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Cohomology of classifying spaces of complex Lie groups and related
discrète groups

Eric M. Friedlander(1) and Guido Mislin

To Armand Borel on the occasion of his 60th birthday

We prove the following theorem, spécial cases of which hâve been proved in
[4], [6], [8].

THEOREM 1.4. Let G be a reductive complex Lie group, let pbe a prime, and
let Fp dénote the algebraic closure of the prime field Fp. Then there exists a map
BG(¥P)-+ BG which induces isomorphisms

H*(BG(FP), Z/n) -* H*(BG, Z/n), (n, p) 1

where G(FP) is the discrète group of ¥p-rational points of a Chevalley intégral group
scheme associated to G.

The anticipation of Theorem 1.4 led the first author to ask whether the
identity map G8 -&gt; G induces isomorphisms H*(BG8,Z/n)-+ H*(BG,Z/n) for
any n, where G8 dénotes the complex Lie group G viewed as a discrète group (cf.
[9]). As discussed in Section 2, this conjecture is équivalent to the case of the
complex field of what we call the &quot;Generalized Isomorphism Conjecture&quot; (Définition

2.1), and our Theorem 1.4 corresponds to the case of the field Fp of this
conjecture (Proposition 2.3). In considering this Generalized Isomorphism
Conjecture we prove the generalization to any algebraically closed field of theorems
of M. Feshbach and J. Milnor for the complex field. Our proof uses Theorem 1.4
and avoids use of Becker-Gottlieb transfer.

In Section 3 we show for any algebraically closed field fc and any linear
algebraic group Gk over fc that our Generalized Isomorphism Conjecture is

Partially supported by N.S.F.
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348 ERIC M FRIEDLANDER AND GUIDO MISLIN

équivalent to the Finite Subgroup Conjecture which asserts for every non-zero
xeH*(5G(lc),Z/n) with (n, char (fc)) 1 that there exists some finite subgroup
77 c: G(k) such that x restricts non-trivially to H*(Bit, Z/n).

The first author gratefully thanks the Max Planck-Institut (Bonn) and the ETH
(Zurich) for their warm hospitality.

1. Reductive groups over Fp

We begin our proof of Theorem 1.4 by recalling the &quot;cohomological Lang
fibre square&quot; associated to the Lang map ll&lt;f&gt;q : Gk --» Gk. We refer the reader to
[1]&gt; [7] for a discussion of the Chevalley intégral group scheme associated to a

reductive complex Lie group. We refer the reader to [6] for a discussion of étale

cohomology H*tPC Z/n) of a simplicial scheme X.

THEOREM 1.1 ([5; Thm. 2.9] or [6; Thm. 12.2]). Let G G(C)top be a
reductive complex Lie group, let Gz be an associated Chevalley intégral group
scheme, let p be a prime and let Gçp GZ&lt;8&gt;FP. A choice of embedding of the Witt
vectors of Fp into C détermines a commutative square in the homotopy category for
any prime l^p and pth power q pd:

BG(Fq) &gt;(Z/0-(BG)
oJ U (1.1.1)

(1HUBG) -li (Z/IUBGx2)

with the property that some map on homotopy fibres fib (Dq) —&gt; fib (A) — (Z/i)oo(BG)
associated to (1.1.1) induces an isomorphism

H*(fib (Dq), Z/I)^ H^fib (A), Z/0

In Theorem 1.1, G(fq) is the finite group of Fq-rational points of Gz;
(Z/!)oo(BG) is the Bousfield-Kan Z/l-completion of the singular complex of BG;
&lt;l&gt;q is associated to the géométrie Frobenius &lt;f&gt;q : Gçp -» Gfp ; A is induced by the

diagonal G -» Gx2; and G(C)top stands for the group of C-rational points of Gz
with the strong topology.

