
Reduction of isolated singularities.

Autor(en): Dieterich, Ernst

Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 62 (1987)

Persistenter Link: https://doi.org/10.5169/seals-47368

PDF erstellt am: 27.05.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-47368


Comment. Math. Helvetici 62 (1987) 654-676 0010-2571 /87/040654-23$01.50 + 0.20/0
© 1987 Birkhàuser Verlag, Basel

Réduction of isolated singularises

Ernst Dieterich

Let f(X) =f(X0, Xd) be a polynomial in C[X0, Xd], such that the
hypersurface H cz/\d+l(C) given by f(X) has an isolated singularity at 0, and let

^ ®h,o C[[X0, Xd]]/(f(X)) be the complète local ring of H at 0. It is

known that (H, 0) is a simple singularity (i.e. there exist only finitely many
isomorphism classes of singularises in the semiuniversal déformation of (H, 0)) if
and only if A is of finite type (i.e. there exist only finitely many isomorphism
classes of indécomposable Cohen-Macaulay A-modules) [Kn85],
[Bu/Gr/Schr 86]. Moreover, if A is of finite type then ail indécomposable
Cohen-Macaulay A-modules are classified [Gr/Kn85], [He78], [Kn85], the
Auslander-Reiten quiver of A is determined and is known to be closely related to
the Dynkin diagram which corresponds to the simple singularity (H, 0)

[Di/Wi86], [Au 86], [Kn85].
Motivated by this récent development I hâve begun to study the category of

Cohen-Macaulay A-modules in case A is of infinité type. In this respect the

présent article contains the following two main results.

THEOREM I. Let A C[[X0, Xd]]/(f(X)) be the complète local ring of
a nonsimple isolated hypersurface singularity. Let si (A) be the Auslander-Reiten
quiver of A, and dénote by % the connected component of se(A) which contains

[A]. Then

!€/

where I is an index set, and n(i)e{l, 2} for ail i e I. Moreover, if d is even then

n(i)~lforallieL

THEOREM IL Let A C[[X0,..., Xd]]/(f(X)) be the complète local ring of
a nonsimple isolated hypersurface singularity. Then there exists an arithmetic

séquence of natural numbers r, 2r, 3r,.. such that for each mr (m e M) there
exists an infinité séquence (Mmtn)neN of indécomposable pairwise nonisomorphic
Cohen-Macaulay A-modules ail of which hâve rank mr.

654
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The gênerai idea underlying the proof of Theorems I and II is to make use of
techniques which hâve been developed in représentation theory of artin algebras.
This strategy, while it cannot be carried out in a straightforward way, turns out to
work in case there exists an idéal 3 in A such that AI3 is artinian and the functor
AI3 ®A, with the category of Cohen-Macaulay A-modules as domain, reflects

isomorphisms, préserves indecomposability and séparâtes isomorphism classes.

We call such an idéal 3 a réduction idéal of A. This leads to the question of
existence of a réduction idéal. Generalizing an approach (known as Maranda&apos;s

Theorem) which gives a positive answer to the analogous question for lattices
over orders, we obtain a criterion for the existence of a réduction idéal in the

following situation. Let R be a commutative noetherian complète local Cohen-
Macaulay ring, with unique maximal idéal m, and let A be an /î-algebra (not
assumed to be commutative) which is finitely generated as /{-module. Dénote by
mod A the category of ail finitely generated left A-modules, and by mod* A the

category of ail finitely generated left A-modules which are projective as

R -modules. Call the annihilator idéal of the functor Ext3v( ):mod/?Ax
mod A—&gt; mod R the Ext-annihilating idéal of A in R. Then the following criterion
holds.

THEOREM III. If the Ext-annihilating idéal of A in R is m-primary, then there
exists a réduction idéal of A.

This raises the question of estimating the Ext-annihilating idéal of an

i?-algebra A, a problem which also seems to be of independent interest. There
are two classes of algebras for which we can prove that the Ext-annihilating idéal
is ^-primary, namely a) for isolated singularities of finite type (not assumed to be

commutative), and b) for the complète local rings of isolated Cohen-Macaulay
singularities on an affine algebraic variety over an algebraically closed field. This
leads to the following results which are related to Theorems I and IL

THEOREM IV. Let R be a commutative noetherian complète regular local
ring, and let A be an R-algebra which is finitely generated free as R-module.
Assume that A is of finite type. Then each connected component &lt;€ of the stable

Auslander-Reiten quiver of A is of the form &lt;€ ^ZÂ/G, where A is a Dynkin
diagram and G is a group of automorphisms of ZA.

If R is an algebraically closed field, then we recover Riedtmann&apos;s well-known
Theorem [Rie 80]. The stable Auslander-Reiten quivers of the simple isolated

hypersurface singularities, mentioned at the beginning, also fall under the
situation described in Theorem IV. But much more generally, Theorem IV states
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that Dynkin diagrams always appear in connection with isolated singularities of
finite type (commutative or noncommutative, in arbitrary dimensions), as soon as

the Auslander-Reiten quiver contains a stable point.

THEOREM V. Let IcC[[Xu Xn]] be an idéal, such that A
C[[AT!,.. Xn]]/I is an isolated Cohen-Macaulay singularity. If A is of infinité
type, then there existe an infinité séquence (Mt)ieN of indécomposable Cohen-
Macaulay A-modules such that rank Mt &lt; rank Ml+1, for ail i e N.

Using différent methods, Herzog and Sanders recently hâve obtained results

which are related to Theorem V [He/Sa85].

THEOREM VI. Let A C[[Xlf. Xn]]/I be as in Theorem V. Let % be a

connected component of the stable Auslander-Reiten quiver of A such that %

contains a periodic point. Then % ILAlG y where A is either a Dynkin diagram or
Aoo, and G is a group of automorphisms of ZA.

Specializing Theorem VI to isolated hypersurface singularities we obtain
Theorem I, and combining Theorem I with the main resuit of [Bu/Gr/Schr 86] we
obtain Theorem H.

For définition and basic combinatorial structure of the Auslander-Reiten
quiver of an isolated singularity, as well as for terminology and notation related
to this concept, the reader is referred to [Di86]. Auslander&apos;s characterization of
isolated singularities via existence of Auslander-Reiten séquences [Au 84],
together with the combinatorial results of Happel, Preiser and Ringel
[Hap/Pr/Rin 79], [Hap/Pr/Rin 80] yields as an easy conséquence the fundamental
structure theorem for connected components of the stable Auslander-Reiten
quiver which contain a periodic point [Di 86, Theorem 3].

Much of the présent article is based on this structure theorem. In section 1 we
study conséquences which may be drawn from it, in case the isolated singularity
contains a réduction idéal. In section 2 we turn to the problem of existence of a

réduction idéal and we prove for a rather gênerai class of algebras (which
includes the class of isolated singularities) the sufficient existence criterion in
terms of the Ext-annihilating idéal mentioned above. Section 3 is devoted to
estimating the Ext-annililating idéal for two classes of isolated singularities. The
results exhibited above then follow as easy conséquences. Theorems I,..., VI
appear in the text as Theorems 19, 20, 7, 9, 16, 17.

