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Gaps and bands of one dimensional periodic Schrôdinger
operators, II

John Garnett and Eugène Trubowitz

§1. Introduction

Let q(x) e LR[0, 1], the Hilbert space of square integrable real valued
functions on the unit interval. Extend q(x) to the whole Une R by q{x +1)
q{x). The spectrum of the Schrôdinger operator -d2/dx2 +q(x), acting on
L2(R), is the set of A such that

~y&quot; + q(x)y ky (1.1)

has a nontrivial solution bounded on R. The spectrum is contained in R and it is

the union of a séquence of closed intervais [A2/î_2, A2/ï_,], where An Ân(^),
n ^ 0, satisfies

A() &lt; A, &lt; A2 &lt; A3 &lt; A4 &lt; • • •.

Thèse intervais are called bands and the intervening, possibly void, open intervais
are called gaps. The possible arrangements of gaps and bands were investigated in
[1]. This paper continues that study and includes some applications and

simplifications.
Let yn(q) k2n(q)- A2/I_i(&lt;jr) be the n-th gap length. It is well known that

yn{q) e (/2)+, the space of nonnegative séquences with £ y2, &lt; °°. Two of the three
main results of [1] are:

(a) Whenever yne(l2)+, there exists q e Lr([0, 1]) such that yw(&lt;?) yw,

n 1, 2, Moreover, q can be chosen from the even subspace E of
q € Lr[0, 1] such that

(b) the spectrum is determined, up to a translation, by the gap lengths yn(q).
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Gaps and bands 19

Let iin(q)&gt; w &gt; 1, be the Dirichlet spectrum of q, that is, the spectrum of (1.1)
for the boundary condition

and let vn(q)&gt; n &gt;0, be ifs Neumann spectrum, i.e. the spectrum of (1.1) with
boundary condition

Then qeE&apos;ii and only if {/*„(#), vn(q)} {k2n-i(q)&gt; k2n(q)}&gt; so that for q even,

As functions on Lr[0, 1], fin(q) and vn(q) are real analytic (while k2n is not
analytic at a q for which k2n(q) X2n-X(q)) and hence the signed gap length
on(q) iin(q) - vn(q), n &gt; 1, is real analytic in q. Furthermore, the map
ct:Lr[0, l]-»/2 defined by o{q) (on(q))&gt; n &gt; 1, is a real analytic mapping from
the Hilbert space Lr[0, 1] to the Hilbert space /2. The third main resuit of [1] is:

(c) Let Eq be the space of even potentials in LR[0,1] satisfying jlq(x) dx 0.

Then the map

E03q-*o(q) (o1(q), o2(q),

is a real analytic isomorphism between Eo and /2, that is, a is one-to-one and onto
and both a and a~l are real analytic maps of Hilbert space.

Of course, since yn(q) \on(q)\, q e EOf resuit (c) included resuit (a).
The proof of (a), (b) and (c) in [1] applied harmonie measure arguments to

the identification, due to Marèenko and Ostrovskii [3], of band configurations
with certain slit quarter planes. In Section 2 we give a direct proof, using analysis
in Hilbert space, that the Jacobian

is invertible. From this it follows easily that a is one-to-one, and that, if a is onto,
than by the Inverse Function Theorem, a&quot;1 is real analytic. Consequently, resuit
(c) can be proved without the intricate Section 6 of [1]. We cannot prove a is
onto /2 using only the method of Section 2 without a still unknown estimate of
\\q\\2 in terms of ||a(ç)||/2. However, in Sobolev space such an estimate is
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available and thus we show in Section 2 that a is an isomorphism from
J* {q eEo&apos;.q has k derivatives periodic and in L2([0, 1])} onto /*

In Section 3 resuit (c) is used to prove Marëenko&apos;s theorem [2] that the finite
band potentials (those q with yn{q) 0 for large n) are norm dense in L2, and

that q has primitive period 1/k if and only if yn(q) 0 when k does not divide n.
In Section 4 we give some inequalities that band lengths must satisfy and we

show that for real analytic potentials the band lengths détermine the spectrum up
to a translation. Hère the harmonie measure methods of [1] reappear.

§2. Signed gap lengths

We need a gênerai interpolation lemma.