To apply Theorem 1.1, we require the following corollary of Theorem 1.1

whose proof can be found in the proof of [6; Cor. 12.4]. The map Dq :BG(Fq) —»

(Z/0»(BG) considered in (1.2.1) below is the left vertical arrow of (1.1.1); the

map î:BG(Fq)-&gt;BGflFqO is induced by the inclusion G(Fq) -&gt; G(FqO-
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COROLLARY 1.2. Assume the notation of Theorem 1.1. For any q&apos; qe

and any prime l f p, there is a natural map of fibration séquences

fib (Dq) &gt; BG(Fq) -i* (Z/lUBG)
I» (1.2.1)

fib (Dq.) * BG(Fq.) -i* (Z//).(BG)

such that the map /*:H*(fib(DqO,Z/O^H*(fib(Dq),//0 can be identified
with the map 0*:Htt(Gfp9Z/l)-&gt;HUGfp,Zll) induced by 6

11 o(l x 4&gt;« x • • • x ^q7q) : Gpp -^ G/p, where y, : (GPp)c -^ Gfp is the product map.

We consider the direct limit indexed by pth powers of the homological Serre

spectral séquences associated to (1.2.1)

Hs+t(BG(Fp),Z/0 (1.2.2)

We conclude that £st 0 for t/0 by applying the following lemma.

LEMMA 1.3. For any q pd, there exists some qr qe with the property that the

self-map on the Z/l-dual Hopf-algebra of Htt(Gfp,Z/l)

/* : H*t(GF-p, Z//)#- H^fib (Dq), Z/l) -^ H*(fib (Dq0, Z/I) - Hjt(GF-p, Z/0#

induced by j : fib (Dq) -^ fib (Dq0 of (1.2.1) saffs/ïes

(a) i/ x g H*t(Gfp, Z//)# is primitive, then j*(x) 0

(b) if xeHtt(Gçp,ZH)# is such that j*(x)^0 whereas /*(y) 0 for ail y with
homological degree deg(y) satisfying 0&lt;deg(y)&lt;deg(x), then j*(x) is primitive
in H*t(GFp, Z/0#.

Proof We identify /# with the dual of e*:H*t(Gfp,Z/0-*H*t(Gfp,Z/0. K
x 6 Het(^Fp&gt; Z/0# is primitive, then

where c^J is the dual of ^q*:Hjt(Gpp,Z//)-»Hjt(G,Fp,Z/O. If &lt;£* has order m as

an automorphism of the finite dimensional Hopf-algebra Het(Gpp,Z/0#, then

i*(^) 0 provided that x is primitive and q&apos; qe is such that e Im. To prove (b),
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assume that x satisfies the conditions of b) and that e Im. Write â*(x) l®x +
in H*t(GfpxGfp,Z/0#. Then

so that /*(*) is primitive as assertéd.

Froo/ o/ Theorem 1.4. Clearly it suffices to consider n l a prime différent
from p. We apply Lemma 1.3 to conclude that for each q pd there exists some
q&apos; qe such that /*:H*(fib (Dq),Z/0-* H*(fib (Dq), Z/l) is the 0-map. Conse-

quently, (1.2.2) collapses to imply that

(lim Dq)# : H*(BG(FP), Z/I) lim H*(BG(Fq), Z/i) -* H^BG, Z/I)

is an isomorphism. Because H*(BG(Fp);Q) H*(BG(¥p),Z/p) 0, Sullivan&apos;s

arithmetic fibre square technique [11] implies the existence of a (unique) lifting

^** {lmjDq}

BG(FP)

This lifting induces the required isomorphisms

H*(BG(FP), Tin) ^ H*(BG, Z/n), (n, p) 1.

Remark. We correct an error in the proof given in [7] that H*t(BGk,Z/n) —

Het(BGc, Z/n) for (n, p) 1, an isomorphism implicit in the formulation of
Theorem 1.1. The error occurs in the réduction to G semi-simple for a gênerai
reductive complex Lie group. Let G&apos; [G, G], the semi-simple commutator
subgroup of G and let jR rad (G), the radical of G. Then G is the quotient of
G&apos;xR by the finite central subgroup H — G&apos; D R. As pointed out by O. Gabber,
the associated central subgroup scheme Hzc:GfzxRz is not étale over specZ as

claimed in [7]. Write H H&apos;xH&quot; with H&apos; a p-group and p / |H&quot;|. Then H&apos;X is

étale over spec A, where A dénotes the Witt vectors of fc, so that the proof given
in [7] is valid for G&quot; (G&apos; x R)IH&quot;. Because (n, p) - 1, G&quot; -&gt; G G&quot;IH&apos; induces

isomorphisms H*t(BGc,Z/n)^H*t(BG^,Z/n); because Gl~*Gk is a purely
inséparable isogeny, BGk^BGk induces isomorphisms H*t(BGk,Zln)—&gt;
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If tt c: G is an inclusion of discrète groups and if A is a G-module, then a class

xeH*(BTr,A) is said to be stable for geG if the images of x under the two
compositions

