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On the volume of a unit vector field on the three-sphere

Herman Gluck and Wolfgang Ziller

A unit vector field on a compact Riemannian manifold M can be pictured as a

cross-section, and hence submanifold, of the unit tangent bundle TXM. We define
the volume of the vector field to be the volume of this submanifold, measured in
the natural Riemannian metric which TXM inherits from M. It can be expressed
by the formula

vol V [ Vdet (/ + W)( W)&apos;) d volM,

in which we view the covariant derivative W as a linear transformation of the

tangent space TMX to itself.
One hopes that the &quot;visually best organized&quot; unit vector fields on M are

rewarded with minimum possible volume. For example, it is clear that on the flat
torus, the unit vector fields of minimum volume are precisely those of constant
slope. But on the round three-sphere S3, the story becomes more involved.

Consider the Hopf fibration H of S3, whose fibres are the unit circles on the

complex Unes in R4 C2. Any fibration congruent to this is also called a Hopf
fibration, and a unit vector field VH tangent to the fibres will be called a Hopf
vector field. It is natural to regard thèse as visually the best organized unit vector
fields on S3. We will prove

THEOREM. The unit vector fields of minimum volume on S3 are precisely the

Hopf vector fieldsy and no others.

The proof is by the method of &quot;calibrated geometries&quot; of Fédérer [F] and

Harvey-Lawson [H-L], and is a one-time-deal which fails on the 5-sphere.
To carry out the argument, we will find a smooth closed 3-form ju on the unit

tangent bundle 7iS3, such that

jU(w A V A W) &lt; VOl (U A V A H&gt;), *

with equality holding for any properly oriented tangent 3-plane to a Hopf vector
field VHf viewed as a submanifold of 7^ S3.
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178 HERMAN GLUCK AND WOLFGANG ZILLER

It will follow immediately that the Hopf vector fields are absolutely volume
minimizing in their homology classes in T{S3. For if A/3 is a 3-manifold in the

same homology class as VH, then

vol VH f ju f |U &lt; vol M3,

by equality in (*), Stokes&apos; theorem, and inequality in (*), respectively. If V is

another unit vector field on S3, then it is easy to see that it is in the same

homology class as VH when viewed as a 3-dimensional submanifold of TxS3f since
the projection TiS3—»S3 is an isomorphism on 3-dimensional homology. Hence
vol VH &lt; vol V, so the Hopf vector fields on S3 minimize volume.

Call an oriented 3-dimensional submanifold of TjS3 a \i-submanifold if the

equality fi(u avaw) vol (w a v a w) holds for each of its tangent planes. By
examining the 3-planes for which this equality holds, we will find other
jU-submanifolds besides the VH. But they lie in other homology classes in TyS3 and
hence do not corne from vector fields. Furthermore, they ail hâve volumes &gt;

vol VH. Since the ju-submanifolds are the only volume minimizing submanifolds in
their homology classes, it will follow that the Hopf vector fields are the only
volume minimizing unit vector fields on S3, completing the proof of the theorem.

The family {VH) of Hopf vector fields is invariant under the group of isometries
of the unit tangent bundle TiS3. Hence if there is any form \i on 7iS3 which
&quot;calibrâtes&quot; the Hopf vector fields, as above, then we can average it over the

group and obtain an isometry-invariant form which does the same. Hence there is

no loss in restricting our search for ju to the isometry-invariant forms. The

advantage is that such forms are explicitly calculable. It turns out that there is, up
to constant multiple, just one isometry-invariant closed 3-form, and it does the

job.
The drawback to using the method of calibrated geometries for this problem is

that we must prove a little more than we want: the VH hâve minimum volume

among ail 3-manifolds in the same homology class in TXS3 whether or not thèse

3-manifolds corne from unit vector fields on S3. As a resuit, the method will fail
on the five-sphere S5, because there is a 5-manifold in TXS5 in the same homology
class as 2VH, but with less volume. The corresponding isometry invariant closed
5-form ju on 7iS5 provides a calibrated geometry which distinguishes thèse

submanifolds instead of the Hopf vector fields. And likewise on 57, 59, S11,

Whether the theorem itself remains true on thèse higher dimensional sphères,
we do not know. We can, however, use the method of calibrated geometries to
see a little in this direction.

