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Quasiaspherical knots with infinitely many ends

F Gonzalez-Acuna and José Maria Montesinos*

A smooth n-knot K in Sn+2 îs called quasiaspherical [3] if Hn+1(U) 0 where
U îs the universal cover of the extenor of K Let G be a finitely generated group
such that G/G&apos;^Z and let H be a subgroup of G which îs not contamed in G&apos;

We say that (G, H) îs unsphtable if G does not hâve a free product with
amalgamation décomposition A * B with F finite and H contamed in A x

THEOREM 1 Kis quasiaspherical if and only if (7r1(Sn+2 - K), H) is unsphtable,

where H is the subgroup generated by a mendian

The &quot;only if&quot; part of this theorem was proved by Swarup [7] A sketch of the
&quot;if&quot; part was given m [2], for the sake of completeness we give the détails m § 1

A knot K has infinitely many ends if for each mteger m there is a compact set

in U whose complément has more than m components with non compact closure
The property of having infinitely many ends dépends only on 7T1(Sn+2~K)

THEOREM 2 [5] K has infinitely many ends if and only if either

(î) ir1(Sn+2~K) A*B where F is finite, or

(u) 7r1(Sn+2-K) A +p 4&gt; where F is finite and properly contamed in A and

4&gt; F ^&gt; A is a monomorphism 2

Therefore, a knot which is not quasiaspherical has infinitely many ends There

are examples of n-knots which are not quasiaspherical, for n&gt;2 [2] [4]
Ratcliffe conjectures ([4,p 323], [3,Problem 3]) that n-knots with infinitely

many ends are not quasiaspherical We give counter-examples to this conjecture
for n &gt;2 Thus, by the results of Lomonaco [3, Theorem 10 1], even m the class

* Supportée by &quot;Comision Asesora del MUI&quot;

1 Whenever we wnte A$B ît is understood that C is a proper subgroup of A and B
2The HNN group A ^&lt;^ is (A*\\t -||)/N where N is the normal closure of {tft l&lt;f&gt;(f)

1

Hère \\t —1| is an infinité cychc group generated by t

257



258 F GONZALEZ-ACUNA AND J M MONTESINOS

of infinitely many ended knots there are knots for which the homotopy type of the
complément is determined by its algebraic 2-type.

First we obtain sufficient conditions for a pair (A &lt;p &lt;£&gt;, H) to be unsplitable;
then we realize geometrically examples of such pairs. An affirmative answer to the
question we ask in § 1 would characterize unsplitable pairs (A &lt;p &lt;£, H). We settle
it when A has at most one end and H is generated by the stable letter. In § 2 we
construct a 2-knot whose group is (2^ ix Z2m_1) &lt;^d ^ where Zm U ^(Zm) générâtes

the semidirect product ZmMZ2~-i, a meridian being represented by the
stable letter. Using § 1 one shows that this is a quasiaspherical knot with infinitely
many ends.

We thank Professor Milnor for his comments on the paper.

§1. Algebraic part

Let G be a finitely generated group and let H be a subgroup of G. Viewing
ZG as a left G-module by left multiplication, we consider the restriction
homomorphism r : Hl(G; ZG) -? H\H; ZG). Swarup [7, Th. 4] proved:

PROPOSITION 1. If r:Hl(G;ZG)-+Hl(H;ZG) is not injective then G
A *BarG A &lt;p&lt;t&gt; where F is finite and H&lt;^A.

The converse of this theorem is valid [10, Theorem 5.2]:

PROPOSITION 2. If G A*B or G A&lt;ÎD&lt;f&gt; with F finite and if H a A
then r : H\G; ZG) -» H\H; ZG) is not injective.

COROLLARY 1. Let G be a finitely generated group such that G/G&apos; «Z and
letHbea subgroup of G such that H&lt;£ G&apos;. Then (G, H) is unsplitable if and only if
the restriction r : H\G; ZG) -&gt; H\H; ZG) is injective.

Proof. G cannot be of the form A &lt;p &lt;£ with Ha A because A^G&apos;. The

resuit then follows from Propositions 1 and 2.

Now if U is the universal cover of the exterior of a knot K then using the
exact séquence of (17,517), Poincaré duality and the isomorphisms Hl(U)^
H\G;ZG) Hlc(dU)~H\H\ZG) it follows that Hn+l(U) is isomorphic to the
kernel of r.

From thèse observations and Corollary 1, Theorem 1 follows.

If G^AgB, where F is finite, we say that A is a factor of G.

In the remainder of this section we let G A *p&lt;f&gt; where F is finite and
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Z, let m aot^ax • • • f^a* a, € A i 1,..., n and £r=i et 1 and let H be

the (infinité cyclic) subgroup of G generated by m.

PROPOSITION 3. Let C be the subgroup of A generated by FU&lt;t&gt;(F)U

{a0,..., dn}. If C is a finite proper subgroup of A or if C is contained in a factor of
A then (G, H) is not unsplitable.

