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Every rational surface is separably split

KeviN R. CooMBEs*

Let F be a field with algebraic closure F. A surface X is called rational over F
if X = X X F is birational to P>. An extension E/F is said to split X if the surface
X is birational with P% by a sequence of monoidal transformations centered at
E-points.

When Bloch wrote the paper [1] which renewed the study of zero cycles on
rational surfaces, he made an unpleasant technical assumption. His techniques
only worked for separably split rational surfaces; i.e., surfaces admitting a
splitting field E/F which is a separable extension of F. Those who followed
needed the same assumption (2, 3, 10}].

This unfortunate circumstance arose because one did not yet know the validity
of

THEOREM 1. Every rational surface is separably split.

This note will rectify matters. Consequently, the results of [1, 2, 3, 10] actually
hold for all rational surfaces. For instance, the exact sequence of [1, Thm. 0.1]
actually exists for every rational surface, and Thms. 0.3 and 0.4 (op. cit.) hold for
all conic bundle surfaces. Similarly, one can generalize [10, Thm. 6.1] by
removing the restriction to prime-to-p torsion.

COROLLARY (10, Thm. 6.1]. Let X be a rational surface over either a local
field or a field of cohomological dimension <1. Then the group Ay(X), of zero
cycles of degree zero modulo rational equivalence, is finite.

Not surprisingly, the principal tool used is the work of Iskovskih [7] classifying
minimal rational surfaces over any field. However, his argument relies on the
“Adjunction Lemma” [7, p. 20, Lem. 2], whose proof has only appeared in print
in the case when the ground field is perfect [Manin, 8]. In the first section of this
paper, the Adjunction Lemma is proved for separably closed fields. Iskovskih’s
results are then used in the second section to prove Theorem 1.
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I would like to thank the referee for reading this paper so carefully and for
numerous suggestions and improvements, not the least of which was the necessity
of including the first section.

§1. The adjunction lemma

Throughout this section, let X be a smooth projective surface over a separably
closed field F. Recall that X is said to be F-minimal if the only F-morphisms
X — Y which are birational equivalences to a smooth projective F-surface Y are
actually isomorphisms.

THEOREM 2 (The Adjunction Lemma). Let X be an F-minimal surface with
q = P,=0. For any invertible sheaf ¥ on X, there exists an integer n, =0 such that
n =rn implies

HYX, 2 ® w?%) =0.

Proof. Because X is smooth and proper over F, the language of divisors can
be used in place of the language of invertible sheaves. Thus, it is necessary to
show, for any divisor D and for sufficiently large n, that there are no effective
representatives of the divisor class of D + nK.

Since Fulton’s [4] version of the Hirzebruch—Riemann-Roch (HRR) Theorem
holds for a projective variety over any field, one has

X(Ox)=1-q+p;,=1+p,>0.

Because X is smooth over F, Serre duality [5] holds with dualizing sheaf
wy = Q% r= Ox(—K). Therefore,

h*(-K)=h"2K)=P,=0.
So, applying HRR to the anticanonical divisor gives
h°(=K) = h'(=K) = x(Ox(-K)) = 3(=K) - (-2K) + x(Ox) = K* + 1 + p,.

If K*=0, then the last chain of equations implies #°(—K) > 0. So, —K has an
effective representative, which is not zero because P, =0. Thus, there exists a
hyperplane section H with K- H <0. Furthermore, if n is large, then (D +
nK)-H=D - -H+nK-H<O0. Thus, D + nK cannot be linearly equivalent to an
effective divisor.
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So, assume K?<0. For n large, (D +nK)-K<0. If D+nK is linearly
equivalent to an effective divisor for arbitrarily large n, then at some point n, we
have both (D + n,K)- K<0and D + n,K ~ ¥, m,C; with all m;, =0. In particular,
there is a component C=C; such that C-K<0. Then n large implies
C - (D +nK)<0. But if C>*=0 and D + nK has an effective representative, then

C - (D +nK)=0. Since this is impossible, the proof of the theorem has been
reduced to:

LEMMA 3. Let X be a smooth projective surface over a separably closed field
F. Let C be an integral curve on X with C>*<0 and C-K<0. Then C is an
exceptional curve of the first kind defined over F.

Proof. Define w¢ = 0.(C + K). By definition, there are exact sequences

0—>0x(—C)—> O0x— O-—0

By Serre duality on X and the additivity of the Euler characteristic, one has
x(wc) = x(Ox(K + C)) = x(0x) = x(Ox(=C)) — x(Ox) = —x(Oc).
By HRR [4, Ex. 18.3.4] on the projective curve C over F, one has
deg (wc) = x(wc) — x(0c) = =2x(0c).
But by [4, Ex. 2.4.9], one knows deg (w¢) = C - (C + K).
Now consider the natural morphism 7 : X — X. Because F'is separably closed,
the pullback 7*(C) = gD, where g is a power of the characteristic of F and D is

an integral curve on X. Since the formation of relative differentials is stable under

base change [6], one also knows that x*(K)=K is a canonical divisor on X.
Therefore,

C*=¢*D?> and C-K=¢qD-K.

