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Représentations of bipartite completed posets

L. A. Nazarova and A. V. Roiter

0. General concepts and results

0.1. A completed poset S consists of a finite set S, a partial order relation
S^ {(s, t)eS2:s^t} on S and an équivalence relation ~ on S~. Thèse data are
subjected to the condition that r =ss êf and (r, t)~(r&apos;, t1) imply the existence of
a unique s&apos; satisfying r* ^s&apos; ^t&apos;, (r, s) ~ (r&apos;, s&apos;) and (s, t) ~ (s&apos;, t&apos;).

In case (s,s)~(s&apos;,sr) we shall write s~s&apos;, thus obtaining an équivalence
relation on 5. In fact, it follows from the axioms that (s, t)~(s&apos;, s&apos;) implies s t
and that (s, t) ~ (s&apos;, t&apos;) implies 5-5&apos; and t ~ t&apos;.

0.2. Completed posets provide a convenient formulation of the matrix
problem which is our real center of interest. We first attach two catégories to the

completed poset S: Let Si,.. sn be a numbering of S and k a field. The objects
of our first category 5* are the vectors v [vx • • • vn] e Nn such that vt v, if
st ~Sj. In order to define the morphisms, consider two objects w, v and a matrix
B e fc|v|x|u|, where \v\ v! + ••• + vn (we do accept matrices having no row or no
column!). We subdivide B into rectangular blocks Ën ekV)XUt (l^ij^n) in the
usual way, and we define Hom (u, v) as the subspace of &amp;|U|X|M| formed by the B
such that Bn 0 if st ^ s} and Ê}1 Bqp if (s,, Sj) ~ (sp, sq). The composition of 5^ is

given by matrix multiplication (the condition imposed on completed posets makes

sure that B&apos;B e Hom (w, w) if B e Hom (m, v) and B&apos; e Hom (v, w)).
We call dimension-vector a pair d (d0, d) [dodx... dn] e N x N&quot;, where

d [dt&apos; - - dn]e Sk. Further, we call représentation of S of dimension d a pair
(d, M) formed by a dimension-vector d and a matrix M ekd°x]dK For i&apos;âl, we
call df the dimension of (d, M) at the point sr A morphism of représentations
(d, M)-»(e, N) is given by a pair (A, B) of matrices Aekdoxe&lt;&gt; and Be
Hom (d, e) such that AN M5r. Composition is defined by (A&apos;, B&apos;)°(A, B)
(AA\ B&apos;B). Let rep 5 dénote the category thus defined.

The représentations of completed posets play a central rôle in gênerai
représentation theory. For information on how they fit into this broader context,
we refer to [5,9].

Our problem is to détermine the isomorphism classes of rep S. If we set

498
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GLm {A € kmxm : det A * 0} and Aut d Hom (d, d) H GL^, thèse classes

correspond bijectively to the orbits of the groups GLdQ x Aut d in the spaces kd°xlâl

under the actions (A, B;N)*-*ANB~T. We are especially interested in the case

where there are only finitely many orbits for each d.

0.3. Of course, the investigation of thèse orbits is greatly facilitated by the
observation that the category repS is additive. In fact, we fix and shall need a

canonical construction for the direct sum of two représentations. Our &quot;canon&quot; is

illustrated with an example in Fig. 1, where (e, P)©(/, Q) (e +/, M). The

symbol 5 -&gt; t means that t is subséquent to s in 5. The produced morphisms are

our canonical projections. The canonical immersions are defined by the trans-

posed matrices. The (canonical) direct sum ©(=1 U, of a séquence Uu U, of
représentations is defined recursively by ©^i Ut (©!=! Vt) © Uh

x *3
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Figure 1

We call a représentation indécomposable if it is not zéro and not isomorphic to
the direct sum of two non-zero représentations. It is clear that each

représentation of S is isomorphic to a direct sum of indécomposables. The unicity of
such a décomposition up to isomorphism follows from the fact that idempotent
endomorphisms of repS split (1.1). This reduces our classification problem to the

description of the indécomposables. We are particularly interested in the case
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where 5 is representation-finite, i.e. admits only finitely many isomorphism classes

of indécomposables.