I am grateful to Claus Michael Ringel for clarifying remarks on stable valued
translation quivers, and I am grateful to Gert-Martin Greuel for discussing with
me the Ext-annihilators of isolated hypersurface singularities. I am particularly
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indebted to Maurice Auslander for numerous discussions on Ext-annihilators of
affine-algebraic isolated singularities. In fact, almost ail of section 3.2 leading up
to Proposition 14, has been outlined to me by him. I also would like to thank the
Deutsche Forschungsgemeinschaft for financial support.

0. Preliminaries

Throughout this article, modules are understood to be left modules, and maps
are written on the left of the argument. For any ring A, we write Mod A for the

category of ail left A-modules, mod A for the category of ail finitely generated left
A-modules, and gldim A for the left global dimension of A. For any M e ModA,
pd (M) dénotes the projective dimension of M, and fi&quot; (M) is the n-th syzygy
module of M. If F is a vector-space over a skewfield f, then we write [V :/] for
the dimension of V over /. For any object C in any category % we dénote by [C]
the isomorphism class of C, and by [%] the set of ail isomorphism classes of %.

The symbol c means inclusion or equality. We agrée that 1^1 {1, 2, 3,... },
whereas f^J0 {0, 1, 2, 3,... }.

We write /^[-X^,..., Xn]] for the ring of formai power séries in n variables

Xlf..., Xn over a field k. Cohen-Macaulay modules over a commutative
noetherian local ring are always understood to be maximal Cohen-Macaulay
modules, i.e. the depth of the module equals the Krull dimension of the ring. For
any commutative ring S, we write Spec (5) for the spectrum of S, Max (S) for the
maximal spectrum of 5, Reg (S) for the regular locus of S, and Sing (S) for the

singular locus of 5. The dimension of S is understood to be the Krull dimension of
5, and is denoted by dim 5.

Throughout, R dénotes a commutative noetherian complète local ring, and A
dénotes an /?-algebra which is finitely generated as jR-module. Let ££ be the class

of ail /?-algebras which arise in this way. Usually we shall consider algebras from
subclasses of X by assuming in addition, for example, that R is Cohen-Macaulay
or even regular, or else that A is finitely generated free as R -module or even a

commutative local Cohen-Macaulay ring. But, unless otherwise stated, A is not
assumed to be commutative. We write m for the unique maximal idéal of R, d for
the dimension of /?, and, in case R is a domain, K for the field of fractions of R.

General éléments in Spec(/?) are denoted by small german letters such as^, y,
etc. In case A is commutative, éléments in Spec (A) are denoted by capital

german letters such as 0&gt;, â, etc. In case A is commutative local, we write M for
the unique maximal idéal of A. For any A € if and M, N e mod A we set

HomA (M, N) HomA (M, iV)/HomA (M, N), where HomA (Af, N) consists of ail
homomorphisms in HomA (M, N) which factor through a projective A-module.

Given an /î-algebra A in «S?, we dénote by mod/? A (emphasizing the subscript
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R) the full subcategory of mod A consisting of ail objects which are projective as

R-modules. The study of the category modRA will be our main objective. We
write ind A for the full subcategory of mod A consisting of ail indécomposable
objects of mod A, and similarly we write ind/? A for the full subcategory of
mod/? A consisting of ail indécomposable objects of mod/? A. (For any twosided
idéal 3&gt; contained in the radical of A, A is complète with respect to the ^-adic
topology and idempotents can be lifted from A/3 to A. Consequently every
object in ind A has local endomorphism ring, and therefore Krull-Schmidt&apos;s

Theorem holds in mod A as well as in mod/? A.
For any Me mod/? A we set p(M) pA(M) [M/mM:R/m], and we call

p(M) the /?-rank of M. Usually p will be considered as a function on [ind/? A].
An /?-algebra A in 5£ is said to be of finite type in case [ind/? A] is a finite set,
respectively of infinité type in case [ind/? A] is an infinité set. With any /?-algebra
A in 5£ we associate two sets of natural numbers Poo(A)cP(A) cN as follows.
Consider the rank function pA:[indR A]—»N, and set F(A) im(pA),
respectively Poo(A) {r e N \ pÂl(r) is infinité}. Now let si be a subclass of ££. We

say that thefirst Brauer-Thrall conjecture is true for si in case for ail Aesd, if A
is of infinité type then P(A) is infinité. We say that the second Brauer-Thrall
conjecture is true for si in case for ail Aei, if A is of infinité type then P^A) is

infinité.
Let A be an algebra in ££&gt; with regular ground ring Ry and such that A is

finitely generated free as /î-module. Following Auslander [Au 84] we say that A
is nonsingular if gldim A dim R, respectively isolated singular if gldim A =£

dim/? and gldim A^ dim jfy for all/e Spec (R)\{m}&gt; respectively nonisolated

singular in ail other cases.

A spécial but important subclass of X frequently arises in the following way.
Suppose we are given a commutative noetherian complète local ring S. Then
there exists a commutative noetherian complète regular local subring R czS such

that 5 is finitely generated as R -module. R is called a Noether normalization of 5.

In this situation, the category mod/? S coincides with the category of Cohen-
Macaulay S-modules, and 5 is finitely generated free as R -module if and only if 5
is a Cohen-Macaulay ring. For commutative noetherian complète local Cohen-
Macaulay rings 5 with Noether normalization R c= 5, the notion of non-
skigularity, isolated singularity and nonisolated singularity, as defined above,
coincide with the corresponding notions from commutative algebra.

1. Isolated singularises with réduction idéal

We assume that R is a commutative noetherian complète local ring, and that
A is an R -algebra which is finitely generated as R -module.
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DEFINITION. A twosided idéal 3 of A is called a réduction idéal of A if it
has the following properties.

(a) $&gt; a mA,
(b) AI3 is artinian.
(c) The functor ^ AI$®A:moéRA-»mod(A/^) préserves indecom-

posability and séparâtes isomorphism classes.

If there exists a réduction idéal $&gt; then we call $&gt; its réduction functor. It
reduces the dimension of the ground ring from d to 0, it maps nonisomorphisms
to nonisomorphisms, and it induces an inclusion mapping between the sets of
isomorphism classes of indécomposable objects, 9S : [ind^ A] &lt;-* [ind (A/^)].
Since mod {Al3) is an abelian category in which ail objects hâve îînite length, we
hâve much better knowledge about mod (A/$) than about mod* A. As we shall

see, some of this information can be transferred from mod (A/J) to mod/? A, by
way of the réduction functor $&gt;.

We give some examples of réduction ideals, in case R is commutative
noetherian complète regular local and A is finitely generated free as R -module.