H*(Btt, A) -* H*(Btt H 7rg, A),
H*(Btt, A) A H*(BTrg, A) -&gt; H*(Btt H tt8, A)

are equal, where c is induced by the conjugation isomorphism sending y e 7rg to
gyg^GTr. Similarly, a class xgH*(Btt, A) is said to be stable with respect to
iT c G if x is stable for each g g G. The subgroup of stable éléments of H* (Bit, A)
with respect to tt^G will be denoted H*(Btt, A)s. If 7r&lt;=G is an inclusion of
topological groups, then H*(Btt, A)s c H*(Btt, A) for any 7r0(G)-module A is

defined similarly.

PROPOSITION 1.5. Lef Gpp be a reductive algebraic group over Fp and let

Nçp cz Gjfp 6e fhe normalizer of a maximal torus. Then the restriction map

H*(BG(Fp),Z/n) -&gt; H*(BN(FP), Z/n)

induces an isomorphism onto those éléments stable with respect to N(FP)&lt;= G(FP)

H*(BG(FP), Z/n) ^ H*(BN(FP), Z/n)s, (n, p) 1.

Proof. We recall that Gpp is of the form GZ®FP and Nçp c Gfp is of the form
(Nzc: GZ)®FP, where Gz is a reductive group scheme over Z. The group N(Fq) of
Fq-rational points of Nz contains an Z-Sylow subgroup of G(Fq) for any prime
/^p [10], so that the restriction maps

H*(BG(Fq), Z/n) -&gt; H*(BN(Fq), Z/n)s (1.5.1)

are isomorphisms for any pth power q, any integer n not divisible by p [2]. Using
the isomorphism H*(BN(Fp),Z/n)-^limH*(BN(Fq),Z/n) and the fact that
G (Fp) U G(Fq), we conclude that the inverse limit with respect to q of the
isomorphisms (1.5.1) is the asserted isomorphism.

2. Generalized Isomorphism Conjecture

We recall for a simplicial set S and an algebraically closed field k that the
simplicial scheme S ® spec (k) (defined by (S ® spec (k))n =USn spec (k) with the
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simplicial structure induced from S) has the property that H*t(S®spec(k),Z/n)
is naturally isomorphic to H*(S,Z/n). If p:D-* G(fc) dénotes a homomorphism
of a discrète group D into the group of fc-rational points of an algebraic group
Gk, then there is an induced map

p:Dk D®spec(fc) -» Gk

of goup schemes over k, where Dk is regarded as a group scheme in the obvious

way. Moreover, p induces a morphism of simplicial schemes Bp : BDk —&gt; BGk
giving rise to an induced map

Bp* : HUBGk, Z/n) -* H*(BD, Z/n)

We now introduce the Generalized Isomorphism Conjecture (GIC), incorpo-
rated into the following définition.

DEFINITION 2.1. Let k be an algebraically closed field and let n be a

positive integer invertible in k. For any algebraic group Gk over k we say that Gk
satisfies the Generalized Isomorphism Conjecture with respect to n (which we
abbreviate by GICn) if the natural map of group schemes G(k)k —» Gk, G(k) the
discrète group of fc-rational points of Gk, induces an isomorphism

Htt(BGk,Z/n) ^ H*(BG(fc),Z/n).

We say that Gk satisfies GIC if it satisfies GICn for every n prime to char (fc).

As we proceed to show, the Generalized Isomorphism Conjecture is valid for
a connected linear Gk if and only if it is valid for its maximal reductive quotient.

PROPOSITION 2.2. Let k be an algebraically closed field and Gk a connected

linear algebraic group over k. Then Gk satisfies GICn if and only if the reductive

group GJGt satisfies GICn, where Gk dénotes the unipotent radical of Gk.

