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Maximal hermitian forms over ZG

Jorge F Morales

0. Introduction

Let G be a finite group and let V dénote a représentation of G over the field
of rational numbers It îs a standard fact that V admits a symmetnc nondegener-
ate bihnear form B V x V —» Q invariant under G Let B be such a form on V
and let L be a full ZG-lattice in V We dénote by LB the dual lattice of L with
respect to B, that îs

L*B={xe V %L)cZ)
A full ZG-lattice L îs said to be intégral with respect to B if the form B takes

intégral values on L, or equivalently, if L îs contamed in LB We define the
minimal discriminant of (V, B) to be the positive integer

dB(V) min[LB L]

where L runs over ail full ZG-lattices of V intégral with respect to B
We define the absolute minimal discriminant of V to be the integer

mmdB(V)
B

where B runs over ail symmetnc nondegenerate G-invariant bihnear forms on V
Clearly d{V) dépends only on the représentation V and îs a measure of the extent
to which V fails to admit a self-dual ZG-lattice If V îs a permutation
représentation, obviously d{V) 1 If V îs an absolutely simple représentation of
G, it follows from a theorem of W Feit (see [F] Thm 3 2) that the prime divisors

ofrf(V)divide|G|
In Section 1 we show that for a given form B, the set of lattices of V realizmg

the minimal discriminant dB(V) has a natural structure of a connected graph In
the case where V îs absolutely simple, this graph îs finite

209



210 JORGE F MORALES

In Section 2 we eonsider the case where G is a p-group and V is a simple
représentation of G over Q. We show that in this case the absolute minimal
discriminant d(V) is equal to p. We give a lower bound for the number of distinct
(i.e. non equivariantly isometric) lattices realizing the minimal discriminant in
terms of class numbers of cyclotomic fields. Under slightly more restrictive
hypothesis, we show that the lattices with minimal discriminant are (non
canonically) in 1-1 correspondance with an idéal class group. We show that ail
the maximal lattices in V belong to the same genus if and only if the

cohomological condition Hl(G, L) ¥p is verified by some maximal lattice L.
Finally, to illustrate this resuit, we define G to be the semidirect product of Cp by
Cp x Cp and V to be the unique simple nonabelian représentation of this group
over Q. In this example V contains only one genus of maximal lattices for p 3

and at least (p +1) gênera for p ^ 5.

1. The graph of lattices with minimal discriminant

In this section G will dénote a finite group, V a représentation of G over Q
and B : F x V—» Q a symmetric nondegenerate G-form on V.

DEFINITION. A full ZG-lattice L in Vy intégral with respect to B, is

maximal if it is not properly contained in any full ZG-lattice intégral with respect
to B.

(1.1) LEMMA. The following properties are équivalent

a) [L*B:L]
b) L is maximal
c) The associated torsion form (L%/L, B) is anisotropic (i.e. does not admit

any non zéro totally isotropic subgroup preserved by G).

Proof. Clearly a)i&gt;b)=&gt;c). To see that c)^&gt;a) we recall that the weak Witt
class of (L%IL, B) as a torsion G-form is independent of the choice of L and has

a unique anisotropic représentative (see for instance [Sch] Chapter 5 and Chapter
7 Section 5). Let M be an intégral ZG-lattice with [M%\M] dB(V). The torsion
form (M%IMy B) is also anisotropic and lies in the same weak Witt class as

(L%/L, B). By uniqueness of the anisotropic représentative, they are actually
isometric. In particular,.the underlying finite ZG-modules both hâve the same

order. D
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(1.2) LEMMA. Let L be a maximal intégral ZG-lattice. Then L%IL is a

semi-simple ZG-module.

Proof. Let X c L%/L be the intersection of ail maximal sub ZG-modules of
L%IL (i.e. the radical of L%IL). Let XL be the orthogonal complément of X.
Since L*BIL is anisotropic, we hâve X(1X± {0} and therefore X + X± L%IL.
By Nakayama&apos;s lemma we hâve X1 L%IL and therefore X {0}.