In particular, both D* and D - K are negative. By the Adjunction Formula over
the algebraically closed field F, D is an exceptional curve of the first kind. Hence

C’=—-¢q*> and C-K=—gq.

Let E be the algebraic closure of F in the function field F(C). Then E is a
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purely inseparable extension of F of degree g and D is already defined and
isomphic to P' over E. In fact, F(C)= E(t) is a rational function field in one
variable, and D — C is the normalization. Thus, there is an exact sequence

0— O0r— ¢,(0p)— Torsion— 0.
Therefore,

g*+q=—-C-(C+K)=—deg(wc)=2x(0c)
< 2h%(0,.) < 2h%(0,) = 2[E : F] = 24.

In other words, g><gq or g <1. But this is only possible if ¢ =1 and therefore
E=F.

§2. Proof of Theorem 1

The proof will proceed through a series of reductions. First, Theorem 1 is
clearly equivalent to

THEOREM 4. Let F be a separably closed field. Every rational surface over F
is split by F.

It is in this form that the theorem will be proved. Assume hereafter that F is
separably closed.

PROPOSITION 5. Let f:X—Y be a birational morphism of smooth
projective surfaces over F. Then f factors as a sequence of monoidal transforma-
tions centered at F-points.

Proof. Because f factors over F as a sequence of blowups of points, it must
factor over F as a sequence of blowups of closed points. It suffices to show that
the blowup of a closed point whose residue field is a nontrivial purely inseparable
extension of F can never give rise to a smooth surface.

Let Q be a closed point of Y with residue field E a purely inseparable
extension of degree p” >1. Since smoothness is local, one may replace Y by an
open affine Spec A where Q is defined by a maximal ideal m=(x, y). Let R=A,,
be the (regular) local ring of QO on Y. The Second Exact Sequence of
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[Matsumura, 9]

m/mz"') QR/F® E— QE/F_) 0

U
E®E E

shows that there is at least one linear relation between dx and dy over E = A/m.
Without loss of generality, one may assume there exists e A such that
dx =tdy mod m.

By shrinking the affine Y if necessary, the blowup can be defined locally by
X =Spec B where B = A[T]/(xT - y). The module of differentials of this ring is

At the point defined by n=(x, y, T —t), one has
Tdx+xdT —dy=tdx —dy =0mod n.

Therefore, Qz,-® B/n is three-dimensional and n is not a smooth point on the
blowup X.

Remark. Let E = F(a) be a purely inseparable extension of degree p. Let X
be the blowup of P? at the F-scheme defined by the E-point (a:0:1). Although
the proposition shows that X is not a smooth F-surface, it is a regular projective
F-surface which becomes birationally equivalent to P* over the algebraic closure.
It is not separably split.

By Prop. 5, one may assume that X is an F-minimal rational surface. By
Theorem 2, one may use Iskovskih’s classification of such surfaces [7]. One
property that all such surfaces share is that the rank of the Picard group is small.

LEMMA 6. Let X be a rational surface over a separably closed field F. Then
Pic (X) is a subgroup of finite index in Pic (X).

Proof. Let Cy, ..., C, be a finite set of curves generating Pic (X). Each C; is
defined over some purely inseparable extension of F of finite degree. So, for some
n =0, each p"C; is an F-rational divisor. Therefore

p" Pic (X) < Pic (X) < Pic (X).
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PROPOSITION 7. The only possible minimal rational surfaces over F are
(I) Severi—Brauer surfaces
(II) smooth conic bundle surfaces X — P'.

Proof. Iskovskih [7] has shown that the minimal surfaces are either (i) del
Pezzo surfaces of Picard rank 1 over F or (ii) generically smooth conic bundles of
Picard rank 2, possibly with singular fibres, over a smooth genus zero curve.

By Lem. 6, the rank of the Picard group is unchanged by passage to the
algebraic closure. The only del Pezzo surfaces with Picard rank 1 are the
Severi-Brauer surfaces (del Pezzo surfaces of degree 9). Since smooth projective
curves of genus zero always have points over a separably closed field, they are all
isomorphic to P!. The only conic bundles over P' with Picard rank 2 are the
smooth conic bundles.

Now it is well-known that every Severi-Brauer surface has points over a
separably closed field, and is therefore separably split. See, for instance [11]. So,
it only remains to consider conic bundles.

PROPOSITION 8. All smooth conic bundles X — P' are separably split.

Proof. By [7, Thm. 3], every smooth conic bundle is associated to a rank 2
vector bundle. But vector bundles on P' split as a sum of line bundles, and their
projectivization is unchanged by twisting by line bundles [6]. So, it is enough to
consider the surfaces

X,=P(0®06(n) n=0

over P,

When n =0, X,= P! x P! is clearly separably split. When n >0, the surface
X, contains a unique F-curve B, of self intersection —n. Now X,, can be split over
F by choosing n — 1 points

ty, ..., €P(F),

writing Q; =f~'(t,) N B,, and then blowing up all the Q; and blowing down the
proper transform of B,.
This completes the proof of Theorems 1 and 4.
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