(1) If d 0, then (0) is a réduction idéal of A.
(2) If d — 1 and K®RA is a separable ^-algebra, then meA is a réduction

idéal of A, where c is the conductor in R of a maximal order A&apos; 3 A into A;
alternatively, mAA is a réduction idéal of A, where ^ is the Higman idéal of A.
(See [Cu/Re 81] or [Ro/Hu 70] as gênerai références for the case d 1.)

(3) If A is nonsingular, then mA is a réduction idéal of A because ail objects
in modRA are projective.

The following statements (4) and (5) will be proved in sections 2 and 3 (see
Theorem 7, Proposition 8 and Corollary 15).

(4) If A is an isolated singularity of finite type, then A has a réduction idéal.

(5) If k is an aigebraically closed field, laC^A^,..., Xn]] an idéal such that
A C[[Xi,..., Xn]]/I is an isolated Cohen-Macaulay singularity, then A has a

réduction idéal.
More generally it would be interesting to characterize those isolated

singularities which hâve a réduction idéal. On the other hand, for nonisolated
singularities we hâve only counterexamples so far: If A is a nonisolated
hypersurface singularity of type A* or D» (in the language of [Bu/Gr/Schr86],
i.e.

or
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then the classification of mod^A shows that A has no réduction idéal. Also
observe that any power of a réduction idéal is again a réduction idéal. Therefore
the set of ail réduction ideals never contains a minimal élément (unless A is

artinian). On the contrary it would be interesting to find the maximal éléments of
this set, in case it is nonempty.

Whereas in sections 2 and 3 we will be concerned with the question of
existence of a réduction idéal, in the remaining part of this section we will
investigate properties of isolated singularises which hâve a réduction idéal. In this
respect the following generalization of a Lemma of Harada and Sai [Har/Sa70],
[Rin79] is fundamental.

LEMMA 1. Let A be an R-algebra as abovey given by a ring homomorphism
&lt;p:R-+A. Assume that A has a réduction idéal S. Set f 0~1(^) and /=
length* (RU). If Mx^&gt; M2^» • • &quot;E^Af2* is a chain of 2^-1
nonisomorphisms in vaoAR A, such that ail modules Mi, A/y/ are indécomposable

and of i?-rank^^, then the image of the composed morphism
- - - ip\ is contained in

Proof Applying the réduction functor, we obtain a chain

of 2^—1 nonisomorphisms in mod(A/J&gt;), such that ail modules
are indécomposable. Because A/J&gt; is artinian and
for ail i 1,. 2/4, we know from the Lemma of

Harada and Sai that the composed morphism ^(VV&apos;-i) * * &apos; 3^(Vi) is zéro. But
this is équivalent to the fact that im (t//2^-i * * • ^i) &lt;= $M2m. q.e.d.

Recall that the /?-algebra A is said to be connected if A A! © A2 implies that
either Ax 0 or A2 0, for every décomposition of A into a direct sum of
twosided ideals Ax and A2. Dénote the functor A/mA ®A:mod/? A -*
mod/?/™ (Alm A) by 3Fm. Then A is connected if and only if for any two
indécomposable projective A-modules P and P&apos; there exists a séquence P
POt Px,..., Pn Pr of indécomposable projective A-modules such that, for ail
i 0,. n -^ 1, either

or

PROPOSITION 2. Let A be an isolated singularity or nonsingular. Assume
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that A is connectée and has a réduction idéal 3. Let % (^o, %) be a connected

component of the Auslander-Reiten quiver sî(A) (siOf s&amp;^)f on which the rank
function p : ^o&quot;-* N is bounded. Then s£{A) &lt;£, and s&amp;(A) is finite.

In case d 0, this resuit is due to Auslander [Au 74]. We closely follow his

proof, adapting it to our more gênerai situation by way of the réduction functor
OÙ

Proof. Let A, 3 and % be given as in the Proposition. Let à be an upper
bound for p on % and set /= length^ (/?/«), i 3DR. We claim that the

following statement is true.
(*) If M and N are indécomposable objects in mod^A such that

^(HomA (M, N)) *¦ 0, then [M] e % if and only if [AT] e %.
Proof of (*): Suppose M and N are indécomposable objects in modRA such

that ^(HomA(M, N))^0, and suppose that [M]e^0, but [N]$%. Choose

\p e HomA (M, N) such that im ip 4- &amp;N. Since every indécomposable object in
modfl A has a source morphism, and in view of the connection between source
morphisms and irreducible morphisms (see statements (1) and (2) preceding
Proposition 2 in [Di 86]) we obtain that, for ail c eN, ip can be factored as

where Xt domain (§,) is an indécomposable object in %, and £, is a

composition of c irreducible morphisms in %, for ail i 1,.. n. On setting
c 2ëwededucefromLemma 1 thatimi/;c3&gt;N, whichcontradictsourchoiceof %p.

Arguing with sink maps instead of source maps one proves dually that [N] e %
implies [M] 6 %.

Now choose [M] e %$ arbitrary and let PM -» M be a projective cover of M. Then

(*) implies that there exists a projective point in %. Since A is connected, (*)
implies that ail projective points of si0 are in %&gt;. Let [N] e sdQ arbitrary and let
PN-*&gt;N be a projective cover of N. Then (*) implies that [TV] e %. This proves
st(A) «.

On the other hand, the factorization property of Auslander-Reiten séquences

together with Lemma 1 shows that for every point [N] e s£0 there exists a chain

[P] [N1]-»[N2]-&gt; &gt;[Nc] [N] of arrows in siu such that P is indécomposable

projective and c &lt; 2^. Since s£(A) is locally finite it follows that M(A) is

finite. q.e.d.

As an immédiate conséquence of Proposition 2 we obtain the following
statements on isolated singularities with réduction idéal.
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COROLLARY 3. The first Brauer-Thrall conjecture is true for isolated

singularities with réduction idéal.

Proof. Let A be an isolated singularity with réduction idéal, and assume that
A is of infinité type. Then there exists a connected algebra-component A&apos; oi A
which is of infinité type. By Proposition 2, the rank function is unbounded on
each connected component of sA(A&apos;). q.e.d.

COROLLARY 4. Let A be an isolated singularity with réduction idéal Let
*% — (%)&gt; %) be a connected component of the stable Auslander-Reiten quiver
$£S(A) and assume that ^ contains a periodic point. Then the Cartan class of % is

either a Dynkin diagram or A*,.

Proof. Let &lt;2 be the connected component of s£(A) which contains c€. If
&lt;f =£ &lt;&lt;?, then the rank function p : ^q-* M is not additive on C€J so the Cartan class

of &lt;€ is either a Dynkin diagram or A«, by [Di 86, Theorem 3]. If &lt;&amp; «, then &lt;g

is a connected component of s&amp;(A) which contains no projective point. Therefore

p is unbounded on %, by Proposition 2, so the Cartan class of &lt;# is A«, by [Di 86,
Theorem 3]. q.e.d.

2. Construction of réduction ideals via annihilators of Ext

Throughout this section, let R be a commutative noetherian complète local

ring and let A be an /î-algebra which is finitely generated as R -module. Within
this gênerai setup we turn to the question of existence of a réduction idéal.