Proof. The fact that Gu(fc) is a successive extension of fc0 vector spaces, fc0 the
prime field of fc, implies that Gu(fc) is acyclic for cohomology with Z/n
coefficients, n invertible in fc. Consequently, the natural map

H*(BG/Gu(k),Z/n) -&gt; H*(BG(fc), Z/n)

is an isomorphism. The fact that Gk -» GJGk is an affine bundle implies that
Gk —» GJGk and thus also BGk -» BGk/Gk induce isomorphisms in étale



Cohomology of classifying spaces of complex Lie groups and related discrète groups 353

cohomology with Z/n coefficients. Thus the proposition follows from the natural-
ity of the map

H*t(BGk,Z/n) -? H*(BG(fc),Z/n).

As we check in Proposition 2.3, the validity of GIC for Gçp is merely a

restatement of Theorem 1.4.

PROPOSITION 2.3. Let p be a prime, and Gpp a connected linear algebraic

group over Fp. Then Gçp satisfies GIC.

Proof. By Proposition 2.2, it suffices to assume Gçp reductive and it follows
that we can assume Gfp Gz®Fp. Then the map limDq :BG(FP)-^
(Z/0oo(BG(C)top) occurring in the proof of Theorem 1.4 is induced by the map
G(Fp)pp —» Gpp and a choice of embedding of the Witt vectors of Fp into C
determining isomorphisms HUBGfp, Z/n) - Htt(BGc, Z/n) - H*(BG(C)top, ZJn).
Consequently, the proposition follows directly from Theorem 1.4 and the
existence of a commutative triangle

HUBGf, lin) - H*(BG(C)top, Z/n)¦ \ /H*(BG(FP),ZM)

We next show in Proposition 2.4 that the validity of GIC for Gc is équivalent
to what J. Milnor calls the isomorphism conjecture for G(C)top ([9]).

PROPOSITION 2.4. Let Gc be a complex algebraic group and n a positive
integer. Then there exists a natural commutative triangle

HUBGC, Z/n) - H*(BG(C)top, Z/n)

H*(BG(C)S, Z/n)

in which the isomorphism is given by the classical comparison theorem and the other
two maps are induced by G(C)i G(C)C -* Gc and 1 : G(C)8 -? G(C)top.
Consequently, Gc satisfies GIC if and only if the identity map induces isomorphisms
H*(BG(C)8, Z/n) =* H*(BG(C)top, Z/n).

Proof. The isomorphism H*ct(BGc, Z/n) - H*(BG(C)top, Z/n) is induced by
maps (BGc)et^(BGc)s.et-&gt;Sing(BG(C)top) ([6], 8.4). We readily verify that the
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corresponding maps for BG(C)C

(BG(C)c)et *- (BG(C)c), et ~&gt; BG(C)S

are weak équivalences. Thus, the proposition follows from the naturality of thèse

maps with respect to BG(C)C —» BGC.
The following theorem gives a partial description of the map H*t(BGk, Z/n) —»

H*(BG(k\ Z/n) occurring in GIC.

THEOREM 2.5. Let k be an algebraically closed field, n a positive integer
invertible in k, Gk a connected linear algebraic group over k, and Nk c Gk the

normalizer of a maximal torus in Gk. Then GICn holds for Nk, and the composition

H*et(BGk, Z/n) -&gt; H*et(BNk, Z/n) ^ H*(BN(k), Z/n)

is an injection with image the stable éléments H*(JBN(fc), Z/n)s with respect to

N(k)cG(k).

Proof. As argued in the proof of Proposition 2.2, we may assume Gk reductive
by replacing Gk by Gk/Gk (leaving unchanged Nk and the subgroup of stable
éléments of H*(BJV(fc), Z/n)). Using the map of fibration séquences

BZr ~&gt; B(Cr)8 -&gt; BT(C)8

¦i i i
BZr -&gt; B(Cr)top -* BT(C)top

together with the Z/n acyclicity of B(Cr)s and the contractibility of B(Cr)top, we
conclude the natural isomorphism for a maximal torus Tz of Gz

H*(BT(C)top,Z/n) -^ H*(BT(C)6,Z/n) &apos;

Employing the map of fibration séquences

BT(C)0 -* BN(C)S -&gt; BW

i ii i i
BT(C)«op _+ j3N(C)top -* BW

we conclude the natural isomorphism (compare also [9])

H*(BN(C)top, Z/n) ^ H*(BN(C)S, Z/n) (2.5.1)