LEMMA 2.1. Suppose 0(A) is an entire function satisfying

sup

as n —*¦ oo. Then

Va

n&gt;l mal Cm Ç«

/or any séquence §„, n &gt; 1, of distinct complex numbers satisfying |n n2

Proof If §m, m ^ 1, is a distinct séquence with §w m2^:2 + o(l), then

/z / /logn\\- z sin

unifomly on the circles /; {\z\ (« +1/2)2^:2}. Hence the meromorphic
function

Z — A matl çOT — Z

satisfies sup^ |/(z)| o(n&quot;2), n-^oo; and the sum of its residues inside Fn has
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limit 0 as n-*°°. But /(z) has simple pôles of À and at £rt, n ^ 1, and /(z) is

regular elsewhere. Summing the residues, we obtain

2 0(1) 110 0(Â) fi 7 T&quot;

&quot;&quot; 2 0(1») 1~~T 11
m&gt;l bm

&quot;&quot; A n l A/i A m#n Cm Ç«

which is the assertion of the lemma.

We turn to the main resuit of this section.

THEOREM 2.2. For ail q e Eq, the Jacobian dqo:E0^&gt;/2 is an isomorphism
onto /2.

Proof. See Chapter 2 of [6] for the facts used in this proof.
The components of dqo are

dqon dqfin - dqvn =g2n- h2m

where

and

are the respective squares of the w-th Dirichlet and Neumann eigenfunctions.
Hence the operator dqa is the sum of the isomorphic Fourier séries operator

and the compact operator

and dqo:Eo-+/2 is a Fredholm operator.
When q is even the vectors g2m - 1, m &gt; 1, form a basis for £^ with dual basis

¦~2flm(*), where

am{x)=yi{x, iim)y2{x, iim)
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and where yx(x, (xm), y2(x, nm) are the fundamental solutions of (1.1) for A fin
with

n o\

That is, if/, ge£i&gt;, then

(/,-2a;&gt;€/2

and

Therefore it is sufficient to prove that the matrix

&lt;*n,m=(g2n-h2n, ~2a&apos;m)

is invertible in B(/2, /2).
We hâve &lt;g2, -2a&apos;m) &lt;5n,m, and because am(0) am(l) 0,

{-h2n, -2a&apos;m) 2|/î2a^ifa -4Jh&apos;nhny}(x, fi

J y\K[K&gt;

where [f, g] =fg&apos; -f&apos;g. But by (1.1),

[K] )K

Soif vn#/im, then

¦-lin
1

V» - J
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since h&apos;n(0) h&apos;n{\) 0, since y[(0) 0 and since, when q is even, ^(l, jum)

(-l)m. Also

where y dy/dk, because ^(1, vn) (-l)n when q is even and because

yi(*&gt; vn)l|2= ~y&apos;\(X&gt; v«)yi(l&gt; v«)- From the product formulas

22

we conclude that

(2.1)
— Vn

when vn^]um. If vw /im, then n m and [^, yy] IbillJ1^ because the

Wronskian \yu y2] 1. Consequently (-h2n, -2a&apos;m) 1 and (2.1) also holds when

yn Vm- Thus our matrix is

(-ir+m n

and (anm) is Fredholm because dqo is a Fredholm operator.
By the Fredholm alternative, dqo is an isomorphism of Eq onto /2 if the

transpose (amn) is one-to-one. Now suppose t (rn, n &gt; 1) e/2 lies in the kernel
of (am,n). Then

Consider the function

S(~i)m—^^ n -2^.
m&gt;l Vo- VmlsJt#mVit- Vm
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We will show in a moment that &lt;f&gt;(k) is a entire function of À satisfying

V
&quot;VF o(\) (2.2)

uniformly on the circles |A|(n + 1/2)2jt2 as n—&gt;». But since

V0 -
£«) O a* some point §„ in the n-th gap. Consequently 0 0 by Lemma 2.1

and tn 0, n^l. That means the transpose (0m,n) is one-to-one and dqo is an

isomorphism.
It remains to prove (2.2). Since vn - n2n2 e/2,

n ^f-( n
V - V V

A:2 \sinVA/ /log/t
-m2i VA \ \ n

2(i) ff
on |A| (« - l/2)2^2. Hence for such A,

* Const-s
im2 Jw+ 1/2VI=°w- D

m |m - (n 4-1/2) |

It will be convenient to replace Eq by

Since even potentials are determined by their Dirichlet spectra and since

l*n(q + c) fin(q)i + c, and vrt(&lt;î + c) vw(^) + c, the map q-+q-[q], where

[?]= ikq(x) dx, is an isomorphism from % to £1) preserving signed gap lengths.
Let

grt {q e e0: ym(?) « om(q) 0, m &gt; n}.