Generalizing an approach which goes back to Maranda [Ma 53] we shall prove
the following existence criterion: If R is Cohen-Macaulay and the annihilator of
the functor ExtA : mod/* A x mod A—» mod R is ^-primary, then there exists

a réduction idéal of A.
With any élément remwc associate the category mod^/^ {AirA) given by the

factoralgebra A/rAf and the factorcategory (modRA)/9€r given by the System of
relations 9€r {r HomA (M, N) | M, N e mod^ A}. By définition, the objects of
(modfl A)/3€r are the objects of mod/? A, and the morphism set in (modRA)/3€r
from M to iV is given by HomA (M, N)/r HomA (M, N). Note the différence:
whereas morphisms in mod/^ (A/rA) are A-linear maps between residue class

modules, morphisms in (modRA)/fflr are residue classes of A-linear maps
between modules. Given any full subcategory Sf of mod^A, we consider the
functor 9r:&amp;-+ moAR/rR(A/rA) given by &amp;r~A/rA®A, and the canonical
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functor 9lr:Sf-*(modRA)/%r. For S modRA, the following facts are easily
verified.

(i) The functor 2ftr is a représentation équivalence (i.e. 0lr is full, dense and

isomorphism-reflecting).
(ii) There exists a uniquely determined functor 9r:(modRA)/3€r^&gt;

modtf/,* {AirA) such that 9r 9r9tr.
(iii) If r is a nonzerodivisor of /?, then 3Fr is faithful.

LEMMA 5. Let &amp; be a full subcategory of mod^ A. Let a be a nonunit and
nonzerodivisor of R such that a ExtA (M, N) 0, for ail M, TV e îf. Dénote by à

the residue class of a in R/a2R. Then, for ail M, Ne&amp; and for each morphism
g e HomA/a2A (M/a2M, N/a2N) there exists a morphism f e HomA (M, N) such

Proof Let M, N e Sf and g e Hom^^ (M/a2M, N/a2N) be given. Because

M is /?-projective, there exists an /î-linear map f:M-*N which lifts g. Then
im (À/ —/A) ci a2N, for ail À e A. Since a2 is a nonzerodivisor of N, for ail À e A
there exists a unique /?-linear map FX:M-*N such that a2FA À/-/A. It turns
our that F {FA}A€A;A-&gt;Hom^ (M, Af) is a dérivation. In view of the

isomorphisms

ExtA (M, N) a /fa(A, Hom^ (M,

Der (A, Hom* (M, N))/In Der (A, Hom* (M,

our assumption a ExtA (M, iV) 0 implies that flF is an inner dérivation. Hence
there exists an /î-linear map h:M-^N such that aFA Â/i~/ïÂ, for ail AeA.
Then A/-/A a2FA a(A/t -/iA) implies that /=/-ah:M-*N is a A-linear

map, and 9a{f) ^5(g). q.e.d.

PROPOSITION 6. Let ifbea full subcategory of mod^ A. Le* a be a nonunit
and nonzerodivisor of R such that a ExtA (M, N) 0, /or ail MfNe^. Then the

functor 9a2:Sf-^modR/a2R(A/a2A) préserves indecomposability and séparâtes
isomorphism classes.

Proof Let M e Sf be given and assume that &amp;a2(M) décomposes properly.
Choose an idempotent g e EndA/fl2A (M/a2M) which is différent from 0 and
différent from 1. By Lemma 5 there exists an endomorphism / e EndA M such

that 9a(f) ^â(g). Since g is idempotent, 9JJ) is also idempotent. Since
&amp;a(f) &amp;a&amp;a(f) and &amp;a is faithful, ma(f) is an idempotent élément in
(EndA M)/a(EndA M) which can be lifted to an idempotent élément / in
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EndA M. It is easily seen that / is différent from 0 and différent from 1, because

otherwise g would be equal to 0 or 1, contradicting our choice of g. Hence M
décomposes properly.

Let M, Ne &amp; be given and assume that ^(M) ^(N). Choose an

isomorphism g e Hom^^ (M/a2M, N/a2N). By Lemma 5 there exists a mor-
phism / 6 HomA (M, N) such that 3Fa{f) — ^a{g)- Since g is an isomorphism,
3Fa{f) is also an isomorphism. Since a is an élément in m, it follows that / is an
isomorphism. Hence M N. q.e.d.

Proposition 6 is known as &quot;Maranda&apos;s Theorem&quot; in case d 1 and Sf

modfl A. Originally it has been proved by Maranda for the group ring of a finite

group over the ring of p-adic integers [Ma 53], and later it has been generalized
by D. G. Higman to arbitrary orders over complète discrète valuation rings

[Hi60]. In generalizing Maranda&apos;s Theorem to algebras over higher dimensional

ground rings, as formulated in Proposition 6, I drew much benefit from the
beautiful présentation of this topic given in [Cu/Re 81] for the case d 1. The

reason for considering arbitrary full subcategories if of mod^ A will become clear
in the sequel, when we shall apply Proposition 6 inductively.

DEFINITION. Let A be an /?-algebra as above. We define the Ext-
annihilating idéal of A to be the annihilator idéal (in R) of the bifunctor
ExtA : modfl A x mod A—» mod R. We dénote the Ext-annihilating idéal of A
by a.

Note the asymmetry in the product category mod^AxmodA which, for
définition of the Ext-annihilating idéal, we choose as domain of the bifunctor
ExtA Observe that, if R is Cohen-Macaulay and a is ^-primary, then there
exist plenty of maximal /?-regular séquences which are contained in a. (Choose

any System of parameters xx,..., xd of R. Then jc&quot;, jc3 is a maximal
/f-regular séquence for ail neN, and there exists n0 e N such that x\,. xnd is

contained in a for ail n ^ n0.)
Given any finite set of éléments {rlf..., rn) in R, we dénote by (rly..., rn)

the R -idéal generated by {rlf..., rn}, and we dénote by (ru rn)A the
twosided A-ideal generated by {rlf..., rn}.

THEOREM 7. Let R be a commutative noetherian complète local Cohen-
Macaulay ring and let A be an R-algebra which is finitely generated as R-module.
Assume that the Ext-annihilating idéal a of A is m-primary. Then for every
maximal R-regular séquence au ad contained in a, {a\&gt;... ad)A is a
réduction idéal of A.
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Proof. Let aly..., ad be a maximal /?-regular séquence which is contained in
af and set $&gt; {a\,..., al)A. From our assumptions on at,..., ad it follows
immediately that 3 c mA and that AI3 is artinian. For investigation of the
functor 9S A/$®A:modRA-*mod(A/#) we introduce a séquence of functors,

associated with the given /?-regular séquence as follows. Set ao=(0) and

«i ifl\y • • y
&lt;*2)&gt; for ail i l,..., d. Let 5^ be the full subcategory of

mod/?/ai (A/«,A) which is given by the class of objects {M/a,M \ M e mod^ A}, for
ail i&apos; 0,..., d, We consider the séquence of functors 3&gt;a2\y)l^i-*&amp;&gt;l given by
3^a2 Ala2lA®Ay where i 1, ...,&lt;£ Then the following statements hold for
each i 0,.. d — 1.

