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On the homotopy groups of a finite dimensional space

C. A. McGibbon and J. A. Neisendorfer

The purpose of this note is to prove the following.

THEOREM 1. Let Xbe a l-connected space and p a prime number such that
(i) Hn(X; Zip) + 0 for sortie n &gt; 0, and
(ii) Hn(X;Z/p) 0 for ail n sufficiently large.

Then for infinitely many n, irnX contains a subgroup of order p.

Thirty years ago, J.-P. Serre conjectured such a resuit for p 2 [3, page 219].
He arrived at this conjecture after having proved the 2-primary part of the
following resuit.

THEOREM 2. Let X and p be as in Theorem 1. Moreover, assume that
H%(X; Z) is of finite type. Then for infinitely many n, 7TnX contains an élément
whose order either equals p or is infinité.

Serre&apos;s proof in this case used, among other things, Poincaré séries and
methods of analytic number theory. Later Y. Umeda, [5], showed that thèse

methods could be modifïed to work for odd primes as well.
Notice that Theorem 1 represents an improvement over Theorem 2 in two

respects. First, of course, it establishes the existence of torsion in tt^X in infinitely
many dimensions and, second, it does so without the hypothesis of finite type.

The key ingrédient in our proof is the following récent resuit of Haynes Miller,
[1].

THEOREM 3. Let X and p be as in Theorem 1. Let B BZ/p, the classifying
space for the group Zip. Then the space of pointed maps from B to X is weakly
contractible; that is, ^(map* (B, X)) 0 for ail n &gt;0.

Of course, in this theorem, B may also be regarded as the Eilenberg-MacLane
space K(Z/p, 1) or, in the case when p 2, as the infinité real projective space
KP°°. We should add that we hâve not stated Miller&apos;s resuit in its most gênerai
form. However, for our purposes the statement above is sufficient.
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Theorem 3 indicates a remarkable property of the iterated loop spaces, 4lnX,
of such a space X. In more détail, notice that if map* (B, X) is weakly contractible
then so is its iterated loop space I2n(map^ (B, X)). This latter space, however, is

easily seen to be homeomorphic to map* (B, QnX). Hence Theorem 3 implies
that for ail n &gt;0, the space map* (B, flnX) is weakly contractible, or equivalently,
for ail n&gt;0, every map from B to QnX is null homotopic.

To begin the proof, let X and p satisfy the hypothesis of Theorem 1. Without
loss of generality, we may assume that X has been localized at p. Notice that the
conditions on X do not rule out the possibility that some of the groups irnX may
contain rational vector spaces.

Our first goal is to establish that for infinitely many n, the mod p homotopy
groups 7rn(X;Zlp)i=0. Recall that thèse groups are defined for n&gt;2, as

7rn(X; Zip) 7To(map* (S&quot;&quot;1 Upen, X)).

They are related to the ordinary homotopy groups of X by a short exact

séquence

0 -&gt; -rrnX®Z/p -* 7rn(X; Zip) -&gt; Tor (tt^X, Zip) -&gt; 0.

For more détails, see [2].
Suppose that at most a finite number of the mod p homotopy groups of X are

nontrivial. Then by condition (i) and the mod p Hurewicz theorem we can choose a

largest integer, say m, such that 7rm(X;Z/p)/0.
What does this supposition imply about the ordinary homotopy groups of X?

By the universal coefficient séquence, mentioned earlier, it follows that there are
just two possibilities; either

Case 1. 7rmX(g&gt;Z/p^0, or

Case 2. 7TmX(g)Z/p 0 and Tor (7rm_1X; Zip) f 0

Moreover in both cases, if tt 7rnX, then tt®ZIp 0 if n &gt; m and Tor (ir, Zip) 0

if rc&gt;m.

The second case is the easier to handle. In it we see that Zip is a subgroup of
7rm_1X=7T1/3m~2X. Hence there is an essential map
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Consider the obstructions to lifting this map up the Postnikov tower of ilm~2X to
a map

Thèse obstructions take values in H*(K(Z/p, 1); tt) where rr 7rnX and n &gt; m. By
the universal coefficient theorem for cohomology [4, page 246], thèse obstruction

groups are trivial since tt®Z/p =Tor (tt, Z/p) 0.

Hence Case 2 implies the existence of the essential map, /«,, which in turn
contradicts Theorem 3. That leaves us with Case 1. In it, we see that Z(p) is a

subgroup of TTmX TT2flm~2X. More precisely we see that there is a

monomorphism

which, when tensored with Z/p, is still injective. This, in turn, implies that the
following composition

g2 : K(Z/p, 1) -&gt; K(Z(P), 2) -» K(irmX, 2)

is essential. Hère the flrst map represents a generator of H2(K(Z/p, 1); Z(p)) Z/p,
and the second map is determined by g.

Let ilm~2X(l) dénote the 1-connective cover of Qm2X. The map g2 can be

taken to be a map into the first stage of the Postnikov tower for this cover. The
obstructions to lifting g2 up to a map

are zéro for the same reasons as before. Thus g^ exists and is essential. The
composition of goo with the covering projection back into Om~2X would likewise
be essential. Once again we hâve reached a contradiction of Theorem 3. We
therefore conclude that 7in(X; Z/p) ^ 0 for infinitely many n. Notice that Theorem
2 is an immédiate conséquence of this fact.

To complète the proof of Theorem 1, suppose that Tor (TrnX, Z/p) ^ 0 for at

most a finite number of n. Then we may choose m &gt; 0 large enough so that
(i) Tor (7TqnmX, Zip) 0 for ail q&gt;0, and

(ii)
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Thèse conditions on 7r2.f2mX, in particular, are the same as those in the case

just considérée. Hence, as before there is a commutative diagram of essential

maps

K(lip), 2) JU K(7T2nmX, 2)

\
This time, however, we will consider the lifting problem for h, rather than

working directly with map /&apos;.

We want to lift h up through the Postnikov tower for f2mX&lt;l&gt;. At the n-th
stage this involves the diagram

where h^ is some lift of h. As usual, the next lift, hn+i, exists if and only if the
composition khn is trivial. With this in mind, note that under rationalization the
fc-invariant (and hence khn) is taken to zéro. This follows because QmX(l) is an

H-space. On the other hand, since tt&apos; is torsion-free, a simple calculation shows

that

H*(K(Z(P), 2), ir&apos;) -&gt; H*(K(Z(p), 2), tt&apos;® Q)

is injective. We conclude that kh» must therefore represent the zéro class in the
first group. Thus kh^ is null homotopic and there is a solution, fin+i, to the lifting
problem.

In summary, the map h has been shown to lift to a map into /2mX(l).
Composing this lift with maps previously considered we obtain an essential

map K(Z/p, 1) —» fimX. This third and final contradiction of Theorem 3,
complètes the proof of Theorem 1.

We thank Dan Burghelea and Clarence Wilkerson for useful comments on this

paper.
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