(1.3) PROPOSITION. Let Lx and L2 be maximal intégral ZG-lattices in
(V, B). Then we hâve

t(Lx/Lx n l2) e{L2iLx n l2)

where t(X) is the length of X as a ZG -module, that is the length of a composition
séries for X (see [C-R] §3).

Proof. Let L, n L2 SQ g Sx g • • • g 5W L! be a composition séries. Dualiz-
ing this séries using the form B we obtain

and intersecting with L2 we obtain

L2 s£ n l2 3 5 n l2 3 • • 3 5^ n l2 Lf n l2

By the maximality of Lx we hâve Lf n L2 L) n L2. On the other hand, the
quotient (S? 0 L2)/(5*+1 H L2) is naturally embedded in the simple module
S?/S?+x. Thus (S? H L2)/(5*+1 H L2) is either 0 or a simple module. Hence,

n ^(ZVLi H L2) &gt; ^(L2/L! n L2).

By symmetry we conclude

lx n l2) ^(L2/L! n l2) d

DEFINITION. Let L! and L2 be maximal ZG-lattices in (V, B). We define
the distance between Lx and L2 by
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Observe that ô is a symmetric function by Proposition 1.3. The lattices Lx and L2

are said to be adjacent (or neighbors) if ô(Lîf L2) 1. The notion of neighbors
(benachbarte Formen) was introduced by M. Kneser (see [K]) for quadratic
forms without a group action, and has proved to be a powerful tool for explicit
constructions.

The set FB(V) of ail intégral maximal ZG-lattices in V has a natural graph
structure. The vertices are the éléments of FB(V) and two vertices are joined by
an edge if they represent adjacent lattices in the sensé previously defined.

(1.4) THEOREM. The graph TB(V) is connectée.

Proof. Let Lx and L2 be two distinct maximal lattices. By induction, it is

enough to show there exists a maximal lattice L such that

ô(Lf Lx) 1 and &lt;5(L, L2) &lt;ô(Lu L2)

The lattices Lx and L2 being distinct, the intersection Lx D L2 is contained in a

proper sublattice M of Lïf where LJM is a simple ZG-module.
We define

L : M* H L2 + M

where M* M%. Clearly L is intégral. Let us now compute the index

[L:M*nL2]. Wehave

[L:M* H L2] [M : M H M* H L2] [M :M H L2]

On the other hand

(the last equality uses L2flM L2 DM which is a conséquence of the maximality
ofL2).

Thus we hâve [L:M* DL2] [L2:M* D L2). Consequently [L*:L]
[L*:L2] dB(V). According to Lemma 1.1 the lattice L is maximal.

Now

m lx~ m* n l2 n ^ + m l2hlx + m m

thus

Lx)
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It is left to show that ô(L, L2) &lt; ô(Lu L2) We hâve

L n l2 (M* n l2 + M) n l2 M* n l2

Hence

Ô(L, L2) €(L2/L H L2) €(L2/M* n L2) f((M + L2*)/L2)

e(MIL2DM)

where (1) uses the fact that a finite module and îts character module hâve the
same length and (2) uses the maximahty of L2

On the other hand we hâve

Lxn L2czM H L2a M g L,

Hence,

&lt;5(Lj, L2) e(LxlLx H L2) &gt; ^(M/M f) L2) &lt;5(L, L2) D

(1 5) THEOREM // V w an absolutely simple représentation of G, r/ze« the

graph FB(V) is finite and connectée,

Proof Recall that absolutely simple means Endo(V) Q The lattices in
FB{V) ail hâve the same discriminant It follows from this fact and Theorem 1 1 m