If V is a parallel vector field on a compact Riemannian manifold M, then
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vol V vol M. It is natural to ask: if M admits no parallel vector fields, is vol V
bounded away from vol M for any unit vector field V on M? We will observe that

vol V &gt;2 vol sphère

for any unit vector field on a unit sphère. By contrast,

so that starting on S5 the above inequality is much weaker than the expected one.
Nevertheless, this inequality reports that ail unit vector fields on an odd-
dimensional round sphère fail to be parallel by at least a certain amount.

When trying to show that nicely organized submanifolds minimize volume in
their homology classes, it is good to keep in mind the following simple example,
which shows that higher dimensions can frustrate the attempt.

The diagonal in S1 x S1 has length equal to V2 times that of S1, and certainly
minimizes length in its homology class. The diagional in S2 x S2 has linear
dimensions multiplied by V2, and hence

area diag (S2 x S2) 2 area S2.

The diagonal still minimizes area in its homology class, but now the union

S2 x point U point x S2,

which lies in the same homology class, has the same area. Moving up one more
dimension, we get

vol diag (S3 x S3) 2V2 vol S3,

and now it is

S3 x point U point x S3,

and no longer the diagonal, which minimizes volume in its homology class.

Exactly this phenomenon is at work in the following circumstance. Define the
volume of a map f:M-*N between Riemannian manifolds to be the volume of
its graph, considered as a submanifold of M x N. It follows from the work of
Walter Wei [W] that the Hopf map h :S3-+S2 does not hâve minimum volume in
its homotopy class. Indeed, we will dérive in section 4 a gênerai inequality for the
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volume of a fibre bundle map over a surface, and use it to display a large family
of mutually homotopic maps from S3^&gt;S2, amongst which the Hopf map has

maximum volume.
We thank Eugenio Calabi, Dennis DeTurck and Frank Warner for insights

gained in several helpful conversations, and the National Science Foundation for
financial support; Wolfgang Ziller also thanks the Sloan Foundation.

1. Finding the 3-form u

We divide the proof of the main theorem into two parts. In this section we
find the closed invariant 3-form ju on the unit tangent bundle ^S3. In the next we
will complète the argument by finding the 3-dimensional submanifolds calibrated
by /i and noting that the Hopf vector fields, and no others, hâve minimum volume

among them.
We begin by summarizing the geometry of the situation. The points of the unit

tangent bundle TAS3 may be regarded as pairs (x} y) of orthogonal unit vectors
from S3. The same is true for the Stiefel manifold V2R4 of orthonormal
two-frames (jc, y) in R4. Hence as sets, thèse five-dimensional manifolds are
identical. As topological spaces, they are homeomorphic to S3 x S2, since the

3-sphere is parallelizable.
The natural Riemannian metric on TiS3, defined in terms of covariant

derivatives of vector fields, is the same as the one it inherits as the homogeneous

space SO(4)/SO(2). The natural Riemannian metric on V2R4 is the one it inherits
as a subspace of R8. Thèse two metrics are not identical; we will compare them in
a moment. But neither one is the product metric on S3 x S2.

The géodésie flow gt on the unit tangent bundle TXS3 is defined by

g,(x, y) (x cos t + y sin t, —x sin t + y cos t).

It is an SO{2) action by isometries in either metric.
One passes from the natural Riemannian metric on TiS3 to that on V2R4 by

multiplying lengths in the direction of the géodésie flow by V2, with no change in
directions orthogonal to this. Our main theorem is true regardless of which of
thèse two metrics is used to measure the volume of vector fields.