Moreover, by Proposition 2.4, we can reinterpret (2.5.1) as the isomorphism

H*(BNC, 1/n) =* H*(BN(C)S, Z/n) (2.5.2)
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Choose a prime p not dividing n and let R cz C dénote the strict Henselization at p
of Z(P) {m/n; p \ n} (provided with an embedding into the complex field). Thus,
R has residue field Fp and quotient field contained in Q. The maps Fp &lt;— jR -»
Q —&gt; C détermine the following commutative diagram of schemes

N(Q)C -&gt; N(C)C

By Hensel&apos;s Lemma, the kernel of the surjection JR* —&gt;F* is uniquely n-divisible,
as are the cokernels of the injections R*-^&gt;Q* and Q*-»C*. Consequently, the

maps BT(FP)^BT(JR)-^BT(Q)-&gt;BT(C)S each induce isomorphisms in Z/n
cohomology and, since (spec .R)et is contractible the maps on classifying spaces
associated to the upper horizontal maps of (2.5.3) ail induce isomorphism in Z/n
cohomology. We obtain therefore a commutative diagram in cohomology

H*(JBN(FP), Z/n) - H*(BN(R), Z/n) - H*(BN(Q), Z/n) - H*(£iV(C)0, Z/n)

| | } (2.5.4)

p, Z/n) «- H*t(BNR, Z/n) -&gt; H*t(BNb, Z/n) -» H*et(BNc, Z/n)

The lower horizontal maps are induced by the appropriate base changes and are
therefore isomorphisms. By (2.5.2), we conclude the natural isomorphisms

H*t(BNfp,Z/n)^H*(BN(Fp),Z/n), and H*t(B%Z/n)
-^H*(BN(Q),Z/n) (2.5.5)

Let L/K be an extension of algebraically closed fields. This extension induces

isomorphisms H*(BT(L), Z/n) -* H*(BT(K), Z/n) because L*/K* is uniquely
divisible, and thus also isomorphisms

H*(BN(L), Z/n) -^ H*(BN(K), Z/n) (2.5.6)

Etale cohomology base change theorems imply that NL —&gt; NK induces isomorphisms

Hft(BNK, Z/n)-^ H*t(BNL, Z/n). Therefore, (2.5.5) implies the natural
isomorphism

H*t(BNfc, Z/n) ^ H*(BN(k), Z/n)

for any algebraically closed field containing 1/n; thus Nk satisfies GICn.
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The natural map

H*(BN(FP), Z/n)s -&gt; H*(BN(R), Z/n)s (2.5.7)

is injective by (2.5.4); we will show that this map is actually an isomorphism.
Suppose x g H*(BN(JR), Z/n) is stable for g e G(R). Then the corresponding
élément in H*(BN(FP), Z/n) is stable for the image geG(Fp) of g, since

H*(BN(FP) H N(Fp)i,_Z/n) ^&gt;H*(BN(R) n N(R)g, Z/n) (the kernel of
N(R)nN(R)* -&gt;N(Fp)nN(Fp)ë is uniquely n-divisible). Observe that since K is

Henselian, the map G(R) —» G(FP) is surjective, and we conclude the surjectivity
of the map (2.5.7).

From the diagram (2.5.4) and the morphism of group schemes Nz—&gt; Gz we
obtain then the following diagram

H*(BN(Fp),Z/n)s -^ H*(BN(JR), Z/n)s &lt;- H*(BN(Q), Z/n)s

j j | (2.5.8)

HUBGfp, Z/n) ^ HUBGR9 Z/n) ^ HUBG®, Z/n)

Theorem 1.4 and Proposition 1.5 imply the isomorphism

H*t(BGF-p, Z/n) ^&gt; H*(BN(FP), Z/n)s (2.5.9)

for p not dividing n. Therefore, ail vertical arrows in (2.5.8) are isomorphisms. In
particular, we hâve

HUBGa, Z/n) -^ H*(BN(Q), Z/n)s (2.5.10)

Let now k be an arbitrary algebraically closed field and fc0 cz fc the algebraic
closure of the prime field. Applying (2.5.9) or (2.5.10), the base change isomorphisms

in étale cohomology give rise to the commutative diagram

H*et(BGko, Z/n) ^ HUBGk, Z/n)

i- i
H*t(BN(fc0), Z/n)s ^ H*(BN(k), Zlnf

The injectivity of the bottom arrow follows from (2.5.6). We conclude therefore
the asserted isomorphism H%t{BGk, Z/n) -^ H*(BN(k), Zlnf for any algebraically

closed field fc containing 1/n.