[M] that fR{V) has finitely many orbits under the action of the automorphism
group of the G-form (V&gt; B) It remains to show that each orbit is finite In fact
each orbit consists of precisely one lattice since EndG(V) Q, the only
G-endomorphisms of V which additionally préserve the form B are 1 and -1, and

clearly they préserve any lattice

2. The case where G is a /?-group

In this section G will be a p-group, where p is an odd prime number, and V
will be a faithful simple QG-module The endomorphism field EndG(V) will be

denoted by E

(2 1) LEMMA The endomorphism field E is equal to a cyclotomic field Q(Ç),
where Ç is a primitive pm-th root of 1
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Proof. From représentation theory (see for instance [H] 14.7b) we know that
the center Z(E) of E is equal to the field QQf), where % *s an absolutely
irreducible factor of the character of V. Indeed Q(x) is contained in the

cyclotomic field Q(ÇP*), where pa is the exponent of G. Since E Z(E) by
Schilling&apos;s Theorem (see [R] Theorem 41.9), E is contained in Q(ÇP«).

On the other hand, since G is a /?-group, its center Z(G) is nontrivial and
since V is faithful, it maps non trivially into the multiplicative group of £,
generating a cyclotomic subfield Q(£p*) of E, where pb is the exponent of Z(G).
The relative Galois group Gai (Q(£P.)/Q(ÇP*)) is cyclic of order pa~b. Thus ail the

intermediate subfields between Q(£p«) and Q(£p*&gt;) are cyclotomic. So is, in

particular, the field E. D

The QG-module V can be regarded as a vector space over its endomorphism
ring E. Furthermore, V can be regarded as an absolutely simple EG-module.

(2.2) LEMMA. Let LczV be a full ZG-lattice and let OE be the maximal order

of E. Then for every prime q =£/? we hâve

Proof For q^p, the ring ZqG is a maximal order (see [R] Theorem 41.1).
Hence EndG (Lq) is a maximal order as well (see [R] Chap. 21, Exercise 1).

Therefore, using the canonical identification EndG (Lq) EndG (L)qf we get the

equality (OE)q EndG (L)q. D

Let B:V xV—&gt;Qbea G-invariant symmetric form. It is easy to see that the

adjoint involution on E EndG(V) is actually complex conjugatation. Let
h:V xV—&gt;E be the unique hermitian form on Vsuch that the following triangle
commutes

v

E)

Clearly h is also G-invariant. Now let L be a full ZG-lattice in V on which B
takes intégral values. Suppose in addition that EndG (L) is equal to the maximal
order OE. Then the hermitian form h restricted to L takes values in the
co-different Dê}q of E/Q. It is well known that DE/Q is an odd power of the prime
idéal p lying above p. The prime idéal p is generated by û-=Ç-^~1 and
therefore DE/Q (arv), .where v is an odd power. Let / dénote the scaled form
avh, which is indeed skew-hermitian and takes intégral values on L.
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(2.3) LEMMA. Let L beafull OEG-lattice in V. Then we hâve

a) l; u
b) L is intégral maximal with respect to B if and only if it is intégral maximal

with respect to f
Proof. The proof of Lemma 2.3 is straightforward from the définition of

/¦ n

(2.4) PROPOSITION. Let LaV be a ZG-lattice maximal with respect to B.

Thenordp[L*B:L] l.

Proof. Since, by Lemma 1.1, ail maximal lattices L hâve the same index

[L%:L]y it will be enough, using Lemma 2.3, to prove Proposition 2.4 for a

OEG-lattice L in V maximal with respect to /.
Since V is absolutely simple as an EG-module, its dimension over E divides

\G\ (see for instance [H] Theorem 12.6). It is in particular an odd number (we
assumedp odd), consequently

det (/) det (/*) det (-/) -det (/).

It is easy to see that an élément x e E with the property x —x has necessarily
odd order at the prime idéal p of E which lies above p. This applies in particular
to det (/).