(i) /?/», is a complète local ring, A/atA is an /?/#ralgebra which is finitely
generated as R/armodnlc, and &amp;)l is a full subcategory of mod/^ (A/«fA).

(ii) The residue class al+1 +«f is a nonunit and nonzero divisor of /?/«,.
(iii) (aI+1 + at) Ext\/ajA (M/atM, N/a,N) 0 for ail M, N e mod* A.

(Assertion (i) follows trivially from our assumptions and définitions. Since a\t... a2d

is an /?-regular séquence in m, we obtain assertion (ii) and the isomorphism

Ext^a|A {MlaM, NlatN) as ExtA(M, N/atN), for ail M, N e mod^ A.

Now assertion (iii) follows in view of a2+1ea and the définition of a.) Due to
(i)-(iii) the hypothèses of Proposition 6 are satisfied for each of the functors
^ro2:5^_1-»S^. Therefore 9a2 préserves indecomposability and séparâtes
isomorphism classes, for ail i — 1,. d. On the other hand $&gt; &lt;3*aid •. • 9a\y
and therefore $&gt; préserves indecomposability and séparâtes isomorphism
classes, q.e.d.

3. Isolated singularities with //-primary Ext-annihilating idéal

This section is mainly devoted to showing for two classes of isolated
singularities that their Ext-annihilating ideals are ^-primary, namely

a) for isolated singularities of finite type, and

b) for isolated Cohen-Macaulay singularities which are of the form A
6[[Xlf.. Xn]]/I, where k is an algebraically closed field and le
6[[XU Xn]] an idéal.

Once this is established, ail results of section 1 apply to any isolated
singularity which belongs to a) or b), by Theorem 7. As a conséquence we obtain
the results announced in the introduction.
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3. 1. Isolated singularities offinite type
Let R be a commutative noetherian complète regular local ring and let A be

an /?-algebra which is finitely generated free as R -module.

PROPOSITION 8. // A is an isolated singularity of finite type, then the

Ext-annihilating idéal of A is m-primary.

Proof. Let MtJ Mn be a set of représentatives for the isomorphism
classes of indécomposable objects in xnoAR A, and set M ©&quot;=i Mr To each pair
(X, Y) e mod/f A x mod/? A we assign the R — idéal ax,y— ann^ (HomA (X, Y)).
Then by [Au 84, main theorem], for every pair (X, Y) there exists a number

/=4-,y6N such that n/aax,Y- Moreover, the following inclusions are easily
verified.

(1) a&gt;M,MCZ(~^&quot;j laMl,M)
(2) {aXiY fl ax&gt;z) &lt;= *x,y®z&gt; for all X,Y, Z e mod* A.
(3) fe.z H ay,z) cz «Ar©y,z. for ail X, Y, Z e mod^ A.

Properties (l)-(3) imply that dMtMczp{X€modRAax&gt;x. Hence we obtain m/c
^M,M&lt;Za&gt; where /= /M&gt;M and where a is the Ext-annihilating idéal of A, as defined
in section 2. In addition, aczm, because otherwise A would be nonsingular.
Therefore a is ^-primary. q.e.d.

THEOREM 9. Let A be an isolated singularity offinite type. Then the Cartan
class of any connected component % (%, %^) of the stable Auslander-Reiten
quiver MS(A) is a Dynkin diagram.

Proof By Proposition 10 and Theorem 7, A has a réduction idéal. Since A is

assumed to be of finite type, each point of % is periodic, and the Cartan class of
&lt;# cannot be Aoo. Therefore, by Corollary 4, the Cartan class of % is a Dynkin
diagram. q.e.d.

Remark. If A is of finite type, then it has to be an isolated singularity or
nonsingular [Au 84]. Therefore in Theorem 9 we may as well omit the hypothesis
that A is an isolated singularity.

3.2. Commutative local isolated Cohen-Macaulay singularities
Assume that k is an algebraically closed field, that V c A&quot;(/) is an affine

algebraic variety of dimension d, and that 0 e F is an isolated Cohen-Macaulay
singularity of V. Let A Ôv&gt;0 be the complète local ring of V at 0, and let R c A
be a chosen Noether normalization. We call such an /î-algebra A an affine-
algebraic isolated singularity. An affine-algebraic isolated singularity A is an
isolated singularity in the sensé of section 0, and mod^A is the category of
Cohen-Macaulay A-modules. Our aim is to study the Ext-annihilating idéal a of
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A. However, much of what follows will be formulated in a more gênerai setting.
Ultimately, ail results proved for affine-algebraic isolated singularises generalize
to arbitrary isolated singularities which arise as factorring of the formai power
séries ring over^, by Artin&apos;s Theorem [Ar69].

We first consider the noncomplete situation. Let A =k\XXy..., Xn]/I be the
affine coordinate ring of V &lt;= /Y(â). Let Ae =A ®^A be the enveloping algebra
of Af and let A% — A9®^A9 be the enveloping algebra of A&amp;, for any
0&gt; € Spec (A).

PROPOSITION 10. For ail &amp; e Reg {A), we hâve the inequality pd^ A9 g d.

Proof. We first prove the statement for maximal ideals. For any Me
Max (A) n Reg (A), set dr dimAM and let e:AeM-+&gt;AM be the augmentation
map. Then â:= £~l(MAM) is a maximal idéal in AeM, and we hâve the following
facts.

(1) AeM is noetherian.
(2) (AeM)oL is a commutative noetherian regular local ring of dimension 2dr.

(3) AMIMAM (A^)â/«2(A^)â, as fields and as (AeM)%-modules.

m if â&apos; â
if â&apos;€Max(i4i)\{a}.

We indicate the proof of (l)-(4). On setting T {s ® 11 s, t e A\M) a Aet we
hâve that AeM T~l(Ae). On the other hand, Ae is isomorphic to the coordinate
ring of V x FcA&quot;(/) x Art(/), and therefore is noetherian. This proves (1). Let

p e V be the regular point corresponding to M. Then (p, p) is a regular point on
V xV. The local ring of V x V at (/?, p) is isomorphic to (A^)â, and its residue
class field is isomorphic to AMIMAM. This proves (2) and (3). For any
â&apos; e Max (AeM), if â&apos; ^ ker f then â&apos; â. Therefore, if 5&apos; 6 Max (i4i)\{â} then
there exists an élément s e ker e\St&apos; such that M^ 0. Hence (AM)â&apos; 0, which

proves (4).
Using (l)-(4), together with standard arguments on the projective dimension

of a finitely generated module over a regular local ring, we obtain the following
equalities.