The Stiefel manifold V2R4 sits as a circle bundle over the Grassmann manifold
G2R4 of oriented two-planes in four-space, with each orthonormal two-frame

(x, y) sitting over the oriented two-plane x a y which it spans. The projection
map is a Riemannian submersion, that is, its differential préserves lengths of
tangent vectors orthogonal to fibres. The Grassmann manifold G2R4 is isometric

to S2 x S2, with each factor a round two-sphere of radius 1/V2.
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In the Grassmann manifold, the base spaces MH of the various Hopf fibrations
H of S3 appear as S2 x point and as point x S2. There is just one of each kind
passing through any given point of the Grassmann manifold. See [G-W] for
détails.

Up in the Stiefel manifold, the Hopf vector fields VH appear as totally
géodésie round three-spheres of radius V2, sitting over the base spaces MH in the
Grassmann manifold.

We try to summarize much of this information in the following figure, which
also includes an orthonormal set of tangent vectors at one point, to be used in a

moment.

Unit tangent bundle T^S3
Stiefel mfld V2/R4

Grassmann mfld G2R4

y_
Hopf^base space MH

Now we set about finding our isometry-invariant closed 3-form \i on the unit
tangent bundle. Each isometry g: S3-* S3 has an induced action on TXS3 V2RA,

which is an isometry in either metric. Such isometries préserve both the S7 fibres

of the unit tangent bundle and the S1 fibres of the Stiefel bundle. It will be

sufficient for our purposes to restrict attention to those g which are orientation
preserving. So far this gives us an 50(4) action.

In addition, the circle group SO(2) acts on TXS3 V2R4 by the géodésie flow,
again isometries in either metric. Such isometries préserve the S1 fibres of the
Stiefel bundle, but do not préserve the S2 fibres of the unit tangent bundle.

Since thèse two actions commute, we get an action of

G SO(4) x SO(2)

on TiS3 V2R4 by isometries in either metric. G is simply the identity component
of the full isometry group.

We next find the G-invariant differential forms on 7iS3 V2R4.

Since G acts transitively, we simply calculate those linear forms on the tangent
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space to TXS3 V2R4 at a single point which are invariant under the action of the

isotropy subgroup of G. This isotropy subgroup must be two-dimensional, since

G is seven-dimensional and TXS3 V2R4 is five-dimensional. In fact, it îs

isomorphic to SO(2) x SO(2), and opérâtes by independently spinning the

e^-plane and the e3e4-plane, while keeping the eo-axis fixed. See figure above.

By abuse of language, we use the symbols e, to dénote both tangent vectors
and dual one-forms. We easily get the following table.

Table of invariant forms and their extenor denvatives

Dimension
Dimension

Dimension

Dimension
Dimension

1

2

3

4
5

ei A e2

e0 a e,
exAe2
e0 a ex

a e2

Ae4
a e%

a e2

A64
Af,Ae4

0
0
2 f ] A f2 A ^ A f4
2ex a e2 a e, a e4

0
0

Note that the invariant one-form e0 represents inner product with a unit vector
tangent to the Stiefel fibres, and is hence the connection form v of the Stiefel
bundle.

Note that the invariant forms on 7iS3 V2R4 which occur in dimensions two
and four are missing the e0-factor. They represent the pullbacks to the Stiefel
manifold of the corresponding invariant forms down on the Grassmann manifold
G2/?4. Down there, ex t\e2 and e^ a eA are the volume forms of S2 x point and

point x S2, respectively, while ex a e2 a e3 a e4 is the volume form of S2 x S2

G2R\
Embed the Grassmann manifold G2R4 in CP3 in the usual way by sending

x a yf where x and y are orthonormal, to the complex line through x + ly in C4.

The image is the complex hyperquadric

24

where z x + iy. In this way the Grassmann manifold inherits the complex
structure / and the corresponding Kâhler 2-form w from CP3. It is easy to check
that

and J(e3) e4.
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Hence

(o ex a e2 + e3 a eA

is the Kàhler 2-form on the Grassmann manifold.
Refer again to the above table and note that the even-dimensional forms,

which are pulled back from the Grassmann manifold, are already closed. This
happens because the Grassmann manifold is a symmetric space, and hence every
invariant form is closed. By contrast, the invariant forms on the Stiefel manifold
in dimensions one and three are not ail closed. But clearly the cohomology
computed from the invariant forms is the same as the deRham cohomology.

