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Wall’s obstructions and Whitehead torsion

SrAwWOMIR KWASIK

In this note we show that the Wall-type obstruction defined by S. Ferry in [4]
is in fact the original Wall’s one. As a consequence we obtain the geometric proof
of the Product Formula (see [5]) for the Wall finiteness obstructions.

1. Introduction

Let X be a topological space which is homotopy dominated by a finite CW
complex. In [9] C. T. C. Wall introduced the obstruction w(X) which is an
element of Ky(Z(,(X))) to decide when X has the homotopy type of some finite
CW complex. Alternatively in [4] S. Ferry has found, in a geometric manner, an
analogous obstruction o(X) in Wh(XxS"). The natural question about the
relation between these two obstructions was not considered in [4] (note that this
question was explicitly asked by H. J. Munkholm in [10]). The purpose of this
note is to fill this gap. We prove a rather expected result that these two
obstructions are the same. To be more precise; we prove that w(X) is the image
of o(X) under the Bass—Heller-Swan isomorphism, thus answering the question
from [10].

As a consequence we obtain the geometric proof of the Product Formula for
the Wall finiteness obstructions. Originally the Product Formula was proved by S.
Gersten in [5] in a purely algebraic manner. This note does not pretend to the
orginality, but we hope that it will a little bit clarify the geometry of the Wall
finiteness obstruction.

We will assume some familiarity with the simple homotopy theory. An
excellent reference is [3].

2. Wall’s obstruction and simple types

In our note we will consider the Whitehead group of an arbitrary topological
space following [8].
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Let us recall the construction of the obstruction to the finiteness given by S.
Ferry in [4].

Let X be a topological space which is homotopy dominated by a finite CW
complex K| i.e. there exist maps g : X — K, f : K— X such that fg=idy. By the
theorem of M. Mather (see [6]) XX S' has a homotopy type of a finite CW
complex. To see it we repeat his beautiful geometric argument. Namely, consider
the mapping torus T'(a) of the map a = gf : K — K; recall that T(«) is the space
obtained from the mapping cylinder M(«) by identifying the top and bottom of
M (a) using the identity map. Of course we can assume that up to homotopy type
T(a) is a finite CW complex. Now the following picture shows that X xS'=
T(a).

X
K K

X
Figure 1

We will denote this homotopy equivalence by & : T(a) = XX S' and its
inverse by @71 : XxS!'— T(a).

DEFINITION 2.1 (S. Ferry [4]). Let T: XxS'— XxS' be a homeomorph-
ism given by T(x, 0)=(x,0). We define o(X)=Px(r(®7'TP))e Wh(XXS"),
where 7(® 'Td) is a torsion of the homotopy equivalence @ 'Td: T(a)—
T(a).

It turns out (see [4]) that o(X) is well-defined (does not depend from f, g and
K) and o(X)=0 if and only if X is a homotopy equivalent to some finite CW

complex.
The crucial role in our considerations plays the following Bass-Heller-Swan

decomposition of the Wh functor (see [1], [2]).
Let X be a topological space. Then there exists a functorial direct sum

decomposition
Wh(X x S') = Wh(X) @ Nil (X) @ Nil (X) ® K(X)

where by Nil (X), Ko(X) we mean Nil (Z(m(X))), Ko(Z(m,(X))) respectively.
Using this we prove:
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THEOREM 2.2. Let X be a topological space which is homotopy dominated by
a finite CW complex. Then the Wall finiteness obstruction w(X) is a image of o(X)
under the Bass-Heller-Swan decomposition of Wh (X x SY).

Proof. Let K be a finite CW complex and let g: X - K, f: K— X be maps

such that fg =idx. As previous by T(a) we denote the mapping torus of the map
a=gf: K— K.

Let @ : T(a) — X xS" be a homotopy equivalence. The natural infinite cyclic
covering of X X S"' induces an infinite cyclic covering I(a) of T(a).

e

Figure 2

The space I(a) is an infinite CW complex with two ends €., €_ which correspond
to the two ends of the real line.

Observe that the homotopy equivalence h = ® 'Td: T(a) — T(a) induces a
proper homotopy equivalence h between I(a) and its reversed copy I(a) (re-
versed with respect to the ends).

Figure 3

Without loss of generality we can assume that k is a strong proper deforma-
tion retraction of I(a).