(1,1,1,1) (2,2,2) (1,3,3)

(1,2,5) (2*-2,4)

Figure 2

The representation-finite S are determined in [1][2] when S is a trivially
completed poset (i.e. ~ is thc identity), in [6] when (s, t) - (s\ t&apos;) and

(s, t) J= (s&apos;, t&apos;) imply s t and s&apos; /&apos;. The resuit in the first case is that a (trivially
completed) poset is representation-finite iff it does not contain a full subposet

subset equipped with the induced order) of one of the 5 forms given in Fig. 2

(where the symbol s—»f now means that t is subséquent to s in the subposet!).
Because of the striking simplicity of this resuit, our gênerai method is to

reduce the characterization of representation-finite completed posets to the

trivially completed case. In the présent article, we présent such a réduction in a

particular case which happens to be crucial for the gênerai solution, as will be

shown in a forthcoming paper.

0.4. In the case of a representation-finite 5, it is easy to prove that each

équivalence class of 5 is linearly ordered and has cardinality ê3. From the first

part of this statement and the axioms of completed posets it then follows that
(s, t) ~ (s&apos;, t) implies s 5&apos;, and dually that (s, t) ~ (s, t&apos;) implies t t&apos;. In fact,
the conditions which we shall impose on S in this article are much stronger.

Let {1,. ..,m}&lt;zN be an interval and ju:{1, m}—&gt; {1,... m} a

non-decreasing function such that p(i) i£ i + 1 for each i &lt;m. By a [i-chain P in a

partially ordered set P we mean a subset F c P consisting of m linearly ordered
éléments sx&lt;&apos; • • &lt;sm such that for each i^m the interval [a,, a^(l)] {p e

P : a, ~tp ia^(,)}. coïncides with {s,, s,+u s^^y}. Whenever we refer to a

bipartite completed poset S P&lt;30, we implicitly assume: first that we are given
a function # and two finite posets P, Q equipped with ju-chains P {s^ &lt; - • • &lt;
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sm}&gt; Q {s[ &lt; • • • &lt;s&apos;m} respectively; second that S is described in terms of the
data as follows.

a) 5 PUQ disjoint union)
b) S^ P~UQ^UPxQ (in particular, p e P and q e Q imply p &lt; q)
c) (s,, Sj) ~ (sî, s&apos;,) if i £i m and / ^ /*(/); any other (s, f) e 5^ is équivalent only

to itself.
The points of P and (5 are called thick, those of P P\£ and (?\&lt;2 &apos;/&quot;&gt;*• For
each thick point s e S, we dénote by 5&apos; the point of 5 such that s&apos; — s ^s&apos;. The

quasidual of 5 P&lt;Q is by définition 5* Q&lt;P.

Figure 3 shows an example of a bipartite completed poset and its quasidual.
There we hâve m 2 and ju(l) ju(2) 2, the thick points are represented by
ringlets and the arrows from the first to the second components of Ë and É* are
omitted.

Of course, the dual 5° of a bipartite completed poset 5 can also be defined.
But we hâve ÉOz* É in the case of Fig. 3.

0.5. Let S P&lt;iQ be a bipartite completed poset. For each 5 6 5, we set

S(s) {t eS:s^t^s}&gt; endow S (s) with the order relation induced by 5,

formally add to 5 (5) a smallest élément 0 and a largest élément 1 and dénote the

poset obtained in this way by S(s) S(s) U {0, 1}. With this notation, we attach
two posets P and Q to the components P and Q: The poset P consists of the thin

points s e P and of the pairs (p, t) where p e P and t e S(p&apos;). We equip the subset

P of P with the order induced by S and set s ^ (p, t) iff s êp, (p, t) ^ s iff p g s.

We further set (pu tx) ^ (p2, ^2) in the following two cases:

a) Pi&lt;p2 and (pi,p2)^(pi,P2)-
b)pj^p2, (p1,p2)~(pj,p2) and one of the conditions pi â^^l, 0^^

p2 or tx S t2 holds.
The description of Q is dual (and quasidual) to that of P. In particular, the

éléments of Q hâve the form t e Q or (q} s) where q e Q and 5 e 5(&lt;?&apos;).

In the case 5 É (Fig. 3), P and are given by Fig. 4.
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(a,0) (a,d) (o,l) (b,q)(b,l) (fl&apos;,0) (a» (« 0) (6&apos;, c) (ft&apos;,1)

/» (6&apos;, 0) (6, d)
&apos; ê

Figure 4

Now we can formulate our first main theorem:

THEOREM 1. The bipartite complétée poset S P&lt;Q is representation-finite
iffso are the posets P and Q.

