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Multiplicative stability for the cohomology of finite Chevalley
groups

Eric M. FrRIEDLANDER'"

To Beno Eckmann on the occasion of his 70th birthday

Stability theorems for the cohomology of linear groups are quite familiar,
useful in the study of the algebraic K-theory of a ring R. Such a theorem asserts
that for n sufficiently large with respect to i, GL,(R)— GL,.,(R) induces an
isomorphism H'(GL, . (R), A)— H'(GL,(R), A) for some coefficient module A.
Generalizations of such theorems to other classical families of groups have also
been considered. In these situations, isomorphisms only occur in low degrees and
no assertion is made for arbitrarily high cohomological degree.

In this paper, we investigate the very special case in which the ring R is a finite
field F,« and in which the coefficient module is the ring Z/! for some prime [ # p.
The stabilization process we consider is with respect to d (i.e., change of rings
from F,« to F,«) and the result we obtain concerns stability of the cohomology
algebras H*(GL,(F,«), Z/1). Corollary 5 provides such a multiplicative stability
result not only for GL, but more generally for any (connected) reductive
algebraic group G defined and split over the integers.

In considering multiplicative stability, we also verify a close relationship
between H*(G(F,), Z/I) and H*(G(F,«), Z/l) for d sufficiently large, where F,, is
an algebraic closure of F,. This enables us to extend to the non-compact group
G(F,) D. Quillen’s theorem relating the Z/[-cohomology of the classifying space
of a compact group to that of its elementary abelian /-subgroups ([4;7.2]). An
amusing consequence is a derivation of this Quillen theorem for the case of a
compact connected group from the case of finite groups.

We are most grateful for numerous conversations with Guido Mislin on these
matters, especially in the formulation of multiplicative stability. We thank
Clarence Wilkerson for suggesting the possibility of deriving the above mentioned
Quillen theorem for compact groups from the more elementary case of finite
groups. Finally, we thank E.T.H. (Ziirich) for its warm hospitality.
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To begin, we establish the following conventions. We fix distinct primes p and
I. We consider an arbitrary (connected) reductive algebraic group G, defined and
split over the ring Z of rational integers. For any ring R, we denote by G(R) the
discrete group of R-rational points of G, and we denote by GC the complex Lie
group with underlying discrete group G(C). (The generality of our context is
reflected in the observation that any compact connected Lie group is a compact
form of GC for some such reductive group G). Except in statements of results,
we abbreviate the finite group G(F,«) of F«-rational points of G by G(p?), the
discrete group G(F,) by G(p™), and the cohomology functor H*(, Z/l) by
H*( ). We leave implicit the name of the restriction map H*(I')— H*(r)
associated to an inclusion & < I  of discrete groups.

THEOREM 1. There exists a positive integer e such that for any non-trivial pth
power p*
a) H*(G(F,), Z/l)—> H*(G(F,«), Z/1) is injective.
b) im{H*(G(F,), Z/l)> H*(G(F,3), Z/1)} - im{H*(G (F ), Z/l)—
H*(G(F,¢), Z/1)} is bijective.

Proof. For any positive integer f, we consider the spectral sequence
E3(p’)=H'(BGC, H'(GC))=> H"(G(p))

associated to the fibration sequence fib(D,)— BG(p’)— (Z/l).BGC, where
H*(GC) is the Z/I-cohomology of GC viewed as a topological manifold ([2; 1.2]).
For any k=1, the inclusion G(p/)— G(p’™) extends to a map of fibration
sequences

fib(D,) — BG(p') —> (Z/1).GC

l l 1 (1.1)

fib (D) —> BG(p™) —> (Z/1),BGC

and thus to a map of spectral sequences {E;*(p™)}—{E}*(p’)}. As in
[2;1.3, 1.4], there exists k =1 such that for any f =1 the map E5'(p”*)— E%'(p’)
is the 0-map for all i =0, j >0. We shall verify that e = k”*' satisfies a) and b),
where D = max {t: H'(GC) #0}.