Now we proceed as in [7]. In I(«) consider a subcomplex L such that L is a
neighborhood of €, and (I(a)—L)UI(a) is a neighborhood of e_. Put L, =
mﬂL and consider the pair (L, L,). It can be easly proved (see Lemma 4.5 in
[7]) that the pair (L, L,) is homotopy dominated by a pair (L,UL,, L,), where L,
is a finite subcomplex of L. Then the cellular chain complex Cy(L, L,) of the
universal covering p : L — L of the pair (L,L,), which is a free Z(m;(I(a))-
complex is chain homotopy dominated by the free Z(m(I(a))-complex Cy(L,U
L,, L,); we used the notation: for every B< L, B =p~'(B). Hence we can define
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w(I(@), I(a), €,) = w(Cx(L, L) € Ko(Z(m,(I(ax)))), where w(Cx(L, L)) is the
Wall obstruction. It is not difficult to see that w(I(«), _I_(—t_ﬂ, €.) is well-defined i.e.
does not depend of the choice of L.

Now let L_, L, be a neighborhoods of €_, €, so that I(a)—L,, I(a)—L_ are
again neighborhoods of €_, €, respectively and L_UL,=1I(a). Then L_NL, isa
finite CW complex and since I(a) is homotopy dominated by a finite CW comples
(in fact by K) then from the Mayer-Vietoris sequence

0— Co(L_NL,)— C(L) ® Cy(L,) > Cx(I(@)) =0

we infer that Cy(L,) is chain homotopy dominated by a finitely generated free
complex. This gives us the well defined element w(I(a),e,)=w(Cg(L.))e
Ky(Z(m(I(@)))). Analogously we can define w(I(a), €,) € Ko(Z(m,(I()))). An
elementary property of the Wall obstructions yields:

w(l(a), e,) =w((a), I(a), €,) + w(I(a), €,)

Observe (see Fig. 4) that in our situation w(I(a),€,)=0 and hg(w(I(a))=
w(I(a), €,) by a homotopy type invariance of the Wall obstruction.

-,
I(a)
L+
~T(a)
f Ly
=[(a)
g f g f g idx
Kk * x X x X
Figure 4

Hence w(I(a), I(a), €,) = hx(w(I(a))). The Bass—Heller-Swan projectior: (B-H-
S) : Wh(X xS') — K,y(X) induces a natural projection p : Wh(T(a)) — Ky(I(a)).
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This gives the following commutative diagram:

Wh(T (0))—2—Wh(X x SY)

p l(B—-H—S)

Ro(I(a)—2Ro(X)

where the map @ : I(a) = X=X xR is induced by @. So we have:
Byp(7(P ' TP) = (B-H-S) Py ((P ™' TP) = (B-H-S)(c(X)).

But @up(r(P1TD) = Bp(w((a), I(a), €.)) by the Proposition 4.7 in [7], hence:
(B-H-S)(0(X)) = Phy(w(I(a))) = w(X)

by the homotopy type invariance of the Wall obstruction.

COROLLARY 2.3 (Product Formula). Let X be a topological space which is
homotopy dominated by a finite CW complex, and let L be a finite CW complex.
Then:

w(L X X) = x(L) - ix(w(X))

where i : X — L X X is given by i(x) = (1o, x) for some 1,eL, and x(L) denotes the
Euler characteristic of L.

Proof. Let K be a finite CW complex and g : X — K, f: K — X be maps such
that fg =idy. Let T(a) be the mapping torus of the map a = gf : K— K and let
@ : T(a) > X xS* be a homotopy equivalence. The space L X X is a homotopy
dominated by the finite CW complex L X K using the maps idxXg: LXX —
LXK, idXf:LxXxK—LXxX Hence we have the homotopy equivalence
®:T(idxa)—>LxXxS'. But T(idxXa)=LXT(a) and without loss of the
generality we can write @ =id X ® : L X T(a) — L XXX S!. Now our finiteness
obstruction is given by:

(L XX)=(id X ®)g(r(id X P 'TP)) € Wh(L XX xS?).

By the product theorem for Whitehead torsion (see [3] for the nice and short
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geometric proof) we have:
17(id X P 1TP) = x(L) * j(v(D ' TD)

where j:T(a)—>LxT(a) is given by j(t)=(lo,t), for teT(a). Hence
o(L X X)=x(L) - ig(a(X)), where iy : Wh(XxXS') - Wh(LxXxS"). Now the
formula w(L X X) = x(L) - ix(w(X)) follows from the naturality of the Bass—
Heller-Swan decomposition of Wh(X x S1).

This work was done while the author was visiting the University of Heidel-
berg. I am grateful to Professor Dieter Puppe for the opportunity to work there.

Note added in proof:

In fact o(X) e Ky(X). This can be deduced from T. Chapman, Approximation
results in Hilbert cube manifolds, Trans. Amer. Math. Soc. 262 (1980), 303-334,

in particular, see p. 321 of this paper.
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