Î(()2 AMIMAM - d&apos;
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Now let 9 e Reg (A) be arbitrary. Then there exists a maximal idéal
Me Reg (A) containing 9. Thus A&amp; T~lAMf where T= {s ® t \s, teAM\
9AM} c: AeM. Therefore pd^ A&amp; ^ pdAÎK AM â d. q.e.d.

COROLLARY 11. Let M be the maximal idéal of A which corresponds to the
isolated singular point OeV. Then for ail 9&apos; e Spec (AM)\{MAM}&gt; we hâve the

inequality

Proof. Let 9&apos; e Spec {AM)\{MAM} Reg (AM). Then 9&apos; 9AM for some

9 € Reg (A). Applying Proposition 10 we obtain that

P&lt;Wf&gt; (AM)r pd^ A? ê d. q.e.d.

For the next step we adopt a more gênerai setting. We assume now that 5 is

any commutative noetherian local Cohen-Macaulay ring, with M rad 5 and
d dim 5, subject to the following conditions.

(a) 5 contains an algebraically closed field â such that Se S®^S is

noetherian.
(b) Sing(5) {M}.
(c) pd5^ S&amp; ^ d, for ail 9 e Reg (5).

We dénote the class of ail such rings 5 by Sf. If V c An(/é) is an affine algebraic
variety and 0 e F is an isolated Cohen-Macaulay singularity, as above, then the
local ring Ûv&gt;0 of V at 0 belongs to 5^, due to Corollary 11. For any local ring S in

y, let S be the completion of 5 and set M rad S. Further, let ()-&gt;/-? 5e-^ S-» 0

be the augmentation séquence of Se, and set M Qd(S) (the d-th syzygy of 5 in
mod Se). Finally, let sd be the idéal in 5 which is given by si
ann5 (Ends* M/JEnd^ M).

PROPOSITION 12. For any local ring S in &amp;, the idéal si a S has the

following properties.
(i) Mn c si, for some neN.
(ii) d Ext^1 (X, Y) 0, for ail X,Ye Mod 5.

Proof For brevity we write EM End^ M, E&apos;M= {&lt;/&gt; eEM\ &lt;f&gt; factors through
a projective S*-module}, and EM EM/E&apos;M End^ M. Since EM/JEM
EM/(JEM + E&apos;M), we hâve séEMcJEM +E&apos;M. For any ^eReg(S) set T
T(0&gt;) {s®f \s, teS\0&gt;}c:Se. Then T^Af i?^). From property (c) of S

we obtain that T~lM is a projective T^S^-module, and hence that T~\EM) 0,
for ail 9 e Reg (S).
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We now turn to the proof of (i) and (ii). For ail ^6Reg(5) we hâve that

{EMIJEM)^T-\EMIJEM)^T-\EM)IT-\JEM)^. Hence supp5(EJJEM)c
{M}, and therefore M1 c ann5 (EM/JEM) M, for some neN.

For ail X, Y e Mod 5 we hâve isomorphisms Exts+1 (AT, Y)
Ext£+1 (5, Hom^ (X, Y)) » ExtJ, (M, Hom^ (X, Y)) [Ca/Ei 56, IX, Corollary
4.4]. Using the composed isomorphism and the inclusion stEMczJEM + E&apos;M

we obtain that si Ext^+1 (X, Y)^sd ExtJ* (M, Hony (X, 7)) c / Ex&amp; (M,
Hom/(Z, y)) -h E&apos;M Ext|* (M, Hom^ (X, Y)). In this sum, the first summand is

isomorphic to / Ext$+1 (X, Y), hence zéro, whereas the second summand
vanishes by définition of E&apos;M. q.e.d.

We continue to work over rings 5 in Sf. However, we point out that the

following Lemma 13 is valid for any commutative noetherian local ring S.

LEMMA 13. (i) Homs (Xf Y) Hom5 (X, Y), for ail XfYe Mod S.

(ii) Ext5 (P, Y) 0, for ail i e N and P,Y e mod Ê, with P a projectwe
Ê-module.

(iii) Extà {X, Y) Ext^ (Xy Y), for ail i e NQ and XyYe mod 5.

Proof (i) Let XfYe Mod 5. Clearly we hâve an inclusion Horn§ (Xf Y) &lt;-»

Hom,y (Xy Y), given by restriction of scalars, and we hâve to show surjectivity of
this inclusion. So let (f&gt; e Homs (Xf Y), xeX and s e S. Since S is dense in 5,
there exists a convergent séquence (st)ieN a S such that lim,-»» J, =§• Then

&lt;f&gt;(sx) (f&gt;i UimsAx) ^(lim^jc)) -lim (f&gt;(stx)

— lim (st&lt;l)(x))z

Hence ^eHom^Z, Y).
(ii) Let l&apos;eN and P, Yemod^, with P a projective ^-module. Then for ail

B, Je Mod3, with I an injective ^-module, we hâve Exts(P, Hoins(B, /)) s
Homi (Torf (P, B), /) [Ca/Ei 56, VI, Proposition 5.1]. Since P is a flat S-module,
Torf (P, B) 0 and therefore Ext&apos;5 (P, Hom^ (B, /)) 0. Now if we choose / to
be the injective hull of ElM and B Hom,s(Y, /), then Hom,s(J3, /)
Homj (Homs (Y, /) Y. Therefore Ext&apos;5 (P, Y) 0.

(iii) Given Xy Y e mod 5, let P: »P1-»Po-&gt;X-»0 be an 3-projective
resolution of X, and let P^ &gt;P2-+P1-~» Q(X)-*0 be the .f-projective
resolution of Q(X), obtained from P by shifting. Dénote by P&apos;, respectively PJ,
the acyclic 5-complex which arises from P, respectively Pu by restriction of
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scalars. Then for ail ieN, Extls(X, Y) H&apos;(Homs(P, Y)) H&apos;(Homs(P&apos;, Y)),
by (i). It remains to show that Ext^ (X, Y) //&apos;(Hom5 (P&apos;, Y)), for ail i e N.

Applying Hom5( Y) to the short exact séquence 0-&gt; Q(X)±&gt;Po^&gt;X^&gt;0,

we obtain the long exact séquence 0—»Hom5 (X, Y)-»Hom5(P0&gt; Y)-*
Homs{O(X), Y)-*Exti(X, Y)-+ Exts(Po, Y)^ ¦ • •. By (ii), Ext?,(Po, Y) 0 for
ail i e N. Therefore Ext^ (X, Y) Hom5 (Û(X), Y)/Homs (Po, 10&apos; -
H^Hom^ (P&apos;, Y)). Moreover, if Ext^ (X, Y) as //f(Hom5 (P&apos;, Y) for some i e N,
then Ext^1 (X, Y) Ext&apos;s (Q(X), Y) as H&apos;(Homs (P[, Y)) /fI+1(Hom5 (P&apos;, Y)).
Hence Exti (Jf, Y) tf(Hom5 (P&apos;, Y)) for ail i e N, by induction on /. q.e.d.