For notational simplicity, set g,, =(p®)*", so that g,=p? and gp,, =p“.
Using [2; 1.4], the edge homomorphism E3'%(g,,)— E*(q,,) can be identified with
the restriction map H*(G(p~))— H*(G(q™)). Since E}{5(p’)=EZ°(p’) for any
f=1 for dimension reasons, a) is equivalent to the assertion that E3°(p“)—
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E}23(p“) is an isomorphism. We proceed to verify by induction with respect to

r =2 thatif m =r — 2 then E3"%(q,,)— E}""(g,.). The case r = 2 is trivial. Consider
the commutative diagram

EF " dma)) = EFGun)) «— E3(Gn)

l 1 l (1.2)

E;k--r'r-l(qm) _i—) E:ﬂ'()(q'") D Ez*'”(q"')

By definition of k and gq,,., = qf, the left vertical map of (1.2) is the O-map
whereas the right vertical map is an isomorphism, because the right vertical map
of (1.1) is a homotopy equivalence. For m =r — 2, the right horizontal maps of
(1.2) are isomorphisms by induction. Consequently, we conclude that the middle
vertical map of (1.2) is an isomorphism, so that d,: E}™"" " '(gn+1) = EF"(¢m+1)
is the O0-map. This implies that E3°(g,nc1)— E}\(@m+:) for any m=r—2 as
required to conclude a).

To prove b), we observe that im{H"(G(p™))— H"(G(p“))} consists of those
cohomology classes in H"(G(p“)) of filtration degree n (i.e., of maximal filtration
degree). Since the definition of k implies that H"(G(p™*'))— H"(G(p™))
increases the filtration degree of any cohomology class of filtration degree less
than n, we conclude that im{H"(G(p“))— H"(G(p?))} also consists of those
cohomology classes of filtration degree n.

By applying Theorem 1 in the case in which d = e, we immediately obtain the
following corollary. We should emphasize that the splitting obtained does not
respect the higher order Bockstein transformation on H*(G(p’), Z/1).

COROLLARY 2. Whenever e* divides f, H*(G(F,), Z/l)— H*(G(F,), Z/!)
is a split inclusion of graded Z/l-algebras, where e is as in Theorem 1.

Following Quillen, we consider the category /(H) whose objects are
elementary abelian /-subgroups of a group H and whose maps are group
homomorphisms given by the restriction of some inner automorphism of H.

LEMMA 3. There exists a positive integer s such that whenever t is a positive

multiple of s the natural function A(F(F,))— A(G(F,)) is an equivalence of
categorsies.

Proof. Since any elementary abelian [-subgroup of G(p™) normalizes a
maximal torus and since the maximal tori of G(p™) are conjugate, any
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Eesd.=A(G(p7)) is isomorphic (i.e., conjugate) to a subgroup of N., the
normalizer in G(p~) of the F,-rational points of a maximal torus T c G defined
and split over F,,. Let ¢’ be a pth power with the properties that/ | g’ — 1 and that
every [-torsion element (i.e., element whose /th power is 1) of W =N,/T(p™)
which lifts to an [-torsion element of N, also lifts to N,., the normalizer of T(q")
in G(q'). Then N, < N. contains all [-torsion elements of N., so that <.
necessarily has only finitely many isomorphism classes of objects. Since
A(G(p’))— A.. is a faithful inclusion for any f =1, and since there are only
finitely many maps between any two objects of ., we conclude that
.szi(G(p‘))——»li_m_) A(G(q)) = oA. is an equivalence of categories where p°’ is a

q
sufficiently large power of ¢q'. Clearly, A(p')— &, is therefore also an
isomorphism for ¢ any positive multiple of s.

In seeking a multiplicative stability theorem, care must be taken, as can be
seen in the following extremely simple example of the multiplicative group G,,. In
this case, H*(G,,(p™)) = H*(Q,/Z,) and H*(G,,(p?)) = H*(Z/I"?"), where f(d) is
the largest power of [ dividing the order of the (cyclic) group of units of F,«. For
any n=0, H”"'Y(G,(p*))=0 whereas H** (G, (p?)=Z/l if f(d)=1.
Moreover, H**'(G,.(p“))— H**(G,,(p?)) is the 0-map whenever f(de)>
f(a).