Given the preceding table of G-invariant forms and their derivatives on
TXS3 V2R4, we naturally choose

[i ~ e0 a ex a e2 — e0 a e3 a e4.

This form is closed and générâtes the 3-dimensional cohomology. We can write

jU V A À,

where v e0 is the connection form of the Stiefel bundle and where
À ex a e2 - e3 a e4 générâtes the 2-dimensional cohomology of the Stiefel

manifold, and is the pullback of a closed form which together with the Kâhler
form co générâtes the 2-dimensional cohomology of the Grassmann manifold.

Finally, note that

dv 2(0

up in the Stiefel manifold.

2. Finding what u calibrâtes

Having selected the closed G-invariant 3-form

\i e0 a ex a e2 - e0 a e3 a e4

on TXS3 V2R4, we face the following tasks:

A) Show that fi(u a v a w) s vol (u a v a w). Then we will know that pt is a

calibrating form.
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B) Find out what ju calibrâtes infinitesimally. This means finding those
oriented 3-planes in 5-space for which the above inequality is actually an

equality.
C) Find out what fi calibrâtes globally. This means finding those oriented

3-manifolds in TlS3 V2R4 which are tangent to such 3-planes at each

point.

To begin, we write

ti e0 a (ex a e2 - e3 a e4) v a A,

as before.
It is straightforward linear algebra to check that (â is calibrating, and that

infinitesimally it calibrâtes precisely the 3-planes which contain the eo-axis and

which meet the e^^^-space in the graph of an anticonformal map from the

e^-plane to the e3e4-plane (including the e3e4-plane itself). After ail, except for
the minus sign, À ex a e2 — e3 a e4 is the usual Kàhler 2-form in real 4-space, and

multiplication by the new variable e0 has the expected effect.

Suppose the oriented 3-manifold M3 in TXS3 V2R4 is calibrated by our form

[i e0 a er a e2-e0 a e3 a e4. Infinitesimally, this means that each tangent space
to M3 contains the eo-axis, which is itself tangent to the Stiefel fibres. Globally,
this means that M3 is a union of Stiefel fibres, and hence the inverse image of a

submanifold M2 down in the Grassmannian G2R4. And this submanifold M2 must
in turn be calibrated by the invariant 2-form À ex a e2 — e3 a e4 on G2R4.

The usual complex structure / on the Grassmann manifold G2R4 is defined by
J(ex) e2 and J(e3) e4. Define another complex structure /* there by J*(ei) e2

and J*(e3) — e4. Then the 2-form À is the Kàhler form of the complex structure

/*, and hence calibrâtes the /*-complex submanifolds of G2R4. Each such

J*-complex submanifold M2 minimizes area in its homology class. Its inverse

image M3 in the Stiefel manifold is calibrated by our 3-form fi and minimizes
volume in its homology class. In fact, the volume of M3 is simply the length of a

Stiefel fibre times the area of M2.

So we corne to the conclusion: our 3-form \i calibrâtes those oriented

3-manifolds in TXS3 V2R4 which are inverse images under the Stiefel projection of
the J*-complex submanifolds of G2R4.

It is clear that the submanifold M2 of G2R4 has minimum area (over ail
nontrivial homology classes) precisely when it equals S2 x point or point x S2, in
which case its inverse image M3 is a Hopf vector field VH. Since ail unit vector
fields V on S3 represent the same non-trivial 3-dimensional homology class when
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viewed as submanifolds of TjS3 V2R4, this gives the desired resuit:

The unit vector fields of minimum volume on S1 are the Hopf vector fields, and
no others.