Because, by Theorem 2.2, a is local analytic isomorphism on &lt;S0&gt; ^&quot; is a real
analytic submanifold of &amp;0 of dimension n.



Gaps and bands 25

COROLLARY 2.3. For each n &gt; 1, the signed gap length map is a real

analytic isomorphism of %n onto Rn.

Proof. The image o(%n) is an open subset Rn because o:%0-^/2 is a local

homeomorphism and ^n a~1(Rn)De0. We next show o(%n) is closed. The

identity from [7],

where Ttq(x) q(x 4-1), yields

MOI * i y».te), *6«&quot; (2.3)

Hence the preimage in %n of any compact subset of R&quot; is boundçd in L2. It is also

weakly closed because the functions om(q) iim{q) — vm(q) are weakly con-
tinuous. Thus the preimage of a compact subset of Rn is a weakly compact subset

of %n&gt; and it follows that the map &lt;j:£n—»Rrt is proper and that o{&lt;ên) is a

nonempty, closed subset of Rn. Therefore o maps %n onto Rrt.

Now let M be the set of points in Rn having more than one preimage. Then M
is open because a is a local homeomorphism. But M is also closed. Indeed, if
there are distinct points q} and p; in %n such that o(pj) o{qj)—&gt;ae Rrt, then
because the map is proper there are subsequences such that p^pe%n and

q^qç:%n. If p q then p} q} for / large because the map o is homeomorphic
on a neighborhood of p. So p^q and M is closed. But O^Af by (2.3). Thus
M =£0 and the mapping is one-to-one.

The map o : %n -» Rn is real analytic because \im and vm are real analytic on
Lr[0, 1]. The inverse map is real analytic because dqo is invertible.

It is now easy to show that the map o is one-to-one on «£0 (and hence on £^).

COROLLARY 2.4. The signed gap length map in one-to-one on %KV

Proof. Suppose not. Then some point x e/2 has at least two preimages. Since

a is a local homeomorphism, the same is true for each point in some

neighborhood of t, so it is also true at

for N sufficiently large. But that contradicts Corollary 2.3.
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Write é\ for the space of séquences (an) with £ n2k \an\2&lt;&lt;*&gt;. From the

asymptotics for y2(l, A, q) and y[(l, À, qr) we hâve

vn{q) n2jr2 + [^] + (cos 2nnxy &lt;?}+/?.

Hence for q e Eq, on{q) e/2 if and only if {co$2nnxf q) + /2; i.e. if and only if q
is in the Sobolev space

THEOREM 2.5. The signed gap length map from E^ D H1 to /\ is one-to-one
and onto.

Proof. By Corollary 2.4 o is one-to-one. To prove it is onto fix x e/2 and let
TW (Tl&gt; t2, t*, 0, 0,. By Corollary 2.3 there is #„ e eN such that
&lt;*(&lt;?*) t(/v&gt;, and by (2.3)

1/2 / oc x 1/22 / oc

\rt=l

so that II^a^IU — Const. ||t||/2. Let q e e{) be a weak limit of the séquence {qN}.
Then

°n(q ~ [q]) *n

for ail n, and q - [q] e Hx n £i, since r e /2. D

Remark 2.6. We are unable to prove the full resuit that a maps £0 onto /2 by
this method. What is needed is an estimate of ||g||2 in terms of yn(q) more
powerful than (2.3). Such an estimate should be useful for other problems.

Remark 2.7. It is possible, by refining the proof of Theorem 2.2, to show that
aif^n/f1-»/2 is an analytic isomorphism. We omit the détails.