Proof Suppose C is a finite proper subgroup of A. Then the homomorphism
from G A*p&lt;f&gt; to (C &lt;p

&lt;f&gt;) * A whose restriction to A is the natural inclusion
and which sends the stable letter of A &lt;p&lt;() to the stable letter of C &lt;p&lt;fr is easily
seen to be an isomorphism. Since C *p&lt;f&gt; contains the image of H it follows that
(G, H) is not unsplitable.

Similarly one shows that if C is contained in a factor P of A P * Q then there
E

is an isomorphism from G onto (P &lt;p
&lt;f&gt;) * Q where E is finite and H is mapped

into P &lt;p &lt;f&gt;.

Question. Is the converse of Proposition 3 valid?

A partial answer is the following:

THEOREM 3. Let G A &lt;p 4&gt; where F is finite and GIG&apos;^Z; let H be the

subgroup generated by the stable letter t and let C be the subgroup of A generated by
FU&lt;f)(F). Assume

(i) A has at most one end, and
(ii) C is not a finite proper subgroup of A. Then (G, H) is unsplitable.

Proof. Associated to a HNN-group there is a natural exact séquence of

cohomology groups [1, Th. 3.1]. The homomorphism of the HNNgroupH= 1 &lt;p

to the HNNgroup G A&lt;p&gt;&lt;t) sending the stable letter t of H to the stable letter t

of G induces a commutative diagram with exact rows

rj^ (1-t).ZG

0 &gt;H°(1; ZG)
(1&quot;°&apos;

&gt;H°(1; ZG) &gt;H\H; ZG) &gt;0

i \ \
0 *H°(A;ZG)

(1~°&apos;

&gt;H°(F; ZG) &gt;Hl(G, ZG) &gt;H\A; ZG) 0

{ZG)A —(1~&apos;V
&gt; (ZG)F
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Hère i can be identifiée with the inclusion of (ZG)A in ZG and /, with the
inclusion of (ZG)F in ZG. Notice that H\A;ZG)~H\A;ZA)®ZAZG 0
because A has at most one end [8, page 145].

LEMMA. Letwe ZG. If (1 -1) • w g (ZG)f then w € (ZG)C.

Proo/. Write w £gGG ng • g. Then (1 -1)w £geG ™g • g where mg

ng — nj-ig. Since (1 — f) • w € (ZG)F we hâve mg m^ that is

We only need to show (i) ng n^ and (ii) ng n^g for /g F, g g G.

For a sufficiently large fc we hâve nt-icg=nt-icfg 0. From (*) it follows that

nt-ig nt-ifg for fc&gt;i&gt;0. This proves (i).
To prove (ii) notice that n* - ng n,g - nt-itg ^(tg) - nt-if(tg) n^ - &quot;*(/)g- By

(i) ^ n^. Hence ng n^g. This proves the lemma
An élément x g ker r is the image of an élément y g (ZG)f. Then /(y) y is of

the form (1 -1) - w where w g ZG. By the lemma w g (ZG)c. If C is infinité then

w 0 so that x — 0; if C A then y is in the image of (ZG)A and therefore x 0.

Hence, r is injective and, by Corollary 1, (G, H) is unsplitable. This complètes the

proof of the theorem.

§2. Géométrie realization

Let L be a smooth n-link in Sn+2, n &gt; 1, with components Ll9..., L,.. L has a

unique framing. Dénote by Nn+2 the manifold obtained by surgery on L. Then L
is replaced by M=m1U&quot;-Umr where each mt is a 1-sphere. M has a natural
framing so that if we perforai surgery on M using this framing we recover Sn+2.

If G is a group, a cyclic word of G is a subset of G which is the union [g] of
the conjugacy classes of g and g&quot;1, for some g g G. The cyclic word of ttiN71*2
determined by mt will also be denoted by m, and will be called a meridian. It
corresponds to a meridian of TTi(Sn+2 — L) under the isomorphism 7r1{Sn+2 — L)
7T1(iVr+2--M)«&apos;7r1(Nn+2). We remark that a finite System of cyclic words

Ci,..., q, of ttiN détermines disjoint 1-sphères (which we also dénote by

Ci,..., Cr), well defined up to isotopy, which represent them.
Let (G, m, c) be a triple where G is a group, m is a System of r cyclic words

ml9..., m, of G, and c is also a System of r cyclic words cl9..., cv of G.

If, for some i, we replace c, by c&apos;l [glgj where gtGc, gjGc, i=£j we obtain a

new System c&apos; of cyclic words of G. We say that (G, m, c&apos;) is obtained from
(G, m, c) by a band move.
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If in the triple (G, m, c) some cyclic word ml of m coincides with a cyclic word
c, of c consider the projection G-^&gt; G where G G/irn^).4 Let m be the System

ml5..., m.-x, ml+1,..., m, and let c be the System cl5..., c,_i, cJ+1,..., cr. Then
we say that (G, m, c) is obtained from (G, m, c) by a collapse.

