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On the level of projective spaces

A. PrIsTER and S. StoLZ

Introduction

In this note we provide estimates for the level of projective spaces. Parts of
these results are known [V], but we have not seen complete proofs in the
literature. We hope to stimulate interest in the question of calculating the exact
level which seems to be both attractive and difficult.

By definition (see [DL]), the level of a topological space X with a fixed point
free involution i is the number

s(X, i) = min {n :there exists a Z/2-equivariant map f: X— S""'}.

Here we think of X and the standard (n — 1)-sphere §"' as spaces with a
Z[2-action given by the involution i resp. the antipodal involution.

A continuous map f:Y—Z between two spaces with G-action is called
G-equivariant if f(gy) =gf(y) for all ge G, y € Y. The Borsuk—Ulam theorem
implies s($"~', —)=n for any n =1. Further results on the level, in particular
for Stiefel manifolds, are to be found in [DL]. In the earlier topological literature
(see e.g. [CF]) the number s — 1 was used under the name ‘‘coindex”.

In this paper we consider real (resp. complex) projective spaces RP” (resp.
CP™). For n even there are no fixed point free involutions on RP” and CP”" since
their Euler characteristic is odd, but the Euler characteristic of a space with a
fixed point free involution is twice the Euler characteristic of its quotient space
(see for example [S, p. 481, Th. 1]). On RP*>"~' (resp. CP*"~') we have the
following fixed point free involution i (resp. j): To define i write RP*"~' as
RP>*"'=8>""1/7/2 where Z/2 acts by the antipodal involution. Multiplication
with the complex number i gives a Z/4-action on §*" ' < C™ which induces a
Z/2-action on the quotient space RP?"~!. Analogously left multiplication by the
quaternion j gives a Z/4-action on $*"~! =« H” (H = quaternions), which induces a
Z/2-action on the quotient space CP*" ™! = §4"~1/§!,

THEOREM. m + 1 <s(RP* ', i)=i3m +1) and 2m + 1 <=s(CP**"!,j) <
3m for all m e N.
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We thank P. E. Conner and M. Kreck for valuable comments.

1. The lower estimate for s(RP*""', i)

We obtain restrictions to the existence of a Z/2-equivariant map f :RP*" ' —
$"~! by analyzing the corresponding map between orbit spaces f:RP>""!/7/2
— §"71/Z/2 and its induced map in K-theory. This gives the lower estimate for
m even. Finally the case m odd is reduced to the case m even by taking the join of
two equivariant maps.

We use the following notation: Given a Z/2-equivariant map f:RP*" '—
$"~!, we denote by f:$*""!— §"~! the composition of f with the projection map
§?m~1— RP?>"~1, The map f is Z/4-equivariant with respect to the action of Z/4
on §>"7! (resp. $”7') given by multiplication by i (resp. —1). We denote by
f:82m"1/7/4— S""'/Z/4=RP""" the map induced by f on the orbit spaces. The
orbit space $*"7!/Z/4 is an example of a lens space and is usually denoted by
L*"~(4). More generally the lens space L*" '(k), k e N, is defined to be the
orbit space of the Z/k-action on $*"~! = C™ given by multiplication by the k-th
root of unity ¢*™’* € C. Note that for n =2¢, RP""! is the lens space L*'(2). Let
H\CP™ ' be the Hopf bundle over the complex projective space and let
H, Ny L*"7'(k) be the pull back of H be the natural projection map L '(k)=
§*m1Z/k—CP™ '=8>""1/S!. Denote by neK(CP™ ') (resp. mn€
K(L*""'(k)) the elements represented by H (resp. H,).

The complex K-theory of lens spaces is well-known (see for example [K, p.
192, 2.12)):

As a ring K(L*"7'(k)) = Z[o)/(1 — (1 + 0,)%, oF), where 0, = n, — 1.

LEMMA. Let f:RP*"'—>S8*! be a Z/2-equivariant map and let
f:L*™Y(4)— L*"(2) be the induced map of orbit spaces. Then f*(1;) = 14 - ..