PROPOSITION 14. For any local ring S in ¥, the idéal sk siSc:Shas the

following properties.
(i) â is M-primary.
(ii) â Ex4 (X, Y) 0 for ail X,Ye mod S, with X Cohen-Macaulay.

Proof. Choose a Noether normalization RœS. Then, since S is Cohen-
Macaulay and Sing(^) {M}, the /?-algebra 5 is an isolated singularity in the

sensé of section 0. In particular, S is an i?-order in the sensé of [Au 78], and the

category of Cohen-Macaulay ^-modules coincides with the category of 5-lattices
in the sensé of [Au 78]. Therefore, for each Cohen-Macaulay 5-module X we
hâve that Ext^ (Tr X, S) 0 for ail i l, d, where Tr^ dénotes the

transpose of X [Au 78, Proposition 7.5]. Thus X is d-torsionfree in the language
of [Au/Br69], and hence there exists Z&apos;emodS such that X=Qd{X&apos;)y by
[Au/Br69, Theorem 2.17].

Now let XyY e mod 5, with X Cohen-Macaulay, and let X&apos; e mod S such that
X Qd(X&apos;). Then, applying Proposition 12 and Lemma 13, (iii), we obtain that

dExx\(X, Y) ^Ex4(^(*0&gt; Y) dExt4s+ï(X&apos;, Y) s#Extds+ï(X&apos;, Y) 0.

This proves (ii).
It follows that d czÂ, because otherwise 5 would be nonsingular. Moreover,

Mn csâ for some n e N, by Proposition 12 and by définition of d. Therefore d
is Jit-primary, which proves (i). q.e.d.

For the remainder of this subsection we turn to isolated Cohen-Macaulay
singularises of the form A /[[AT1,... Xn]]/I, I an idéal in /[[JG,.. Xn]],
and draw the main conclusions from Proposition 14.

COROLLARY 15. Let IcA[[Xu Xn]] be an idéal, such that A
Â[[Xlt.. Xn]]/1 is an isolated Cohen-Macaulay singularity. Then the Ext-
annihilating idéal a of Ain R is m-primary.
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Proof. By Artin&apos;s Theorem [Ar69, Theorem 3.8] there exists an affine-
algebraic isolated singularity (F, 0) such that A Ôv&gt;0. From Corollary 11 we
know that 6Vt0 e &amp;&gt;. By Proposition 14, there exists n e N such that Mn cd and
mn (M H R)n c Jf1 n /?) c (d n /?) c». Moreover, aczm, because otherwise A
would be nonsingular. Hence a is ^-primary. q.e.d.

The following two Theorems are immédiate conséquences of Corollary 15,
Theorem 7, and Corollary 3 respectively Corollary 4.

THEOREM 16. Let Ic6[[Xl9. Xn]] be an idéal, such that A
/:[[X1, Xn]]/I is an isolated Cohen-Macaulay singularity. Then the first
Brauer-Thrall conjecture is true for A.

THEOREM 17. Let Ic6[[Xu. Xn]] be an idéal, such that A
lf Xn]]/I is an isolated Cohen-Macaulay singularity. Let &lt;€ (%, %) be

a connected component of the stable Auslander-Reiten quiver $ÎS(A), and assume
that ^o contains a periodic point. Then the Cartan class of % is either a Dynkin
diagram or A«.

3.3. Isolated hypersurface singularities
Throughout this subsection we assume that â is an algebraically closed field,

and f(X) =f(X0,. Xd) is a polynomial in â[X0, Xd] such that the
hypersurface HcArf+1(/() defined by f(X) has an isolated singularity at 0. Let
A-ôHt0=Â[[X0,... Xd]]/(f(X)) be the complète local ring of H at 0, and let
R c A be a chosen Noether normalization. We call such an /?-algebra A an
isolated hypersurface singularity.

Because an isolated hypersurface singularity is an affine-algebraic isolated
singularity in the sensé of section 3.2, Theorems 16 and 17 are true for isolated
hypersurface singularities. However, it is interesting to see that for isolated
hypersurface singularities there is a much straighter way of deducing Theorems 16

and 17. Namely we hâve the following resuit which has been pointed out to me by
G.-M. Greuel and F.-O. Schreyer.

PROPOSITION 18. LetA~4[X0,. Xd]]/(f(X)) be an isolated hypersurface

singularity, with unique maximal idéal M. Let Jf~(df/dX0,...,df/dXd)
be the Jacobi idéal off(X) in Â[[X0,..., Xd]\, and let $t (// + (f(X)))/(f(X))
be ils image in A. Then the idéal $f has the following properties.
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(i) $f is M-primary.
(ii) $f Ext^ (C, Y) 0, for ail C e mod* A and Y e mod A.

(Assertion (i) follows from Jacobi&apos;s Criterion because A is an isolated

singularity. Assertion (ii) can easily be proved by calculating Ext\ (C, Y) via the

A-projective resolution of C which is given by the matrix factorization of f(X)
corresponding to C [Ei80, §6]. We leave the détails to the interested reader).
Now Corollary 15 and Theorems 16 and 17 for isolated hypersurface singularities
follow from Proposition 18 in the same way as for affine-algebraic isolated

singularities they follow from Proposition 14.

We proceed to show that for isolated hypersurface singularities Theorems 16

and 17 can be strengthened considerably.

THEOREM 19. Let A~Â[[X0, Xd]]/(f(X)) be an isolated hypersurface
singularity of dimension d which is of infinité type. Then the following statements
hold.

(i) The Auslander-Reiten quiver of A is of the form M(A)
^Û(Qe/2/W&lt;Tn(/))), where % is the connected component of sâ(A) which
contains [A], / is an index set, and n{ï) e {1, 2} for ail i e L Moreover, if d is even
then n{ï) 1 for ail i e L

(ii) Thefull subquiver of % which consists of ail points différent from [A] is of
the form % \Jjej1AjlGjy where J is afinite index set and for ail je J, A, is either
a Dynkin diagram or A^ and G; is a group of automorphisms of ZAr

(iii) // there is only one direct predecessor of [A] in sd(A), then the stable
Auslander-Reiten quiver of A is of the form MS(A)sQ^ZA»/(rn{l)), where

î / Û {i}, and n(i) e {1, 2} for ail i e /. Moreover, if d is even then n(i) 1 for
alliel

Proof Let M be any indécomposable nonprojective object in mod^ A. Since

A is a Gorenstein /î-order in the sensé of [Au 78], we hâve that t([M])
[^&quot;&quot;^(M)], by [Au 78, III, Proposition 1.8]. On the other hand, because A is a

hypersurface, we also hâve that [Q2(M)] [M], by [Ei80, Theorem 6.1].
Therefore r2([M]) [M], and if d is even then x{[M]) [M]. Then, since A is

assumed to be of infinité type, Theorem 19 follows from Theorem 17 and

Proposition 2. q.e.d.