3. Why the method of calibrated geometries fails in higher dimensions

In this section we will see that there is a 5-dimensional submanifold of
TXS5 V2R6 in the same homology class as 2VH, but with less volume. If there
were any closed 5-form on the unit tangent bundle 7iSs (isometry-invariant or
not) which calibrated the Hopf vector fields VH, then automatically kVH would be
the &quot;manifold&quot; of minimum volume in the homology class ^[V^]. Since this is not
the case for k 2, the method of calibrated geometries can not be used to show
that the Hopf vector fields on S5 hâve minimum volume. The same holds on S7,

s9, s11,....
To produce this 5-manifold inside 7iS5, start with a single fibre F4 of the unit

tangent bundle TXS5-*S5. It is a totally géodésie round 4-sphere of radius 1. Flow
it by the géodésie flow g, to produce the 5-dimensional submanifold L5 of TiS5.

We can see L5 another way. Take the fibre F4 in T^5 and view it in V2R6,

where it now appears horizontal. Use the Stiefel projection to project it to a

totally géodésie round 4-sphere L4 of radius 1 in the Grassmann manifold G2R6.
L4 represents the set of ail oriented 2-planes in 6-space which can be obtained
from a given one by rotating it about a given Une therein. Then L5 is simply the
inverse image of L4 under the Stiefel projection, because the orbits of the
géodésie flow on ^S5 are the same as the fibres of the Stiefel bundle V2R6.

In the Stiefel manifold, L5 is isometric to 54(1) x S1 (y/2). In the unit tangent
bundle, it is isometric to 54(1) x 5X(1). Thèse isometries follow immediately from
the parametrizaton of L5 given below.

We claim that L5, properly oriented, represents the 5-dimensional homology
class 2[VH] in the unit tangent bundle T^5.

Suppose that F4 is the fibre of the unit tangent bundle over the point x0 on S5.

Thus

F4 {(xo,y):yeS5,(xo,y)=0}.

Applying the géodésie flow, L5 can be viewed as the image of S4 x S1 under the

map

(y, 6) ~&gt; (jt0 cos 0 + y sin 6, -x0 sin 6 + y cos 0).
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The projection TiS^-^S* îs an isomorphism on 5-dimensional homology, so we
simply need to check the degree of the map

(y, #)—»jt0cos 6 + y sin 6

Clearly the 5-sphere îs covered once for 0 ^ 8 ^ x Note that the above map takes

(y, 6) and (y, 6 + tï) to antipodal points Smce the antipodal map on S5 has

degree 1, our map must hâve degree 2 The corresponding map for a Hopf vector
field VH in place of Ls has degree 1, and the claim follows [L5] 2[VH]

In contrast to this, we claim that

volLs&lt;2volVw

First we compute vol VH For each complex structure / on R6 we hâve a Hopf
fibration of Ss by the unit circles on the corresponding complex hnes, and a Hopf
vector field VH {(x, Jx) x e Ss} Since / îs an isometry, VH îs a round 5-sphere
of radius V2 in the Stiefel manifold V2Rà One easily calculâtes that the unit
5-sphere has volume jt*, and hence vol VH 4V2 Jt3

Next we compute vol L5 Viewed in the Stiefel manifold, this submanifold îs

isometric to 54(1) x S*(V2) Since vol S4 (8/3)^2, we hâve

vol L5 (8/3)n2 x 2jtV2 5\V2 jt\

venfying the claim
Thus we hâve found a submanifold L5 of jf^S5 in the same homology class as

2VHy but with less volume Hence the method of cahbrated geometnes can not be

used to show that the Hopf vector fields on S5 hâve minimum volume The same
holds on S7, S9,Sn,

Nevertheless we can carry out the search for G-invariant forms on TxS2n+l

V2R2n*2 for ail n, where now G îs the group SO(2n -h 2) x SO{2) of isometnes
In our earher problem on S3, there was no ambiguity (except for sign) m the

choice of G-mvanant cahbratmg 3-form

ju v a À e0 a ex a e2 — e0 a e3 a e4

The same thing happens on S2n+1 there îs a unique (up to sign) G-mvanant
cahbratmg 2n +1 form \i on the Stiefel manifold V2R2n+2&gt; and ît too can be

wntten as v a A, where v îs the connection form of the Stiefel manifold and
where À îs the pullback of a G-mvanant 2n-form (also wntten À) from the
Grassmann manifold G2R2n+2 Down there, À represents the &quot;other&quot; generator in
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the middle dimensional cohomology H2n(G2R2n+2) Z + Z, that is, other than
the nth power con of the Kàhler form. This becomes précise when we ask in
addition that Â be in the kernel of exterior multiplication by the Kâhler form a&gt;.