PROPOSITION 4. Let c={cl9 ...,cr\bea System of cyclic words of t^N&quot;4&quot;2;

let m ={m1}..., m,.} be the System of meridians of TTiNn+2. Assume the triple
(1, 0, 0) can be obtained from the triple (G, m, c) by a finite séquence of band
moves and collapses. Then, if we perform surgery on ct • • • cr using suitable
framings, we obtain Sn+2.

Proof Consider the (n + 2)-manifold x(Li, L2,..., L,.; cl9 cr) obtained
from Sn+2 by surgery on Ll9 L2,..., 1^ and then by surgery on cu cr; the
framing of Lt,..., L, is unique; the framings of cu cr are specified later.

A band move on c1?..., cr can be realized by a &quot;band move&quot; among the
1-dimensional surgeries. By this we understand the effect on the boundary of a

cobordism when we perform handle slidings; thèse handle slidings do not change
the cobordism. Thus if c&apos; {c[,..., c&apos;r} is obtained from c {cl9..., cr} by band

moves then x(Ll9..., L,; cl9..., cr) x(Lu L,; ci,..., c^).

If now some cyclic word of c&apos;, say c&apos;n equals some cyclic word of m, say mn
then if we endow mr with the natural framing x(L\,..., 1^.; c[,..., cj_l5 m^
^(L1?..., Lr-x&apos;y c{,..., cj_i) because the surgeries on l^ and mr cancel. We want
the framings of ci9..., cr be such that the framing of c&apos;r coincides with the framing
of mr. Then we hâve

X(LU L,; ex,..., cr)~x(Ll9..., Lr_x; ci,..., c;_i)

Proceeding this way we eventually obtain

Sn+2

This proves the proposition because we can fînd the framings of cl9..., cr

working ail the process backwards.

Suppose Ci,..., cr are cyclic words of TTiNn~*~2 such that by a finite séquence of
band moves and collapses, it is possible to obtain the triple (1, 0, 0) from
(tt-jN; ml9... ,mr; cu cr). Perform surgery on cx U • • • U cr using suitable
framings to obtain Sn+2. Then c1 U • • • U cr is replaced by a disjoint union of
n-spheres S1?..., Sr in Sn+2.

The following proposition is clear.

4
&lt; dénotes normal closure.
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PROPOSITION 5. Let l&lt;fc&lt;r. Then U,k=i $ is a link in Sn+2 with group
icfc&gt;. The meridian corresponding to St, *&lt;fc, is represented by ct.

Remark. This construction of links generalizes the construction introduced in

Now, we will construct quasiaspherical knots with infinitely many ends. Let
L=L1UL2 be a smooth 2-link in S4 such that ttxN* « ||a, f, x: am 1,

t~xat a&quot;1!! where m is odd and t, x are the meridians. For example L can be taken
to be a split link one of whose components is a 2-twist spun torus knot and the
other one is trivial. Now let cl9 c2 be the cyclic words of ttxN4 represented by xt~x

and a~lxax~2 respectively. It is easy to find a séquence of band moves changing
{cl5 c2} into {x, t}. According to Proposition 5 there is a knot Km in S4 whose

group is ||a, t,x:am l, r1 at a~1, a~1xax~2 l\\^(ZmtxZ2m^1) ^&lt;f&gt; where

Zm t&lt; Z2--i is the semidirect product ||a, t: am x2m-1 1, a~lxa x2\\; the
domain of &lt;t&gt; is the subgroup generated by a; and &lt;j&gt;(a) a~1. Moreover xt~x

represents a meridian of Km.

THEOREM 4. The 2-knot Km is quasiaspherical and has infinitely many ends.

Proof. By Theorem 2 ii) Km has infinitely many ends. To see that it is

quasiaspherical notice that ^(S4-!^)»!^ *&gt;t: ^m a~1xax~2 1, t~1at a~1\\^-^
\\a, x, s: am a~1xax~2 l s~las x~1a~xl^(Zm^Z2m_1)^p^ where f(a) a9

f(x) x, f(t) sx; the domain of i/f is the subgroup generated by a and i/r(a)
x~xa~x. Since Z^Ui/rCZ^) générâtes Zm^Z2r_1 and the stable letter s is a

meridian, it follows from Theorems 3 and 1 that Km is quasiaspherical. This

proves the theorem.
Since the spinning construction préserves meridian, we hâve:

COROLLARY 2. For n^2 there are quasiaspherical n-knots with infinitely
many ends.

Remark. The knot Km has the same group as the corresponding knot in
[2, pag. 95]. However, the latter is not quasiaspherical (see [4] or Proposition 3).
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