0.6. Let T be a subset of 5 which is stable under the équivalence relation of S

(i.e. s eS, teT and t ~s imply s e T). The structure carried by 5 then naturally
induces a completed poset structure f on T. If we equip T with the numbering
&quot;induced&quot; by that of S (0.2), we obtain a fully faithful embedding rep T—»rep5.
More precisely, we can extend each dimension vector d of t by zéro and obtain a

dimension vector d° of S (dg d0, d°t d} if st t} and d® 0 if 5, 4 T). The

embedding functor is then simply {d, M) •-&gt; (d°, M). It permits us to identify the
set ind f of isomorphism classes of rep T with a subset of ind S.

For instance, the trivial représentation 0O of S, whose dimension-vector is

[10* ••()], is associated with a représentation of 0! More generally, each

représentation (e, M) of S has the above form (d°, M) if we take T to be the

support {steS:et*0} of (e, M).
If the support of (e, M) equals 5, we say that (e, M) is faithful. And we say

that S is faithful if S admits a faithful indécomposable représentation.

THEOREM 2. LetS P&lt;Qbea faithful bipartite completed poset
a) If the poset S(s) is linearly orderedfor each s e P (resp. s e Q)&gt; then there is

a natural bijection from ind 5\ind P onto ind @\{0o} (resp. from ind 5\ind Q onto

indA{0oJ).
b) If S is representation-finite and if there exist thick points p e P and q eQ

such that neither S(p) nor S(q) is linearly ordered, then S is isomorphic to Ë or É*
(0.3).

1. The easy direction

Our objective in this section is to prépare the gênerai démonstration by

proving the first part of Theorem 2 and the necessity of the condition of theorem
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1. From 1.2 onwards, we fix P,Q and S P&lt;\Q. We choose a numbering of
5 PU(3 which first numbers F (in the order of succession sif sm imposed
by F), then F, Q (in the order of succession s[,. s&apos;m) and finally Q.

1.1. Let us briefly recall why représentations of a completed poset S can be
&quot;uniquely&quot; decomposed into indécomposables.

We first notice that the category Sk (0.2) is k-linear in the sensé that the

morphism spaces carry fc-vector-space structures, that the composition is bilinear
and that finite direct sums exist: In fact, we can set u © v u + v if we define the
canonical immersions and projections in the obvious way. Each point t e S gives
rise to an indécomposable t e Sk whose endomorphism-algebra is local (tl 1 or 0

according as st~t or $,-/-1). The map t*+~t yields a bijection between the

équivalence classes of 5 and the indécomposables of 5*. Each object v e Sk is a

finite direct sum of indécomposables. Finally, for each idempotent F e

Hom {vy v), there exist morphisms R e Hom (u, u) and 5 e Hom (w, v) such that
F-SR and tu RS (since Hom (u, u) is a finite-dimensional algebra, F is

conjugate to a sum of idempotents occurring in the natural décomposition of 11

„
into pairwise annihilating primitive idempotents).

Like Sk, the category rep5 (0.2) is fc-linear. Each décomposition (d, M)^*
(e, F) © (/, Q) gives rise to an idempotent (E, F) e End (d, M), the projection
onto the first summand along the second. To prove the converse, we must supply
each idempotent (£, F) with morphisms

such that (E,F) (VU,SR) and (leo, 1|e|) (UV, RS). For this, we first con-
struct U, V (clear!) and R} S as above; then we set F UMRT.

Since the direct sum décompositions of (d, M) corresponds to the décompositions

of 1(d,Af) into pairwise annihilating idempotents, (d, M) is a direct sum of
indécomposable représentations, which are uniquely determined up to
isomorphism.

1.2. We now assume that 5 P&lt;Q. Using the action of GLdi) x Aut d (0.2),
we can reduce each représentation (d, M) of S to the form of Fig. 5. Indeed, we
can first find a matrix A e GLdo such that

mq\&apos;

where MP e kr*^rl and r rank MP. Then there is a C such that MPC M&apos;, and
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AMB~~7 is given the wanted form by setting B \
T \e Aut d.

là \MQj}d0-r r rankMP

\dP\ \d\ - \dP\ \P\ cardinality of P

Figure 5

This means that each représentation of S is isomorphic to a &quot;reduced&quot;

représentation whose matrix has the form of Fig. 5. If (A, B) : (d, M)-* (e, N) is a

morphism of redueed représentations, we subdivide A, B into blocks adapted to
those of M and N:

A
21 ÏBX 0]
4Ï IB3 B4Ï

The condition AN&quot; MBT then means that AxNP MPBjy A2NQ MPBl,
A^Np 0 and A4NQ MQB4. Since the rows of NP are linearly independent by
assumption, the equality A3N 0 implies A3 0.