Remark. In the situation of Theorem 19 it is natural to ask for the index set /,
the fonction n :/-* {1, 2} and the component % associated with A. Knowledge of
thèse data solves the classification problem of mod^ A. It seems that a solution of
this problem requires methods which are fundamentally différent from those used

in the présent article. So far there is just one case in which a complète answer to
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this question is known: Let A C[[X, Y]]/(f(X, Y)) be the simple elliptic curve
singularity of type É8, given by f(Xf Y) Y(Y - X2)(Y - aX2), with a e C\{0, 1}.
Then there is only one direct predecessor of [A] in s£{A) and &lt;s#5(A) CU/ZAoc/
(rrt(l)), where / P^Q) x P^C). Moreover, there are four &quot;exceptional para-
meters&quot; eu e4 in P^C) such that n(î) l for ail iePl(Q)x(Px(C)\
{eu e4}) and n{i) 2 for ail i e P^Q) x {eu e4} [Di 85].

THEOREM 20. The second Brauer-Thrall conjecture is true for isolated

hypersurface singularities A ^[[X0, Xd]]/(f(X))&gt; with

Proof. Let A be an isolated hypersurface singularity of infinité type, and let
p : [indfl A]-» N be the rank function. Dénote by &lt;€ the unique eomponent of
sd(A) which contains [A]. Then we know from Theorem 19 that % LJ/€/ ^(/)&gt;

where / is a finite index set and for ail jeJ, %{}) 1AjlG} with A} either a

Dynkin diagram or A*, and G7 a group of automorphisms of Z4r Note that if
Aj A., then p is unbounded on «(;&quot;) ZAoo/&lt;rnO)), n(j) e {1, 2}. (This follows
from the structure of &lt;#(/) together with Lemma 1, by the same reasoning as in
the proof of Proposition 2.) Moreover sd{A) &lt;£ Ù (LU/ *(0)&gt; where / is an
index set and (ë(0 ZAoo/(rn(l)) with n(î)e{l, 2}, for ail iel. We write
/1 {/€/|n(0 l}, /2={î€/|n(î) 2}, 9&apos; Qe/l«(i), Sr/ Ûie/2«(î), and

3 3&apos;Û3&quot; Ù,6/*(0&apos; Since P is additive on S, its values on each of the

components &lt;£(/), i e /, are given as follows. (We set dt bt 4- c,. Identify along
the interrupted Unes.)

at at bt c, bt

3a, 3a, 2d,-b, 2d,-c, 2d,-b,

5a, ^5a, 2rf, + ft, 2d+c, 2rf, + b,

- b, Adt - ct 4d, - b,

9a, 9a, 4d,+ 6, 4d,+ c,
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We distinguish the following subsets of %:A (2&gt;&apos;)0,

D {x e (2&gt;&quot;)o | P(x) € {mdt \ m e N, i e /2}},

M {xe(®&quot;)0\p(x)e{biyCl\ieI2}},

T {xe (2)&apos;% | p(x) € {Imd, - bn 2md, - cl9 2mdt + bn

Imd^c, |m€M,i€/2}}.

Observe that % AODOMOT. In the sequel, by an &quot;infinité set {xv} of
constant rank&quot; we mean a subset {jcv | v e N} of [ind# A], whose éléments xv are
pairwise différent, such that p(xv) r for a fixed r e N and for ail veN. We shall
need the following auxiliary resuit.

(*) If there exists an infinité set {xv} of constant rank in [ind^A], then there
exists an infinité set {yv} of constant rank in A U D.

Proof of (*): Let {xv} be an infinité set of constant rank in [ind^ A]. For ail

jeJ with Aj a Dynkin diagram, *(/) is finite. For ail jeJ with ^y Aoo, p is

unbounded on ^(/) and is additive on a cofinite full subquiver of ^(7)
ZAO0/&lt;ir/l0)), n(/)e{l, 2}. Moreover, / is finite. Therefore {jcv} H % is finite.
Hence, choosing a suitable subset of {jcv}, we obtain an infinité set {yv} cz 3)0 of
constant rank. If {yv} H(AUD) is infinité, then (*) is proved. So assume that
{yv} fl (A U D) is finite. Then either {tv} {yv} H T is an infinité set of constant
rank r, or {mv} {^v} fl Af is an infinité set of constant r. In the first case, let t&apos;v

be the unique direct predecessor of tv such that p{t&apos;v) &lt; r. Then {t&apos;v} c D is an infinité
set of bounded rank, and therefore there exists an infinité subset {t&apos;i} ci {t&apos;v} such

that {fv} is of constant rank. In the second case, let m&apos;v be the unique direct predecessor

of mv. Then {m&apos;y} c D and, because t is given by Q (see proof of Theorem
19), we hâve that p(mfv) ë r • p(A). Hence {m^} is an infinité set of bounded rank,
and therefore there exists an infinité subset {m&quot;} c{mv} such that {m&quot;} is of
constant rank. This proves (*).

Now let A be an isolated hypersurface singularity of infinité type, with char^
#2. It is proven in [Bu/Gr/Schr 86] that there exists an infinité set {jcv} of
constant rank in [ind^ A]. By (*) we conclude that there exists an infinité set {yv}
of constant rank r in A U D. Now the structure of the components ^(1), as

pictured above, shows that for each yy =^t1)e (A UD)fl &lt;#(i) there exists a

séquence (y*?\€N c (A U D) D ^(i) such that p{y^)^ pr, for ail peN.
Therefore we obtain an infinité séquence {yi1*}, {yt2)}, {yt3)},... of infinité sets
such that {y^} is of constant rank /*r, for ail p e N. q.e.d.

Remark. Theorem 20 remains valid in characteristic 2, if in addition either
d 1 or mult (/) ê 3. Namely in this situation, if A is of infinité type, then there
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exists an infinité set {xv} of constant rank in [ind* A] (see [Bu/Gr/Schr 86, proofs
3.1 and 3.5]), and we can continue to argue as above.
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Note added in proof

After finishing this article it has turned out that Y. Yoshino also has studied
réductions of isolated singularities, simultaneously and independently. He con-
siders the case where A is a commutative noetherian complète local Cohen-
Macaulay ring which is an algebra over a perfect valuation field and an isolated

singularity. Dénote the class of ail such algebras by si. He shows that £/? Jf£ is an
Ext-annihilating idéal for A, where R ranges over ail Noether normalizations of A
and Nr dénotes the Noether différent. From this he proves that the first
Brauer-Thrall conjecture is true for si. [Yuji Yoshino: Brauer-Thrall type
theorem for maximal Cohen-Macaulay modules. Preprint, Nagoya University,
1986].

This generalizes Theorem 16 to the wider class of isolated singularities si.
Combining Yoshino&apos;s approach with Corollary 4, it is clear that Theorem 17 also

holds more generally for ail algebras Aei.
Moreover, it has been brought to my attention that K. W. Roggenkamp and

A. Wiedemann also investigated generalizations of Maranda&apos;s Theorem, and
obtained results which are related to Theorem 7 (unpublished).
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