Remark 2.8. It is known [3, p. 534] that yn(q) e /\ if and only if q e //*, i.e. if
and only if q has k derivatives which are periodic and lie in Lr[0, 1], Thus the

proof of Theorem 2.5 shows that
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is one-to-one and onto. We hâve not verified the likely statement that this map is

bianalytic.

§3. Two applications

The potential q e LR[0, 1] is called a finite band potential if yn(q) - 0 for ail
but finitely many n. Marôenko [2, p. 258] proved that the set of finite band

potentials is norm dense in LR[0, 1]. Hère we dérive that Theorem from resuit
(c), stated in the introduction.

THEOREM 3.1 (Marôenko). The set offinite band potentials is norm dense in
L&amp;O, 1].

For qeE, Theorem 3.1 is immédiate from results (c). To prove it for
arbitrary q we need two additional theorems. Define

In [6] it is proved that Kn{q)e/\, i.e. that Ytn2KÎ(q)&lt;&lt;x&gt;, and that the
correspondence

is a homeomorphism from LR[0, 1] onto /2 x /\. That is the first theorem.
The second theorem is the description of the isospectral manifold

L(q) {p e LR[0, ï\:kn(p) kn(q), ail n]

given in [4]. The parameters

jWn(p)e[A2n_1, k2n]

and

sign Kn(p)

uniquely détermine p e L(q). Although true generally, this theorem will only be
used for finite band potentials, and such potentials satisfy the smoothness

assumptions of [4].
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Proof of Theorem 3.1. Fix qeLl[0,1]. Since kn(q + c) kn(q), we may
suppose ko(q) 0. By resuit (c) there exist, for N 1, 2,..., eN e e0 such that

10

and

M«(^/v) A2n-i(^/v), n 1, 2,

Since fin(q) e [A^-^ç), A2w(^)] there exists tn e [0, 1] such that

and by the second theorem just cited there exists qN e L(eN) such that for ail n,

and

sign *„(#„) sign *„(#).

By the first cited theorem \\qN - q\\2-*0 if

0 (3.1)

and

lkn(9/v)-^(9)||/?-*0. (3.2)

By the second theorem there exists ee?0 such that for ail n,

Then ||yn(eN) yn(e)||^-»0 and an(eN) and an(e) have the same sign, so that

\\on(eN)-on(e)\\s-*0. (3.3)

Hence by resuit (c), ||e,v - e||2—»¦ 0 and by the first theorem

\\ (3.4)



Gaps and bands 29

But then by the choices of qN, eN and e,

Vn(qN) - Vn(q) -tn(on(eN) - an(e))

and (3.3) and (3.4) imply (3.1).
To prove (3.2) we use the identity

where A(X, q) is the discriminant function

A{X,q)=yi{l,X,q)+y&apos;2(\,X,q)

and the inequality

\x -&gt;&gt;|2^

valid when x and y hâve the same sign. They give

n2 K(qN) - Kn(q)\2 &lt; n2 \A(fin(qN), qN) - A(nn(q), q)\

n2\A{(in{qN),eN)-A{(in(q),e)\.

Since ^eN — e||2-^0, 4(A, eN)-^&gt; A{X, e) uniformly on compact sets. Thus by (3.1)

for each n. Moreover,

eN) - A(tin(q), e)\

n(qN), eN) - 2(-l)&quot;| + \Afaiq), e) - 2(-

since ^(Â^-i, eN) A{X2n-i&gt; e) 2(-l)n. Because 4(À) dA/dk is an entire
function of order \, having one zéro kn in each gap [A^-i &lt; À &lt; À2rt] and no other
zéros, the product représentation

shows that

sup
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Hence by (3.5)

n2 \A(nn(qN), eN) - A(nn(q), e)\ « cy2n(q)

and by dominated convergence

22\\2 0. D

Our second application concerns the subspace L2k c L%[0, 1] of ail functions
whose periodic extensions hâve primitive period l/ky k 1, 2, First of ail, if
qeL2k, yw(g) 0 whenever k k n. To see this, recall from [7] that [*n(t)
fin(Ttq), where Ttq(x) q(x -t), then as t runs from 0 to 1, fin(t) makes n
complète trips between A2rt_1(ç) and X2n(q)f when yn(q)^0. By assumption,
pin{t + 1/k) tin(t). Therefore, n is equal to k times the number of complète trips
in time 1/fc, and so k divides n, k \ n.