And this in turn is what makes the 2n + 1 form \x v a â closed:

d\i d(v a Â) dv a Â 2ù) a â 0.

The 2n +1 form jU provides a calibrated geometry on the Stiefel manifold,
while the 2n-form À provides one on the Grassmann manifold. We know from
our previous discussion that \x can not calibrate the Hopf vector fields when n &gt; 2.

Defining the submanifolds L2n+l 52n(l) x S\&gt;/2) of the Stiefel manifold
V2R2n+2, and L2n S2n(l) of the Grassmann manifold G2R2n+2 just as we did
above for n 2, we will prove in [G-M-Z] the

PROPOSITION. For n^2: The 2n + \ form \i on the Stiefel manifold
calibrâtes the submanifolds L2n+l and nothing else. The 2n-form Â on the

Grassmann manifold calibrâtes the submanifolds L2n and nothing else.

Note that the subgroup G&apos; SO(2n + 2) of G SO(2n + 2) x SO{2) still acts

transitively on 7;S2n+1 V2R2n+2. If we look for G&apos;-invariant closed 2n + 1 forms,
the choice is much wider, and includes e.g. the pullback to the unit tangent
bundle of the volume form on 52&quot;+1. Choosing an appropriate G&apos;-invariant

calibrating 2n + 1 form, one easily obtains

vol V ^ 2 vol sphère

for a unit vector field V on a unit sphère.
We can do a little better. Let V be a unit vector field on S2n+l and \i the

calibrating 2n + 1 form on TxS2n+1 mentioned above. Then

vol V ;&gt; f pi \ pi c{n) vol 52w+1.
Jv JvH

It follows from an explicit formula for pi given in [G-M-Z] that

For example, c(l) 2, c(2) 2\, c(3) 3$,...
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By contrast

so that starting on S5, the above inequalities are much weaker than the expected

ones.
Nevertheless, the inequalities report that ail unit vector fields on a round

sphère of any dimension fail to be parallel by at least a certain minimum amount.

4. An inequality for the volume of a fibre bundle map over a surface

Our goal hère is to prove the following

PROPOSITION. Suppose f:Mm-*N2 is a fibration of the compact Riemannian

manifold Mm over the compact surface N2. Then

vol/ &gt; vol M + (average vol fibre) (area N)y

with equality if and only if f is a conformai submersion,

Recall that we defined the volume of a map f:M-*N between Riemannian
manifolds to be the volume of its graph in M x N.

EXAMPLE. Among ail maps /:S2—»S2 of nonzero degree, the conformai
and anticonformal homeomorphisms hâve minimum volume.

EXAMPLE. Among ail maps/:S3—&gt;S3 of nonzero degree, there are none of
minimum volume. AH hâve volume &gt; 2 vol S3. Some maps hâve volumes ap-
proaching this lower limit, but none equal it. The identity map 53—&gt;S3 has

volume 2V2 vol S3.

Homotopically nontrivial maps f:S3-+S2 behave as in the previous example:
there are none of minimum volume. AH hâve volume &gt; vol S3. Using the equality
in the above proposition, we will see some very beautiful maps which hâve
volumes approaching this lower limit. By contrast, the Hopf map h:S3—&gt;S2 has

volume 2 vol S3.