Proof. We have to construct a bundle map F: H, ® H,— H, covering f. To do
this we use the explicit description of H,\L*""'(k) and H\CP™ ' as
“‘associated vector bundles”: let G be the group Z/k or §' and let p:G XV -V
be a representation of G on some complex vector space V. Then the projection
map $"~!' X V— §%""! is G-equivariant with respect to the diagonal action on
§*"~1 x V. The induced map on the orbit spaces ($*"~! x V)/G— §*"'/G is the
projection map of a complex vector bundle called the vector bundle associated to
the representation p. With this terminology, the Hopf bundle H over CP™ ' =
§*=1/8! is the bundle associated to the standard 1-dimensional representation
a:S'xC—-C, (z,v)—z-v, and H,\L*" Y(k)=5°""'/Z/k is obtained by
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restricting a to a representation «, of Z/k < S'. The above construction is
compatible with tensor products. In particular H, ® H,\s L*"'(4) is the vector
bundle associated to the representation a, @ a4:Z/4 X CQC— C®C. It is easy
to check that

F:H,®@H,=(5*""'x C®C)/Z/4— H,= (S*' x C )/Z/2
[ x z®z'] [f(x), z-2z']

is a well defined bundle map covering f. Q.E.D.

For abbreviation write s(m)=s(RP>""', i). We now proceed to the proof of
s(m)>m for m even: Let f:RP>"~'— §%~! be a Z/2-equivariant map, where ¢ is
as small as possible, i.e. 2t =s(m) resp. s(m) + 1 for s(m) even resp. odd. The
lemma implies f*(o,)=f*(n,—1)=n4-ns—1=(14+0,)*—1 and hence the
(additive) order of (1+ 0,)>°—1€Z[04)/(1—(1+ 04)%, 0F) is a divisor of the
order of 0, € Z[0,]/(1 — (1 + 0,)%, 05). The following computation of the orders
of (1+ 0,)>—1 (resp. 0,) then implies t —1=[m/2] and hence s(m)=2t—1=
m + 1 for m even (for a real number a, [a] is defined as max {n € Z|n <a}).

LEMMA. i) The additive order of (1+ 0,)>—1€Z[0,)/(1 = (1+ 0,)*, oF) is
2(m/2]

ii) The additive order of 0, € Z[d,)/(1 — (1 + 0,)%, %) is 2.

Proof. i) To evaluate the order of an element of Z[0,]/(1 - (1+ 0,)*, 07)
represented by a polynomial p € Z[o,] with vanishing constant term we expand
the quotient p/(1—(1+ 0,)*) as a power series L;-(a;04 a;€Q. Then p is
contained in the ideal generated by 1—(1+0,)* and o7 if and only if
ay, - - . , A, are integers. Hence the order of p is given by l.c.m. {denominators
ofay, ..., an_2} :

In particular for p = (1 + 0,)* — 1 we obtain:

A+o)?-1_ -1 = =1  —=(2-20,+03)
1-(1+0)" 1+(1+0)° 2+420,+02 (24032 —40]
1 - 1
=(-2+20,~ 07 7= 4(=2+20,-0) X (*1)"55102",
1+%§ k=0

2%+1 for m—2=4k, 4k + 1

2k+2 =2
2 for m—-2=4k +2,4k +3

order of (1+ 0,) - 1= {
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ii)

g, -1 }_i 0’
l—(1+02)2 2+o2 2.5 2

order of o, =l.c.m. {2, 0=k =t-2}=2"'. Q.E.D.

To complete the proof of s(m)=m + 1 for m odd, recall the definition of the
join X*Y of two topological spaces X, Y:X*Y is the quotient space of
X x[0,1] XY by the equivalence relation (x,0,y)~(x’,0,y), (x,1,y)~
(x,1,y")forallx, x" € X, y, y' € Y. Given two real (resp. complex) vector spaces
V, W the join S(V)*S(W) of the corresponding spheres can be identified with
S(V © W). Moreover, this identification is compatible with the Z/2-action given
by multiplication by —1 (resp. the Z/k-action given by multiplication by e*™*). In
particular, if there were a Z/2-equivariant map f:RP*"~'—S§""! we would
obtain, by taking the join of the Z/4-equivariant map f:8%" 1= §™! with itself,
a Z/4-equivariant map f*f:S*" lxS§¥m =gl gmolegmol = §2m71 gnd
hence by passing to the quotient a Z/2-equivariant map RP*"~'— §2"~!
contradicting our estimate s(2m) =2m + 1.