In case (A, B) is an isomorphism, the condition imposed upon B, is to lie in
the automorphism group of dP in the category Pk associated with the (trivially
completed) poset P. This means that for MP we can choose représentatives of the

isomorphism classes of repF and then restrict (^4^ Bx) to AutAfP. The problem
then stays with B4, which must be an isomorphism of Qk and share some
&quot;subblocks&quot; with Bx. To examine into this condition, we introduce supplemen-
tary simplifying assumptions.

1.3. Let °U be a séquence

(dlu Un)&gt; • • • (&lt;*i/,, UUl), (&lt;*„, Uv), (dmU UmX), (dmlmf UmlJ

of pairwise nonisomorphic indécomposable représentations of F such that
(dy, UtJ) has dimension 1 at s, e P and 0 at ail other thick points of P(l g i: ê
m, l^j^l,). We dénote by rep^ 5 the full subcategory of rep5 formed by the
redueed (1.2) représentations (d, Af) whose P-component has the form

(*) (dPf mp) (du, (/„)&quot;&quot;e • • • e(dlJ} utlye • • • e(rfw/w, umj^
where dP [r dx • • • d,P|] (Fig. 5) and ju,y e N. We stress the point that this direct
sum has to be constructed according to the prescribed canon (0.3).
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The category rep^ 5 is /c-linear, and its indécomposables are indécomposable
in rep S: If (e, N) is a direct summand of (dy M) e rep^ Sy we can first reduce

(e, N) to the form of Fig. 5 and then further convert the P-component to a direct

sum of the form (*).
Of spécial importance for us will be the case where, up to isomorphism, °U

exhausts the indécomposables of rep P whose support intersects Â In this case,
the indécomposables of rep 5 which are not isomorphic to an indécomposable of

5 lie in rep P (0.6).

1.4. In order to describe rep% 5, we introduce a set Qaa which consists of the
représentations (dljy UtJ) and of the thin points of Q. We equip Q^ with the
following relation R a Q\\ In case ^reQwe set qRr (i.e. (q, r)eR\)ifiq^r in
Q. Similarly, we set qR{dljy UtJ) (resp. (dljy UtJ)Rr) iff q^s[ (resp. s[ â r) in Q. In
case (sn su)-(s&apos;iy s&apos;u) we set (dip UtJ)R{duvy Uuv) iff there exists a morphism
(A, B):(dljy UtJ)^&gt;(duv, Uuv) such that Bul*0 (0.2). Finally, we also set

{dljy UtJ)R(duv, Uuv) if i g u and (sn su) * (s&apos;,, s&apos;u).

The following proposition uses the notations of 1.2 and 1.3. In particular, if
(d, M) e rep% S, (dP, MP) is the direct sum of 1.3. By dQ we dénote the row

dQ [(dQ - r) pntAl2 • • • Unajx+fa • • • dn] e

PROPOSITION a) The relation R is a partial order on Qaa.

b) // (^4, B) : (dy M)—» (e, N) is a morphism o/rep^ 5, the block B4 belongs to
the morphism space Hom (dQ, êQ) of Qouk.

c) The réduction functor 01 : rep^ 5-&gt; rep ()&lt;%, (d, M) &gt;-&gt; (dQ, MQ) which maps
a morphism {A, B) onto (A4&gt; B4) is an epivalence.

The neologism epivalence, chosen hère for a widely used notion of
représentation theory, means that 91 detects isomorphisms (ju is invertible if so is Sfcfi)

and induces surjections on the morphism spaces and on the isomorphism classes

of the objects. It follows that 01 induces a bijection between the isomorphism
classes.

Proof. a) The crucial point is to prove that (dtjy Uv)R(dUV9 Uuv) and

(duv, Uuv)R(dyz&gt; Uyz) imply (dlJf UtJ)R(dyzy Uyz). This is clear by définition if
(st,Sy)^(s&apos;t,Sy). Otherwise, there are morphisms (Ay B):(dljy (/,_,)—&gt;(dUVi Uuv)

and (C, D):(duvy Uuv)-&gt;(dyzy Uyz) such that Bm*0*Dyu. It follows from 0.4
that (DB)yi E. DywBm DyuBul*0.