Let / : Afm-» TV&quot; again be a smooth map between Riemannian manifolds. For
each x e M, we define a pseudo-norm \dfx\ for the differential of /at jc, as follows.
Pick an orthonormal basis eu e2,..., em for the tangent space TMX. If
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define

\dfx\ \dfx(e^A Adfx(em)l

the usual norm m /\m TNf(x) But if m&gt;n, pick the basis for TMX so that
en+\&gt; &gt;Zm belong to the kernel of dfxy which îs at least m -n dimensional
Then define

MAI \dfx(ex) a a dfx(en)\

Note that \dfx\ îs nonzero when the dimension of ker dfx îs exactly m — n, and îs

zéro when the dimension of the kernel îs &gt;m - n
Now define the image volume of the map / by integrating the above

pseudo-norm of îts differential over the domain M

image vol/ \dfx\ d vol

EXAMPLE If / M—&gt;N îs an embeddmg, then the image volume of / îs

simply the volume of/(M) as a submamfold of N

LEMMA Suppose f Mm-*N&quot; is a fibration between compact Riemannian

manifolds Then

image volf (average volfibre) (vol N)

Refernng to the picture above, we hâve

d\olx \dfx\-ldudv,

where du and dv are the volume forms on base and fibre, respectively
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Integrating over m, we get

image vol/= \dfx\d volv dudv

l(\ dv) du \ (vol of fibre)du
JN \Jfibre &apos; JN

— (average vol of fibre) (vol N),

as claimed.

Again let f:Mm-+N&quot; be a smooth map between compact Riemannian
manifolds, with m&gt;n. Given xeM, let eïf eny en+l, em be an
orthonormal basis for the tangent space TMX, chosen so that en+ïf em belong
to the kernel of dfv. Suppose that on the «-plane spanned by elf en, the map
dfx is conformai, and suppose this is true for each x e M. Then we call / a

conformai submersion. If the constant of conformality is never zéro, then / is a

submersion in the usual sensé, and hence a fibration.

EXAMPLE. A Riemannian submersion /: Mn —&gt; N&quot; is a submersion whose

differential is an isometry on subspaces orthogonal to the fibres. An example is

the Hopf fibration h :53—&gt;52(l/2). Any Riemannian submersion is also a

conformai submersion.

EXAMPLE. Consider the composite map

where g is a conformai homeomorphism of the three-sphere, h is the Hopf map,
and g&apos; is a conformai homeomorphism of the two-sphere. Any such map is a

conformai submersion.

LEMMA. Let /:MW—»Af2 be a smooth map of a compact Riemannian

manifold to a compact surface. Then

vol/ 2* vol Mm + image vol/,

with equality if and only iff is a conformai submersion.
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Given x eMm, we choose an orthonormal basis elf e2, e3,. em for the
tangent space TMX so that e3, em belong to the kernel of dfx. Then the
volume élément of the graph of / is

\(ex + dfxex) a (e2 + dfxe2) a e3 a • • • a en\

Vl + \dfxex\2 + \dfxe2\2 + \dfxex a dfxe2\2

by elementary linear algebra, with equality if and only if dfx is a conformai map of
the e^-plane to the tangent plane TNf(x).

Integrating this inequality over Mm proves the lemma.

Putting the preceding two lemmas together, we get the proposition stated at
the beginning of this section.

If we apply the equality in the proposition to the conformai submersion

defined above, we get

vol/ vol S3 + (average length fibre) (area S2).

If g and g&apos; are the identity maps, then / is the Hopf map h and we get

vol h 2 vol S3.

Now choose the conformai homeomorphism g of S3 so that it takes a very small
circle to one of the Hopf circles. Then choose the conformai homeomorphism g&apos;

of S2 so that it spreads a small neighborhood of the point corresponding to this

Hopf circle over most of the two-sphere. The composite map f-g&apos;hg then has

average fibre length very small. As a resuit, vol/ is very close to vol S3. If we

keep the homeomorphisms g and g&apos; orientation preserving, then/is in the same

homotopy class as the Hopf map h&gt; yet has smaller volume. Amusingly, vol h is

the maximum volume among ail maps / of this type. The limiting value of vol/,
namely vol S3, can never be achieved for a map homotopic to h.
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