If p =2 (respectively, p >2), we let H*( ),.q denote the quotient of H*( )
(resp., H?V(' )) by the subfunctor of nilpotent elements.

THEOREM 4. There exists a pth power q such that for any positive integer r,
H*(G(F,), Z/1)—> H*(G(F,), Z/l) induces an isomorphism

H*(G(F,), Z/l) ;ca— H*(G(F ), Z/1) cq.

Proof. Let e and s be chosen as in Theorem 1 and Lemma 3 respectively, and
set q' =p*, q=p*’. We consider the following commutative diagram of
Z/l-algebras determined by Theorem 1

H*(G(p")) — H*(G(q))
1 1 (4.1)
H*(G(q")) «— H*(G(p"))

in which the composite H*(G(p™))— H*(G(q"))— H*(G(p™)) is the identity
map and the composite H*(G(q"))— H*(G(p™))— H*(G(q'")) is the restriction
map. Because #(G(q'"))— #£(G(q")) is an equivalence of categories by Lemma
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3, [4; 7.2] (see also (6.1) below) implies that H*(G(q"))rea— H*(G(q@'"))rea 18
injective. The theorem now follows by inspecting the commutative square
obtained by applying (  ),.q to (4.1).

The reader wishing to replace Z// in the above theorem by Z/p should
consider the example of GL,, for some n=1. Then H'(GL,,(p™), Z/p) =0 for
i >0, whereas the Krull dimension of H*(GL,,(p“), Z/p) equals n’d.

As an immediate corollary of Theorem 4, we conclude the following
“multiplicative stability” for {H*(G(p));d =1}.

COROLLARY 5. There exists a pth power q such that for any positive integer
r the restriction map

H*(G(Fq')’ Z/l)red—-) H*(G(Fq)7 Z/l)red
is an isomorphism.

We recall Quillen’s terminology of a “uniform F-isomorphism” h:R— S
between graded, anti-commutative Z//-algebras: & must be a homomorphism for
which there exists a positive integer N such that

i) if h(r) = 0 for some homogeneous element r € R, then r¥ =0 and

ii) for each homogeneous element s € S, s € h(R).

In [4; 7.2], Quillen proved

H*(BK,Z/l)- lim H*(E, Z/l) is a uniform F-isomorphism, (6.1)
—
Eesd(K)

any compact Lie group K. The following extension of (6.1) to the non-compact
group G(p~) is an immediate consequence of (6.1) applied to the finite groups
G(p?) together with Theorem 1 and Lemma 3.

COROLLARY 6. The canonical map
H*(G(F,), Z/l)— 21_ H*(E, Z/)
Eesd(G(F,))

is a uniform F-isomorphism.

We conclude by demonstrating how Corollary 6 can be used to prove (6.1) for
compact, connected Lie groups. Since relatively elementary algebraic proofs of
(6.1) for finite groups are now available (e.g., [1;2.26]), this demonstration might
prove of interest to algebraists unfamiliar with equivariant cohomology theories.
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COROLLARY 7. Let K be a compact, connected Lie group and | a prime.
Then the canonical map

H*(BK, Z/l)~ lim H*(E, Z/I)
(———-—

Eesd(K)
is a uniform F-isomorphism.

Proof. Let GC be the complex form of K. As is well-known (see, for
example, [3]), H*(BK)— EE H*(E) is isomorphic to H*(GC)—
Eesd(K)
lim H*(E). Let p be any prime different from / and consider (as in
(——

EedA(GC)
[3; 3.1]) the following commutative square

H*(BGC)) — lim H*(E)

E e J(GC))

| | (7.1)

H*(G(p™)) — limH*(E")
E' e 4(G(p™))
By [2; 1.4], the left vertical map of (7.1) is an isomorphism, whereas Corollary 6
asserts that the lower horizontal map is a uniform F-isomorphism. By
[3; 1.4,1.7], “lifting to characteristic 0 determines a faithful, essentially surjec-
tive functor #(G(p~))— #(GC) which induces the right vertical map. As argued
in [3;2.1], this right vertical map must be injective. We now conclude by
inspection of (7.1) that the upper horizontal map must also be a uniform
F-isomorphism.
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