With thèse notations, we must also prove that i y, j z, implies i u, j u.

The reason is that in case (i,/)#(w, v)y (ACy DB) would be nilpotent though
JÏÏ
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b) We must prove that a block of B4 vanishes if it is associated with a pair
(jc, y) e Q\ such that x^y. Since Bha 0 if sa ^È^, it suffices to examine the case

x (dlf, Utj), y (dUVf Uuv) where (sn su) ~ (s&apos;t, s&apos;u). Then the associated block of
B4 is equal to a certain subblock of the block Bul of B. We can interpret each

coefficient of this subblock as the 1 x 1-block Dm associated with a morphism
(C, D):(dy, Ut/)~*(duvy Uuv). By définition of the order of Q&lt;^y the coefficient is

zéro if x ^ y.
c) By construction, 3Î induces a surjection on the objects. Let now

(dy M), (ey N) be two objects of rep&lt;% 5 and (C, D) a morphism (dQy MQ)-+
(eQ, NQ). We must find an (A, B) such that C A4 and D B4. Of course, we
will set A2 A3 B2 B3 0 (1.2). The problem is to find an

(At, Bi):(dP, Afp)—&gt;(ePy NP) such that Bx shares appropriate blocks with B4.

More precisely, each pair (x, y) e Q\ such that x (dlJf UtJ)^y (duv, Uuv) and

(sn su) ~ (s&apos;n s&apos;u) détermines a subblock of (J3i)WI Bm which is prescribed by the
datum of B4. So it is enough to prove the existence of an (Aïf Bx) for which ail
thèse subblocks are arbitrarily prescribed. As in b) above, this follows from the

interprétation of the coefficients of thèse subblocks as 1 x 1-blocks associated with
morphisms between direct summands of (dP, MP) and (eP) NP) of type {dljy UtJ)

and (duv, Uuv).

It remains to prove that 01 detects isomorphisms: Consider a morphism

pi\X-*Y such that $l\i is invertible, and choose a v:Y-*X such that 9?v

(Sî/i)&quot;1. The kernel K of EndZ-»End3ÎX then contains D^-vju. Since

0 =£ Z € rep&lt;&amp; S implies 91Z ^ 0, K contains no primitive idempotent. We infer that
K and ix ~~ v\i are nilpotent. Hence v\i is invertible and so is juv.

o
1.5. Proof of the necessity in Theorem 1. Each thick point teP gives rise to

two indécomposable représentations of P supported by t: Their dimension-vectors
are [0 tP] and [1 iP] where tP e Nm satisfies tPl 1 if st t and ~tPl 0 if 5, # t; we
dénote them by {f}0 and {t}t.

Similarly, if teP and seP are incomparable, we dénote by {ty s}0 &quot;the&quot;

indécomposable représentation of P with support {s, t} and dimension-vector

Now, if the séquence % of 1.2 runs through ail indécomposables of repP of
the form {f}0, {f}i anc* {*&gt; s)o&gt; the poset Q&lt;m of 1.4 is obviously identified with @.

By Proposition 1.4c), @ ^ Qm is representation-finite if so is 5.

1:6. Proof of Theorem 2, part a). If S(t) is linearly ordered for each t e Py the

séquence °U chosen in 1.5 exhausts (up to isomorphism) the indécomposables of
rep P whose support intersects F. The statement to be proved therefore follows
from the last sentence of 1.3 and the Proposition 1.4c).
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2. The poset Q associated with 5 P&lt;Q

The progress made in Section 2 reduces the proof of our Theorems 1 and 2 to
the following combinatorial statement. Its démonstration will spread over the rest
of the article, where P and Q are always supposée to be représentation-finite.

THEOREM 3. Suppose that S P&lt;Q is faithful, that P and Q are
representation-finite and that there exist points p e P and q e Q such that neither

S(p) nor S(q) are linearly ordered. Then S is isomorphic to É or to £*(0.4).

2.1. We first recall the classification of the indécomposable représentations of
a representation-finite poset T. According to [3] the support of a non-trivial (0.6)
indécomposable is a full subset of T which is isomorphic to one of the 13 posets of
Fig. 6. The number below the symbol of a listed poset is the number of its
isoclasses of faithful indécomposables.