Now let Eq EqHLI. It follows from the observation above that the
restriction of a to £§ maps into /2(k) {o e /2: on 0 whenever k k n}. Without
any change in the argument of [1] or that of Section 2, one can show that a is a

real analytic isomorphism between Eq and /2{k) or between Eq D H1 and /\{k).
Suppose q e E and o(q) e/\k). Then there is a p e Eq such that o(p) o{q).

However, a is globally one-to-one on Eq so that p q — [q]. In other words,
q eEq has primitive period l/k if and only if yn{q) — 0 whenever k k n.

It is easy to extend this observation to ail of L%[0, 1]. Let q e L%[0, 1] and

L(ç) {r6L^[0, 1] | A/(r) Al(?)/^0}, i.e., the isospectral set of q. It is not
hard to see that L(q) nE=t&lt;t&gt; and that ail points in L(q) hâve the same primitive
period. See [4]. Thus we hâve proved

THEOREM 3.2. The potential q has primitive period 1/k if and only if
Yn(q) 0 whenever k does not divide n.

§4. Band lengths

Let ocn{q) &lt;xn X2n-\ ~ A2w be the length of the w-th band. It is well known
that

(4.1)
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and in [1] and [5] it was shown that

ân (2n-l)ji2-an&gt;0, (4.2)

with equality holding for some n if and only if q is constant.

THEOREM 4.1. For ail n and ail q,

aH-an^ + an^2T&apos;&quot;&gt;Of (4.3)

and

pn ân-ân.^â^2T&quot;^0. (4.4)

Moreover, if fin 0 for some n, then q is constant and f}k 0 for ail k.

Note that by (4.1), (4.3) has content only for small n. By (4,4) fïn^àn, so
that by (4.1)

Pne/2+

and by (4.4) and (4.3),

0^pn&lt;n:t2. (4.5)

We shall show that (4.5) is sharp for every n and that, properly interpreted, the
Jacobian dgPn:E0^&apos;/2 is invertible at q 0. A simple characterization of band

lengths thus seems unlikely.

Proof Recall from [1] that there exists hn hn(q)&gt;0, such that £ n2h2n&lt;»,

and such that

is a conformai mapping from the half plane {Im A &gt; 0} onto the slit quarter plane

Q(h) {x&gt;0,y&gt;0}\(j Tn
n l

where
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Under &lt;5(A, q) the n-th band is mapped onto the segment

Bn [(n - 1)^-, nn+] a dQ{h),

and if

un(z, h) œ(z, Bn, Q(h)) un(z)

is the harmonie measure of Bn in fi(/i), then

an lim 2^jc2wn(jc + ix, h). (4.6)

Let A: &lt;« and let z jc -f ix with x&gt;nn. Then u*(z) is the probability that a

Brownian path starting at z makes its first exit from Q(h) through Bk. Letting 5^
be the set of such paths, we write

Brownian paths can be assumed continuous. Thus every path in Sk must cross the
half line Jk - {x kn, y&gt;0} before it leaves Q{h). Let Rk be those paths in S*

which, before leaving Q(h), last meet Jk U/^ in Jk, and let Lk be those whose
last contact with Jk U/*-!, before departing from Q(h), is in Jk_t. Then Rk and

Lk are Pz measurable, Rk fl Lk &lt;f&gt; and

But

by a reflection. Since Lx 0, we conclude that

which by (4.6) yields (4.3). To prove (4.4), let

Vn(z) un(z,0)-un(z,h).
Then

ôcn lim 2nx2Vn(x 4- â).
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On dQ(h),

(4.7)

and the argument above shows

on U Tk. Hence for x large

k=t

and (4.4) holds. If equality holds in (4.4) then by (4.7), U Tk has zéro harmonie

measure in Q{h). That means ail gap lengths are zéro and q is constant.

To see that (4.5) is sharp, note that q-^hn(q) maps onto /f and that by (4.6),

lim ak 0, l&lt;/c&lt;n.