Hence

ordp [L* : L] ordp (NE/Q (det (/)) ordp (det (/)) - 1(2)

(where L* is the simplified notation for L% or L*).
On the other hand, L being maximal, the torsion G-form (L*/Lp, B) is

anisotropic and the underlying ZG-module is semi-simple (see Lemma 1.2). Since

G is a p-group, it acts trivially on semi-simple Zp G -modules (see [C-R] Theorem
5.24). Therefore (L*/Lp, B) is nothing but an anisotropic quadratic space over
Fp. Therefore ordp [L* :LP] dimFp (L*/Lp) &lt; 2. But we already know that
ordp [L*p : Lp] is odd. Thus ordp [L*p :LP] 1.

(2.5) COROLLARY. The discriminant of afull ZG-lattice in Vy intégral with

respect to B, is divisible by p.

Our next goal is to prove the existence of G-forms on V which admit a full



216 JORGE F MORALES

ZG-lattice with discriminant exactly equal to p. This will prove that the number
d(V) defined in Section 1 is equal to /?.

The main ingrédient in the existence theorem is the following resuit of Galois
cohomology that was kindly communicated to me by P. Conner.

(2.6) PROPOSITION. Let S be the set containing ail the infinité primes of E
and the unique finite ramified prime p. Let a be an S-ideal preserved by the

involution on E. Then there exists X e F: {jc e E :x x) totally positive and an
S-ideal b such that a XNEIF(b).

Proof. It is enough to prove the proposition for an inert prime idéal a, the

decomposed case being trivial.
Let n NE/F(II), where FI is a generator of p. The prime élément ji, being a

norm, is totally positive. There is an élément À e F&apos; such that the Hilbert symbol
(À, 7t)Q — 1 for q a or q (jz) and (À, ;r)q 1 otherwise (see for instance [O]
Theorem 71.19). We claim that À has the required properties. By définition À is a

norm locally at ail primes except a and {n). It is in particular totally positive. The
prime a being inert, we hâve the isomorphism (see [S] Chap. V, Prop. 3)

orda : #°(Gal (EJFa), E&apos;a)-* Z/2Z.

By construction, À is not a norm in Ea, therefore ordn (À) 1(2). Hence Â~!a
is locally a norm at ail S-primes, i.e. X~la NE/F(b) for some S-ideal b.

(2.7) THEOREM. Let R dénote the ring Z[p~1]. There exists a symmetric
G-form B:FxF-»Q which admits a unimodular RG-lattice M. Furthermore, B
can be chosen to be positive definite and is the only (up to equivariant isometry)
positive definite G-form on V admitting a unimodular RG-lattice.

Proof. Let S be the set of ail ramified primes of E. The ring Os of 5-integers
of E is precisely the intégral closure of R in E. The i?G-lattices in V can be, by
lemma 2.2, regarded as OsG-lattices.

We observe first that any two /ÎG-lattices M and N are ideal-equivalent, that
is, there exists an S-ideal a of £ such that aM N. Notice that if such an idéal
exists, it is uniquely determined by a Hom^c (M, N). Let us define a

(M, N) and show aM N.
Since the order RG is maximal (see [C] Theorem 41.1), M is projective as an

dulCy that is the functor Hom^o (M, - is exact. By applying it to the
exact séquence
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we obtain

0-* a-&gt; a-&gt; Hom^ (M, N/aM)-+ 0

where the map a-* a is the identity. Therefore HomRG (M, N/aM) 0. The
projectivity of M implies immediately N/aM 0.

Let C:V x V—» Q be a positive definite G-form on V and N any /?G-lattice in
V. Let a be the S-ideal HomRG (N, Ni). The idéal a is by construction preserved
by the involution in E. By Proposition 2.6 there exists A € F* totally positive and

an 5-ideal b such that a Abb.

Let M b/V and S(jc, y) C(Àx, j). We hâve

M% A~lM£ A-^b)-1^? A-^lî)&quot;&quot;^ bN M

Thus M is unimodular with respect to B. Since A has been chosen totally positive
and C positive definite, the form B(x, y) C(Ax, y) is positive definite as well.