So each supporting subposet S of T (i.e. each full subposet of the form of Fig.
6) yields the indicated number of non-trivial indécomposables of T. We dénote
thèse indécomposables by 20,Sl • • • For instance, each &quot;monad&quot; {t,} yields 2

indécomposables, the représentation {tt}0 whose dimension vector d satisfies

do 0, dt \d\ 1, and a représentation {t^x with matrix [1]. Each &quot;dyad&quot; {tt, t,}
yields 1 indécomposable {tn tj}0 with matrix [1 ; 1]. Each &quot;triad&quot; {tn tp tk} yields 2

indécomposables, the first {tu tJf tk}0 with matrix [ljl jl], the second {tntJftk}i

with matrixlxLoiiiiJ

(1) (1,1) (1,1,1) (1,1,2) (1,2,2) (1,2,3)
2 12 13 5

(1,2,4) (2&lt;-2,2) (2«-2, 3)
14 1 9

(1,3^-3) (2**3, 3) (2-»24-4)

Figure 6
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2.2. EXAMPLE. In the case 5 £ (0.4), ail the indécomposable
représentations of P whose support intersects P are listed in Fig. 7. For each of them,
the intersection consists of 1 point, and the dimension at this point is 1.

Therefore, we can let the séquence °U of 1.3 run through ail the indécomposables
of Fig. 7, which describes the poset Q^ of 1.4 in this particular case.

{a,c}i} {a, c, p}, {a}x h

-d
Figure 7

The poset of Figure 7 &quot;fully&quot; contains 11 monads, 18 dyads, 8 triads, 12 copies
of :__». and 1 of :=t:, which yield 22,18,16,12 and 3 indécomposables
respectively. Together with 0O and the five nontrivial indécomposables located in

P, É therefore has 77 indécomposables and is representation-finite. Among the
50 &quot;supporting&quot; subposets enumerated above, there is just one which involves ail
the points of É up to équivalence, namely {dy {b}{), {a, c, p}, &lt;q). This means
that E has exactly 1 faithful indécomposable, whose matrix is

&quot;l

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

1

0

0

1

0

0

0

0

1

0

0

0

1

a b c p a&apos; b&apos; d q

Figure 8

2.3. Returning to the gênerai case, we dénote by Ttxe the poset obtained from
a representation-finite poset T by substituting a chain tx ~» t2-^ - - - -* te for a point
t € T as shown in Fig. 9 {e ^ 1). We say that t has multiplicity êe in T if Ttxe is

Figure 9
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oo oc

(1) (1,1) (1,1,1) (1,1,2) (1,2,2)

2 2 2

(1,2,3) (2«-2.2) (1.3«-3)

Figure 10

representation-finite. The multiplicities S2 occurring in the posets of Fig. 6 are
listed in Fig. 10.

We apply the construction above in case T P and t e P. If Q contains a

chain qx —&gt; • • • —&gt; qc of éléments incomparable with t&apos; e Q, then P contains the full
subposet formed by the éléments p e P, (r, 0) for r e P and r ^ t, (t, q,) for
l=ii=ic&gt; and (5, 1) for s eP and f ^s. This subposet is naturally isomorphic to
Ptx(C+2) and *s representation-finite. It follows that t has multiplicity ^c 4- 2 in
each full subposet of P containing t. In particular, a supporting subposet I of P
(2.1) which intersects P must be isomorphic to one of the 8 posets of Fig. 10; and

IH P contains only points of multiplicity ^2 in 21.

2.4. LEMMA. P contains no full subposet of one of the following three forms,
where a and b are supposed to be thick.

(1) a &gt; b (2) a

Proof We first assume that (a, b) ~ (a&apos;, b&apos;). Then, if P contained 1), 2) or 3),
P would contain a full subposet of one of the following forms, hence would not
be representation-finite

(b, y—ub, i) —7-7 •——&gt;•—&gt;•
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In case (a, b)-/-(a&apos;, &amp;&apos;), we introduce the point ceP subséquent to a, which
satisfies a&lt;c&lt;b and (a, c)~(a&apos;, c&apos;). In subcase 1) P then contains the full
subposet a°-»°c in contradiction to the first part of the proof. In subcase 2) or 3),

d &gt;ob

P contains a full subposet of the form &gt;* •/. Since P cannot contain a full
ao-—**e

ÇO ?qÔ
subposet of the form c must be comparable with e. This implies c &lt; e

e- •/
because e&lt;b. By duality, we also obtain that d&lt;c, in contradiction to d&lt;e.

