geqslant 1} G_{p}$.

COROLLARY 6.6. Let $G$ be the link group of a link L. Then
(1) $\mathscr{L}(G)$ is nilpotent iff either $L$ is a knot or $L$ is of 2 components whose mutual linking number is equal to $\pm 1$.
(2) $\mathscr{L}(G) \otimes \mathbb{Q}$ is nilpotent iff either $L$ is a knot or $L$ is of 2 components whose mutual linking number is not zero.

Proof. When $L$ is a knot, $\mathscr{L}(G)$ is nilpotent of index 1 since $S^{3}-L$ is a homology circle. If $L$ has two components, then "if" part is obvious for both cases, (1), (2), because $\mathscr{L}_{2}(G)$ is isomorphic to a cyclic group of order = $\left|l k\left(K_{1}, K_{2}\right)\right|$. To see 'only if" part, recall Murasugi's explicit computation [12] of the Chen groups. That is, roughly speaking, the Chen group $\mathrm{Ch}_{\mathrm{p}}(G)=$ $G_{p-1}\left[G_{1}, G_{1}\right] / G_{p}\left[G_{1}, G_{1}\right]$ of a 2 component link group $G$ is infinite for all $p \geqslant 1$ if $l k\left(K_{1}, K_{2}\right)=0$, and is nontrivially finite for all $p \geqslant 2$ if $\operatorname{lk}\left(k_{1}, K_{2}\right) \neq 0, \pm 1$. Since there is an epimorphism of $\mathscr{L}_{\mathrm{p}}(G)$ to $\mathrm{Ch}_{\mathrm{p}}(G)$ for each $p, \mathscr{L}(G)$ cannot be nilpotent except when $l k\left(K_{1}, K_{2}\right)= \pm 1$. Also $\mathscr{L}(G) \otimes \mathbb{Q}$ cannot be nilpotent except when $l k\left(K_{1}, K_{2}\right) \neq 0$.

Let us think of the case where $L$ has more than 3 components. When $L$ contains two components whose mutual linking number is zero, then by forgetting the other components, we get a homomorphism of $G$ onto the group of a link of 2 components whose mutual linking number is zero. When the linking numbers of any 2 components of $L$ are not zero, then by forgetting some components, we get a homomorphism of $G$ onto the group of a link of 3 components as in Corollary 6.5. Thus $\mathscr{L}(G) \otimes \mathbb{Q}$ cannot be nilpotent in either case. Of course neither does $\mathscr{L}(G)$ and we are done.

Remark. This remark was pointed out by Murasugi. It can be known by [1] and [12] that a link group itself is nilpotent iff it is abelian. Such a link must be either a trivial knot or a Hopf link by Dehn's lemma and Neuwirth's theorem [13].

## REFERENCES

[1] Burde, G. and Murasugi, K., Links and Seifert fiber spaces, Duke Math. J. 37 (1970), 89-93.
[2] Cenkl, B. and Porter, R., Malcev's completion of a group and differential forms, J. Differential Geom. 15 (1980), 531-542.
[3] Chen, K., Commutator calculus and link invariants, Proc. Amer. Math. Soc. 3 (1952), 44-55.
[4] Dwyer, W., Homology, Massey products and maps between groups, J. Pure and Applied Alg. 6 (1975), 177-190.
[5] Koima, S., Milnor's $\bar{\mu}$-invariants, Massey products and Whitney's trick in 4 dimensions, to appear in Topology and its applications.
[6] Kraines, D., Massey higher products, Trans. Amer. Math. Soc. 124 (1966), 431-449.
[7] Magnus, W., Karrass, A. and Soliter, D., Combinatorial Group Theory, Pure and Applied Math. vol 13, Interscience, New York, 1966.
[8] Malcev, A., Nilpotent groups without torsion, Izv. Akad. Nauk. SSSR, Math. 13 (1949), 201-212.
[9] May, J., Matric Massey products, J. of Algebra 12 (1969), 533-568.
[10] Milnor, J., Isotopy of links, Algebraic Geom. and Top., Princeton Univ. Press, Princeton.
[11] Morgan, J., The algebraic topology of smooth algebraic varieties, Publ. Math. I.H.E.S. 48 (1978) 137-204.
[12] Murasugi, K., On Milnor's invariant for links II. The Chen group, Trans. Amer. Math. Soc. 148 (1970), 41-61.
[13] Neuwirth, L., A note on torus knots and links determined by their groups, Duke Math. J. 28 (1961), 545-551.
[14] Ohkawa, T., Homological separating of 2-spheres in a 4-manifold, Topology 21 (1982), 297-313.
[15] Porter, R., Milnor's $\bar{\mu}$-invariants and Massey products, Trans. Amer. Math. Soc. 257 (1979), 39-71.
[16] Stallings, J., Homology and central series of groups, J. of Algebra 2 (1965), 170-181.
[17] Sullivan, D., Infinitesimal computations in topology, Publ. Math. I.H.E.S. 47 (1977), 269-331.
[18] WIrt, E., Treue Darstellung Lieschen Ringe, J. reine u. angew. Math. 177 (1937), 152-160.
Department of Mathematics
Tokyo Metropolitan University
Fukazawa, Setagaya, Tokyo
Received June 25, 1982


[^0]:    *Partially supported by Sakkokai Foundation