Let us now prove the uniqueness of B. Let B&apos; be another positive definite
G-form on V which also admits a unimodular /?G-lattice. Since V is a simple
représentation there exists fi e F&apos; such that B&apos;(x, y) B(jàx, y). Clearly fx is

totally positive and therefore it is a norm at ail infinité primes. Let h : V x V —&gt; E
be the hermitian form canonically associated to B. The scaled form \ih is indeed
the hermitian form corresponding to Bf. Since h and \xh both admit unimodular
OsG-lattices, det(/i) and det (fih) fi{v n det (h) are both 5-units modulo the

norms. Since [K:£] is odd, this implies that ^ is a S-unit modulo the norms. We
can therefore assume that jU is a 5-unit.

We want now to show that (à is a norm everywhere locally. If q is an inert
prime of F, the units of Fq are ail norms from El} (see [S] Proposition 3 and

Corollary), thus \i is a norm at q. If q is a decomposed prime, everything is a

norm from Eq. Thus /i is a norm at ail unramified primes and at the infinité
primes. By Hilbert&apos;s Reciprocity Theorem, jà is also a norm at the unique
ramified finite prime. We conclude by Hasse&apos;s Norm Theorem that jx is a global
norm, that is, there exists a e E&apos; such that \x aâ. Indeed B&apos;(x, y) B{pix, y)
B{ax, ay). D

DEFINITION. Let C : V x V-» Q be a G-form and B:V xV-&gt;Q a positive
definite G-form. We know that C(jc, y) B{kxy y) for some A e F*. We define the

G-signature sG(C) of C as the signature of A (that is, the collection of signs for the

various embeddings of F in M). Clearly this définition is independent of the choice

ofB.
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(2 8) THEOREM For a given signature s (sv) there exists a unique (up to

equivanant isometry) G-form C with sG{C) s which admits an intégral ZG-lattice
of discriminant equal to p

Proof Note that the élément À e F of Proposition 2 6 can be chosen with any
prescnbed signature It follows from this observation and from the proof of
Theorem 2 7 that there exists a unique (up to equivanant isometry) G-form C on
V with sG(C) s which m addition admits a unimodular /?G~lattice M To
construct a ZG-lattice L of discriminant p from Af, we take a maximal

ZpG-lattice N a Vp and define L NC\M The lattice L constructed in this way
will hâve discriminant p in virtue of Proposition 2 4

Our next goal îs to descnbe (up to equivanant isometry) the ZG-lattices in V

intégral with discriminant p for a given form BonV
Let /*(£*) dénote the group of ideals o of E satisfying cm OE Notice that

such an idéal does not contam any ramification Let Pl(E) dénote the group of
principal ideals (a) with aâ l

(2 9) THEOREM Let B V x V-»Q be a G-form on V which admits a

ZG-lattice LcF with discriminant p Then

a) The group Il(E)/Pl(E) acts freely on the set of isomorphism classes of
lattices in the genus of L

b) // in addition EndZG (L) OE then the action of l\E)IP\E) on the set of
isomorphism classes of lattices in the genus of L is transitive

Proof a) Let LcFbea maximal intégral ZG-lattice in V As in the proof of
Theorem 2 7, we dénote by Os the ring of S-mtegers of £, where 5 is the finite
set of ramified primes We dénote by Ls the tensor product L ® Z[p~l], which is,

by Lemma 2 2, an 05G-lattice For a e Il(E) we define aL as the unique
ZG-lattice in V such that (&lt;xL)s aLs and (aL)p Lp To show that aL has

discriminant py it is enough to check that aLs is unimodular

(aLs)*B (â)-\LsyB (â)-lLs aLs

Since a does not contam any ramification, a is generated at a given prime $ by
an élément a e EQ satisfying aâ 1 Therefore L and aL belong to the same

genus
It L^aLf there exists aeE&apos; such that aâ l and ocL^aL Thus aOs-
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aOs. On the other hand, neither oc nor a contain any ramification, therefore
a aOE. Hence Il(E)/Pl(E) acts freely on the classes.

b) Assume now that EndZG (L) OE and let V be another lattice in the

genus of L.
Observe first that Lp L&apos;p: let ae Ep Ep such that aâ 1 and aLp - L&apos;p. The

isometry a is necessarily a p-unit, and, since Lp is preserved by OEp, we must
hâve aLp Lp.