Cohomology of classifying spaces of complex Lie groups and related discrète groups 357

If we specialize Theorem 2.5 to the case k C, we obtain the foliowing resuit
proved (for any gêneralized cohomology theory) by M. Feshbach [3].

COROLLARY 2.6. Let Gc be a connectée linear complex algebraic group and
n a positive integer. Then the restrcition map induces a natural isomorphism

H*(BG(C)top,Z/n) -^ H*(BN(C)top,Z/n)s

Proof. As argued in the proof of Proposition 2.4, the isomorphism given by
the classical comparison theorem Hjt(BGc,Z/n) H*(BG(C)top,Z/n) fits in a

commutative square

Hït(BGc, Z/n) H*(BG(C)top, Z/n)

(2.6.1)

H*(BN(C)8,Z/n) *- H*(BN(C)top,Z/n)

The naturality of the isomorphism (2.5.1) implies that for geG(C),
H*(B(N(C)nN(C)8)top,Z/n)-^ H*(B(N(C)flN(C)g)8,Z/n) is an isomorphism.
Therefore, we obtain from (2.5.1) the isomorphism H*(BN(C)top,Z/n)s^&gt;

H*(BN(C)S, Z/n)s. Fitting this isomorphism and Theorem 2.5 into (2.6.1), we
conclude the corollary.

The following corollary of Theorem 2.5 sharpens a theorem of J. Milnor in the
spécial case fc C, [9].

COROLLARY 2.7. Assume the notation of Theorem 2.5. Then the following
triangle commutes

H*t(BGk,Z/n) A H*(BG(k),Z/n)

H*(BN(k\

in which the horizontal map is that of the GIC, the left slant map is the isomorphism
of Theorem 2.5 and the right slant map is the restriction homomorphism. In
particular

Htt(BGk, Z/n) ^ H*(BG(k), Z/n)
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is split injective and the splitting is given by the algehra map y~x|3. Furthermore

H*(BG(k), Z/n) &gt; H*(BN(k), l/n)s

is split surjective, with splitting the algebra map ay~x.

Proof. The commutativity of the triangle follows from the naturality of the

map Hjt(BGk,Z/n)-^H*(jBG(fc),Z/n).

Finally, we obtain the following équivalent form of the GIC. The proof is

immédiate from Corollary 2.7.

COROLLARY 2.8. Assume the notation of Theorem 2.5. Then Gk satisfies

GICn if and only if the restriction map

H*(BG(fc), Z/n) -&gt; H*(BN(fc),Z/n)s

is an isomorphism, if and only if the restriction map

H*(BG(fc),Z/n) -&gt; H*(BN(k),Z/n)

is injective.

3. Finite Subgroup Conjecture

As with the Generalized Isomorphism Conjecture, we incorporate the Finite
Subgroup Conjecture (FSC) in a définition.

DEFINITION 3.1. Let fe be an algebraically closed field and let n be a

positive integer invertible in fc. For any algebraic group Gk over fc we say that Gk
satisfies the Finite Subgroup Conjecture with respect to n (which we abbreviate
by FSCn) if for any non-zero x e H*(BG(k), Z/n) there exists some finite
subgroup 7rc:G(fc) such that x restricts non-trivially to H*(Btt, Z/n). We say Gk
satisfies FSC, if Gk satisfies FSCn for every n prime to char (fc).

THEOREM 3.2. Let k be an algebraically closed field and let Gk be a
connected linear algebraic group over fc. Then Gk satisfies GICn if and only if it
satisfies FSCn.

Proof. If Gk satisfies GICn, then H*(BG(k),Z/n)-*H*(BN(fc),Z/n) isinjec-
tive by Corollary 2.8. In case char(fc) p&gt;0 we choose an embedding Fpc:fc,
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which will induce isomorphisms

H*(BN(k), Z/n) ^ H*(B2V(FP), Z/n) ^ Hm H*(BN(Fq), Z/n).