For qeEf define

and

bn(q)= É
A: l

Then for q e E

and for each potential qeL2 there is q* e E with nn(q+) =s vn(ç+) and An(

THEOREM 4.2. Ar q 0 the Jacobian dq(bn):Ei)-^/2 is an isomorphism
onto /2.
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Proof. Atq 0, feEo,

(dqanff) &lt;2 sin2 nnt - 2 cos2 (n - l)nt9f)
and

(dqbn9f) -2&lt;sin2 nntj) &lt;cos2/wtf,/),

and (cos 2njzt)n&gt;t is a complète orthonormal System in Eq. D

THEOREM 4.3. (a) // and ç arefinite band potentials and if an(q) an(q)
for infinitely many n, then the periodic spectra ofq and q agrée up to a translation.

(b) If q and q are real analytic, and if an{q) ctn(q) for ail large n, then q and

q hâve the same periodic spectrum up to a translation.

Proof Let 0(z, q) be the inverse of the mapping &lt;5(A, q). If q is a finite band

potential then hn(q) 0, n&gt;N and &lt;t&gt;{zyq) reflects to be analytic in the

complément of the finite union of vertical slits {|jc| nn, \y\ &lt; hn(q), 1 &lt; w &lt; N}.
For z large we hâve

By the hypothesis of (a),

0(z + n, q) - 0(z, q) &lt;p(z +Jt,q)~ &lt;t&gt;(z, q) (4.8)

holds for an infinité séquence of integers tending to &lt;». Hence (4.8) holds for ail z,
and 0(z, q) and 0(z, q) hâve the same singularities. Therefore hn(q) hn(q) for
ail n, which means the spectra of q and q differ by at most a translation.

To prove (b), set/(z) &lt;p(z, q) - &lt;t&gt;(z, q). By reflection/(z) is analytic in

where Sn {x nn, \y\ &lt;Max(/ï|rt|(ç), h\n\(q))}, and by the asymptotics for
A(X, q)ff(z) is bounded on Q*. Since q and q are real analytic, we hâve by [7],

Max (hn(q), hn(q) &lt; C Max {yn(q)9 yn(q))
&lt; Ce~an
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for constants a and C. Viewing Sn as two-sided, we see that f(z) has continuous
boundary values on Sn and that for n &gt; 1,

sup |/(z) -f(rut+)\ &lt; yn( ^ Ce&quot;&quot;1.

By hypothesis there is N so that

/((n + l)*r-) -/(**+) an{q) ~ &quot;«(&lt;?) 0

for n^N, and hence

Sïîup |/(z I s Ce -an, n &gt; N. (4.9)

Set h* supn {hn{q), hn(q)}. We shall prove

\f(x + Ch*)\&lt;Ce-&quot;&apos;x, x&gt;x0 (4.10)

First assume (4.10). Then because/(z) is bounded and analytic in {y &gt;h*},

on \z - i{h* + 1)| &lt; i Therefore / 0 and (b) is proved.
We turn to the proof of (4.10). Let An be the dise {\z -nn\ &lt;2Ae~aH} with

A so large that dist (Sn, dAn)&gt;Ae~an for ail n &gt; 1. Then by (4.9) and the three
circles theorem,

p|/()rt (4.11)

Now let Q C\Un=i (in U i_n) and for ô &gt; 0 fixed and x large, set

LEMMA 4.4. There is C(h*&gt; a) such that for x large,
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Note that by the subharmonicity of log|/|, this lemma and (4.11) imply (4.10)
and hence the theorem.

Proof of Lemma 4.9. Fix ôu 0&lt;ôl&lt;ôf to be determined later, and let

Nx ~ lôxxln be the number of n such that \nn -x\&lt;ôxx. Set

S to

Then u(z) is harmonie and bounded above in £?, and

sup u(z)&lt;log ——-— + c oc.
zedâ\Ex (0 — OX)X

But if z e Ex then

l

and by a similar calculation,

We choose ô, so that j8 - ar c&quot; &gt; 1. Then by the maximum principle,

and

We thank L. Carleson and P. Jones for suggesting the proof of Lemma 4.4,
which aetually shows that Ex has logarithmic capacity comparable to its diameter.
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