On the other hand, from the proof of Theorem 2.7, we know that there exist
an S-ideal a such that aLs L&apos;s. But we also hâve Lp L&apos;p, therefore aL L&apos;.

Thus Il(E) acts transitively on the genus of L.

(2.10) COROLLARY. a) The number of classes in the genus of L is divisible
by the relative class number h(E)/h(F) of ElF.

b) If in addition EndZG (L) OE, then the number of classes in the genus of L
is equal to the relative class number h(E)/h(F).

Proof I owe the following observation to P. Conner: let C(E) and C(F)
dénote the idéal class group of E and F respectively. Let NE/F:C(E)-&gt; C(F) be

the norm map. We hâve an exact séquence

C(E)) -*-&gt; I\E)IP\E) -*+ KerJVE/F

-U H\Gd\{EIF)y C(E))-+0

where cp is induced by the restriction of the canonical projection I{E)-+ C(E)\
the homomorphism i is defined by i[a] [a] and the homomorphism ; is defined
by y[b] [bb~l], the brackets being interpreted as classes in the appropriate
group. The vérification of exactness is routine. On the other hand, the Herbrand
quotient of a finite module is equal to 1 (see [S], Chap. VIII Proposition 8), this
applies in particular to C(E). Hence, by exactness, Il(E)/P1(E) and Ker NE/F

hâve the same order. It is well known that NE/F:C(£)-»C(F) is surjective (see
for instance [W] Theorem 10.1); therefore [/*(£) : Pl(E)) h(E)/h(F). Corollary
2.10 follows immediately from Theorem 2.9 and this observation.

Remark. The order of Il(E)/Pl(E) was calculated with the help of the mass
formula in [M] Corollary 3.10. E. Bayer carried out similar calculations for more
gênerai fields in [Bl].

We want next to estimate the number of gênera of maximal intégral
ZG-lattices contained in V. In order to prove our main resuit in this direction
(Theorem 2.12), we need the following technical lemma:
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(2.11) LEMMA. Let x be a generator of Cp and T a ¥pCp-module of
dimension 3 over ¥p such that Cp préserves a nondegenerate quadratic form on T.

Then either T is Cp-trivial or T is isomorphic to ¥p[t]/(t — l)3, where the generator
x of Cp acts by multiplication by t.

Proof. By the classification of the ¥PCP-modules, we may assume that TG has

dimension at least 2 over ¥p (otherwise T would be indécomposable and therefore
isomorphic to ¥p[t]/(t — l)3). Since in this case TG cannot be totally isotropic, we
choose an anisotropic vector x e TG. Thus we hâve an orthogonal décomposition

On the other hand, p does not divide the order of the orthogonal group of a

quadratic form of rank2 over ¥p (see [C] 1.4). Therefore, the second factor
(¥px)± is also Cp-trivial.

(2.12) THEOREM. The following conditions are équivalent:

a) Ail the maximal ZG-lattices LaV satisfy H\G, L) ¥p

b) There exists a maximal ZG-latûce LaV such that Hl(G, L) ¥p

c) Ail the maximal ZG-lattices of V belong to the same equivariant genus

Proof a) =&gt; b) is obvious.
b)^&gt;c). Let L cz V be a maximal ZG-lattice satisfying condition b). Let L&apos; be

another maximal ZG-lattice. We know (proof of Theorem 2.7) that L and L&apos; are

ideal-equivalent over the S-integers Os, that is, there is an 5-ideal a such that
aUs Ls. It is easy to see that a must verify aâ Os and to check that L&apos;q Lq
for ail q ¥=p. It is then enough to prove that Lp is the only maximal ZpG-lattice in

y,-
We hâve H\G, L) (V/L)G from the cohomology exact séquence associated

to 0-+L-* V^&gt;V/L-+0. On the other hand, (V/L)G (/GL*)*/L, where IG is

the augmentation idéal of ZG. Thus L*/IGL* is canonically identified with the
character group of Hl{G, L), which is by hypothesis isomorphic to ¥p. Therefore
IGL* has index p in L*.