Thus, the mod n cohomology of G(k) is detected by the family of finite subgroups
N(Fq) c= G(k). On the other hand, if char (fc) 0, we first choose a prime p which
doesn&apos;t divide n and which is prime to the order of the Weyl group W of Gk.
Then we choose an embedding of the strict Henselization R of Z(p) into k, giving
rise to maps

Fp &lt;- R -&gt; k

which induce isomorphisms (cf. proof of Theorem 2.5)

H*(BN(Fp),Z/n) ^ H*(BN(JR), Z/n) £- H*(BN(fc), Z/n)

Because i?* -^Fp admits a (unique) splitting with uniquely \W\ -divisible cokernel,
this splitting Fp—&gt; JR* induces a W-equivariant map T(Fp)-&gt; T(R) inducing the
inverse H*(BW, T(FP))4H*(BW, T(R)) to the réduction isomorphism
H*(BWJW)^H*(BW,T(FP)). In particular, the réduction map N(R)-&gt;

N(FP) (interpreted as a map of extensions of W whose classes are related by the
réduction isomorphism H2(BW, T(R)) -^ H2(BW, T(FP))) admits a splitting
N(FP)-*N(R) which induces an isomorphism

H*(BN(R),Z/n) -^ H*(BN(FP), Z/n)

The composite map N(FP) —» N(i?) -&gt; N(fe) -&gt; G(k) detects the mod n cohomology

of G(k) and, since the mod n cohomology of N(FP) is detected by the finite
subgroups JV(Fq)cN(Fp), we conclude that G(k) satisfies FSCn.

Conversely, assume Gk satisfies FSCn. By Corollary 2.8 it suffices to prove that
the restriction map H*(BG(k),Z/n)-^H*(BN(k), Z/n) is injective in order to
conclude that Gk satisfies GICn. To prove this injectivity, it clearly sufîices to
assume n ld for some prime / invertible in k. Let xeH*(BG(k),Z/fd) be a

non-zero élément and choose a finite subgroup 7rc:G(fc) such that x restricts

non-trivially to H*(Btt, Z/Jd). Replacing tt by an !-Sylow subgroup, we may
assume that tt is an /-group. Such an l-group it c: G(fc) consists entirely of
semi-simple éléments and thus normalizes some maximal torus of G(k) (cf. [10],
5.17). Thus, tt is conjugate to a subgroup of iV(fc) so that the restriction of x to
H*(BN(k),Z/n) is non-trivial.
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As an easy corollary we conclude the following.

COROLLARY 3.3. Assume the notation of Theorem 3.2 and let k \J ka

where each ka is algebraically closed. Then Gk satisfies GICn if and only if each

GK satisfies GICn.

Proof. Suppose that Gk satisfies GICn and let ka c: fc be a fixed algebraically
closed subfield. Then k \J A$ where each A3 is a finitely generated fca-algebra
and thus admits a fca-algebra map A3 —» fca. Therefore it follows that the natural

map

H*(BG(fcJ, Zln) -&gt; H*(BG(k), Z/n) ton H^BG(A&amp;\ Tin)

is injective. This implies that the restriction map

H*(BG(fc), Z/rc) -&gt; H*(BG(fcJ,Z/n)

is surjective. Using (2.5.6) and Corollary 2.8 we conclude that
H*(JBG(ka),Z/n)-&gt;H*(BN(fca),Z/n) is injective and thus GICn holds for GK.

If each Gka satisfies GICn and therefore FSCn, we see that Gk satisfies FSCn,
since

H*(BG(k), Z/n) -^ lim H*(BG(ka), Zln)

Therefore, Gk satisfies GICn by Theorem 3.2.

Corollary 3.3 may be used to show that it suffices to prove GICn for one
&quot;sufficiently large&quot; field of each characteristic in order to show that GICn holds
for ail fields.

COROLLARY 3.4. Assume the notation of Theorem 3.2 and let k be an
algebraically closed field of infinité transcendence degree over its prime subfield. If
Gk satisfies GICn then GL satisfies GICn for every algebraically closed field L with
char (L) char (k).

Proof Write L (J La where each La is algebraically closed and of finite
transcendence degree over the prime subfield. Then every La admits an embed-
ding into k and thus GLa satisfies GICn by Corollary 3.3. Since L U^«&gt; we
conclude that GL satisfies GICn by Corollary 3.3.
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