2. The upper estimate for s(RP>""', i)

For this we use quadratic forms in order to construct an equivariant map
f:RP* 11— §"! with r =3t for m =2t and r =3t + 2 for m =2t + 1. We use the
following notation:

@1, . .., @, are complex quadratic forms in the complex variables z,, . . ., z,,.
The imaginary part Im @,(z,,..., z,) is a real quadratic form in the real
variables x;,y; j=1,...,m), denoted by qi(z)=qi(x,y) (k=1,....,7r).
Obviously, q.(iz) = —qi(z) and q,(Az) = A%q,(z) for A e R*. Suppose that the
system q =(q, . .., q,) is anisotropic, i.e. g,(z)=---=¢q,(z) =0 implies z =0
resp. x =y =0. Then q defines an equivariant map f:RP*"'— S"~! given by
f((z]) = q(2)/||q(2)||- It remains to find appropriate forms ¢, ..., @,

a) m=1, r=2: Take @,(z) =z3, @,(z) =iz% Then q,(z) = q,(z) =0 implies
that @, is both real and pure imaginary, hence @,=0 and z; =0. Thus, the
system q = (q,, q,) is anisotropic.

b) m=2, r=3: Take @.(z)=2212,, @(z)=2z3—23 @s(2)=i(z3+23).
These 3 forms satisfy the identity @3+ @3+ @3=0. Therefore q,(z) = ¢.(z) =
gs(z) =0 implies that ¢,(z), @.(z), @;i(z) are real and then @,(z) = @,(z) =
@3(z) =0 which gives z; = z, =0. This shows that the system g =(q,, 42, q3) is
anisotropic.
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Remark. The induced equivariant map RP*— S? is related to (but not
directly derived from) the well-known Hopf map §°— S2.
c) m=2t, r=3t: Take (fork=1,...,1¢)

Q3x-2(2) = 2236124, P3x-1(2) = Z%k—1 - Z%k, P(z) = i(Z%k—l + Z%k)

Part b) shows that the induced real system g = (q,, . . ., q,) is anisotropic.

d) m=2t+1, r=3t+2: Take ¢, ..., @3 as in c¢) (depending only on the
variables z,, ..., 2z,) and take @5,.,(z)=22, @3.2(z)=iz2, as in a). Then
clearly the induced system q = (q,, . . ., q,) is again anisotropic.

This proves the upper estimate s(m) < 3(3m + 1) for all m e N.

3. The estimate for s(CP*""!, j)

Let z=(2y, 2, - - - » Zam—1, Zom) € C*™ and let q(z) =(2,Z,, |z)/* — |z} .. ) €
(CxR)"=R>". q induces a map f:CP>""'— §>"~! defined by f([z]) = q(z)/
lg(2)ll. f is Z/2-equivariant with respect to the involutions j resp. —since
i((z) =[(~2, Z,, . . . ,)]- This implies the upper estimate s(CP*"~!, j) < 3m.

To prove the lower estimate denote by m,,: $*"~!'— §**~! = H™ the map given
by left multiplication by a quaternion h e H of norm 1. For h=(1+ i)/ V2 the
identity jh = hi shows that the map

m, :S4m-—1_) S4m—l

is Z/4-equivariant with respect to the Z/4-action given by m; on the domain and
m; on the range. If f: CP*"~'— §*! is any Z/2-equivariant map with respect to j,-
the composition ’

S4m—1_"__”'_> S4m—1$€132m—~1_[_,st—1

is Z/4-equivariant with respect to m;,-. Dividing by the action of Z/2 = Z/4 we
obtain a Z/2-equivariant map

(RP4m-—l, l)-** (St—-l’ _)

which implies ¢ = s(RP*""!, i) = 2m + 1 and thus s(CP*"", j)=2m + 1.
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4. Additional remarks (to the real case)

1) Our estimates for s(m) =s(RP>""1, i) imply s(1) =2, s(2)=3, 4=s5(3) =
5, 5=s5(4) = 6. Conner-Floyd [CF] proved s(3) =S5. For m >3 the exact value of
s(m) seems to be unknown.

2) One can define a purely algebraic invariant r(m) as follows: Call a system
q=(q., - .., q,) of real quadratic forms in an even number 2m of variables x;, y;

G=1,...,m) “induced” if there exist complex quadratic forms ¢,,..., @, in
the m variables z; = x; + y;i such that q,(x, y) =Im ¢,(z) (k=1,...,r). Define
r(m) = min {r:there exists an induced anisotropic system g =(q,, ..., q,) in 2m

variables}. Then it can be proved by purely algebraic methods that
m+1=r(m)<3iBm+1)

The upper estimate has been given in part 2, the lower estimate can easily be
derived from Hilbert’s nullstellensatz. (Compare [P] where the inequality
[2r/3]=m(r) <r for m(r) =3u, (R) is equivalent to the above inequality for
r(m)).

It is obvious that s(m)=r(m) and it is tempting to conjecture s(m) = r(m).
However, we see no reason that the invariant r(m) should be better accessible
than the invariant s(m).
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