By connectivity of the graph of lattices in Vp (Theorem 1.4 is clearly also valid
locally), we may assume ô(L&apos;p, Lp)^\. With this hypothesis we hâve IqL* c L&apos;p*.

Since IGL* is contained in Lp and has index p in L*, we hâve IqL* Lp.
Therefore Lp c Lp*. By maximality of L&apos;p) we conclude Lp c L&apos;p and by
maximality of Lp we get the equality Lp L&apos;p.

c)=&gt;b). Suppose that for ail maximal ZG-lattices L we hâve \Hl(G, L)\ &gt;p2.
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Let L be a maximal O^G-lattice. Then there exists a O^G-lattice M with
IGL* &lt;= M czL and [Àf : L] p. We will show that M*/M is a trivial ZG-module.
We hâve

Therefore the order of (M*/M)G is at least p2. Let Ç be a generator of the image
of Z(G) in E, which is a nontrivial root of 1. We hâve

pM* cz (£ - \)2M* c= /?;Af * c: IGL c= M.

Therefore T: M*/M is a F^G-module of dimension 3. It is well known from the
order of the finite classic groups (see for instance [C] 1.4) that the p-subgroup of
the orthogonal group of a quadratic form of rank 3 over ¥p is cyclic of order p.
Hence the action of G on T factors through a cyclic quotient of order p of G.

According to Lemma 2.11, since d\m¥p(Ta)&gt;2 and T has a quadratic form
preserved by G, T must be G-trivial. A quadratic space of dim3 over ¥p has

(p + 1) isotropic sub-spaces of dimension 1, each one of them corresponding to a

maximal lattice N with M aN a M*. They belong indeed to différent gênera.
c)=^a). The cohomology H*(G, L) dépends only on the local component Lp

of L. It is therefore in particular an invariant of the genus of L. On the other
hand, according to c)=&gt;b), we know that //&apos;(G, L) F/? for some maximal
ZG-lattice L.

(2.13) COROLLARY. // G is cyclic, then V contains only one genus of
maximal ZG-lattices.

Proof. In this case V has dimension 1 over E and a ZG-lattice L in V can be
identified with an idéal of E. Let Ç e E be the image in E of a generator of G.

Clearly £ is a root of 1 and générâtes E over Q. Then we hâve //&apos;(G, L) —

LH&amp; - \)L s ¥p. We apply Theorem 2.12. D

(2.14) LEMMA. Let H be the group Cp x Cp with generators x and y. Let G
be the semi-direct product G Cpx (Cp x Cp) which admits a présentation

G (jc,y,r|x&quot;=^ ^ [jc,y] [x,r] l, [t9y]=x)

Let E be the cyclotomic field Q(ÇP) and U be the représentation of H over Q
defined by U&apos; — E as a Q-vector space and xu t,pu and yu u. Then the induced

représentation V Ind^((/) is simple and is the only nonabelian simple repre-
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sentation of G (by nonabelian représentation we mean a représentation on which
the commutator subgroup [G, G] does not act trivially).

Proof. By définition V has a décomposition

It is easy to check that VU and tJU are nonisomorphic simple Q//-modules for
i#y. Thus, by Frobenius Reciprocity, we obtain

EndG (V) Hom^ ((/, V) E

Therefore V is simple. By Wedderburn&apos;s Theorem, the algebra QGab x MP(E)
splits off the group algebra QG. It is easy to check from the présentation of G

that Gab s Cp x Cp. Thus both QGab x MP(E) and QG hâve dimension p3 over Q
and therefore are equal. Hence V is the only nonabelian simple représentation of
G. It can also be checked that V is faithful.

(2.15) PROPOSITION. Let G and V as in Lemma 2.14 and letB:VxV-*Q
be a G-invariant form. Then V contains only one genus of maximal ZG-lattices for
p 3 and V contains at least (p + 1) distinct gênera of maximal ZG-lattices for

Proof Let U be the Q//-module defined in Lemma 2.14. Clearly the

décomposition V U © tU © • • • © tp~lU is orthogonal. Let L c U be a maximal
Z/f-lattice and M iDlndg(L) be a maximal ZG-lattice of V. By Theorem 2.12, it
will be enough to prove that H\G, M) ¥p for p 3 and /^(G, M) F, © Fp for
p&gt;5.

Let N — Indg (L) and consider the following cohomology diagram associated

to the chain N czM cz M* c N*

0 *

0 &gt;

(M/N)G »

II

(N*/N)G &gt;

Hl(G, N) &gt;

II

H\G,N) *

0

I
KJ* 1 \A\(* —\fy /M) —

i
Hl(G, M) —

1

H\G,N*) —

0

1

(\J* 1 AA\(&gt;

i
-*H\G,M/N)

i
-+H\G,N*IN)

H\G, N)
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Note that by construction (N*/N)p Indg (L*/L)p s Indg (¥p) ¥PG/H ¥CCP.

Thus (M/N)^ (N*/N)^ Fp. On the other hand we hâve /^(G, N) H\H, L)
(see [S] Chap. V Section 5). A straightforward computation shows H\H&gt; L)
(Çp-l)-lL/L ¥p. Similarly Hl(G, N*) H\H, L*) ¥p. Thus we hâve a

simplified diagram

0 0

i i

i i
0 &gt; H{(Gy M) &gt; H\G, MIN) &gt; H2(G, N)

•i »i ii

0 &gt; F,, *H\G, N*/N) *H\G, N).

We will show that /? is surjective for p &gt; 5. It will follow from the diagram that
a is also surjective. We consider the following inflation-restriction séquences (see

[S] Chap. VII Section 6)

0 *H\GIH, MIN)-:=!•* H\G, MIN)-^H\H, M*/N)(&quot;

&apos;1 &apos;I

H &apos;(G, N*/N)-^H\H, N*/N)o/

(&quot;&quot;

To show that /S is surjective, it is enough to show that y is surjective. The

p/Np and N*/Np,subgroup H acts trivially on both Mp/Np and N*/Np, therefore

H\H, MIN)GIH HomG/w {H, M IN)

H\H, N*/N)GIH HomG/w (H, N*/N).

Let r be a generator of Cp G/H. We hâve the following isomorphisms of
FpG///-modules

where the generator r acts by multiplication by t.
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Thus the equality

HomG/// (7f, MIN) HomG/* (77, N*/N)

holds provided (p - l)/2 &gt; 2. Hence j8 and or are surjective for p &gt; 5 and

//l(G,L) FpeFp.
The case p 3 requires a spécial considération. We put 77 Ç-, - 1 and

consider the exact séquence

0 —¦» M -£* M —» M/I7M —^ 0

which induces a natural isomorphism (M/TIM)G —&gt; Hl(G, M). We will com-
pute the group (M/TIM)G.

By construction N* O\p where the coordinates are permuted cyclically by r.
Indeed Mp is the inverse image of (NP/NP)G in Np. Therefore Mp is generated
over OE by the vectors

(1,1,1); (0,77,0); (0,0,77)

The matrix of t in this basis is

1 0 77

0 0-1
.0 1 -1.

It is elementary to check that the réduction modulo 77 of (T — 1) has rank 2

over F3. Therefore

77^, M) s (M/77M)G Ker (T - 1) F3.
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