2.5. THEOREM 4. Let I be the support of an indécomposable représentation
(d, U) of P. If I intersects, P,inPhas exactly one point, and the dimension of
{d, U) at this point is 1.

Proof. By 2.3 I is isomorphic to one of the 8 posets of Fig. 10, and IH P
consists of points of multiplicity ^2 in S. In case \Z D P\ ^ 2, it follows from Fig.
10 that X contains a full subposet of one of the three forms excluded by Lemma
2.4. So we must hâve \Z H P\ ^ 1.

It now remains for us to go through the list of the faithful indécomposable
représentations of the posets of Fig. 10 and to check that the dimension at a point
of multiplicity â2 is always 1.

2.6. The proof of Theorem 4 only uses the representation-finiteness of F, not
that of ()• Therefore, if P is representation-finite, we can let the séquence % of
1.3 run through représentatives of ail the indécomposables of repP whose

support intersects P. Proposition 1.4c) then reduces the representation-theory of
5 to the representation-theory of a poset (?&lt;&amp; which in the case considered hère

will be further denoted by Q.

In other words, if P is representation-finite, ail the required information is

contained in the poset Q and not in $, which is identified with a full subposet of
fè. The problem is that the structure of &amp; is much more intricate than that of $.

In Section 3 below, we collect the information about Q used in the further
démonstration, at various places of which we also need statements of the

following lemma.

LEMMA. 5 contains no stable subset T such that the induced completed poset

t (0.6) has one of the following forms (where (a, b) — (a&apos;, b&apos;)).
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a b a b a b

a&apos; b&apos; a&apos; b&apos; a&apos; b&apos; a1 b&apos; a1 b&apos;

n J° 9: ?o ° &gt;o o &gt;o o o o o &gt;o &gt;o

(2) (3) (4) (5) (6)

Proof. Construct the associated posets Q and check that they contain full
subposets of the forms described by Fig. 2.

3. On the structure of the poset Q

Dénote by Qa the subset of Q formed by the indécomposable représentations
of P chosen in 2.6 whose support contains a thick point ae P. Our purpose is to
compare Qa with Qb under the assumption, valid throughout this section, that
a&lt;6and(a, b)~{a&apos;y b&apos;).

3.1. Our first lemma uses the following notation: If V (d, M) is a

représentation of a completed poset f {tïf t2&gt; .}~, we dénote by V(si)e
kdoxdi the matrix consisting of the first dl columns of M, by V(s2) e kdo*d* the
matrix formed by the following d2 columns • • • In particular, if t P and

y e Ôa&gt; we know by 2.5 that V(a) is reduced to 1 column.

LEMMA. A représentation V eQais smaller than the minimal élément {b}0 of
Qb iff y {à) is a linear combination of the columns of the &quot;strips&quot; V(s) where s e P
and s &lt;b.

Proof Set V (d, M). If (A, B) : V-&gt; {b}0 is a morphism of rep P, then B is

a row and A the &quot;empty&quot; matrix. The condition AN&apos; MBT of 0.2 therefore
means that 0 MBT E56p M{s)B{s)t if we define / by s, b and set B(st) BJt

(0.2). In the occurring sum, we hâve M(b) 0 by 2.5 and B(s) 0ifs$b (0.2).
Now, if V&lt;{b}Of we can choose B so that B(a)ek is non-zero. It follows

that M(a)=-j:3+atS&lt;bM{s)B(s)TB{a)-1.
The converse should be clear.
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3.2. LEMMA. // P contains no élément which is incomparable with a and by

then {a}x is the only élément of Qa which is incomparable with {b}0.

Proof The lemma follows from 3.1 and Lemma 3.3 below.

3.3. LEMMA. Let T be afinite posety t eT a point and V an indécomposable
représentation of T which is not isomorphic to {t}x. Then each column of Vit) is a

linear combination of the columns of the strips V(s) where s*£t.

Proof Assume that the conclusion of our lemma is wrong for V (dy M).
Then there is a row xekd() such that xV(t)¥*0 and xV(s) 0 whenever s^t.
Setting y xMy we infer that yT is a non-zero morphism from F (1.1) to d (0.2) in
Sk and (jc, yT): {f}i~* V a non-zero morphism in rep T

The row xV(t) # 0 has dt entries, where i is defined by s, t. We choose a row
w € kdl such that xV{t)wT # 0 and set

z jv0^0 wl--wdp-&apos;0~]ekldl

In this way, we obtain morphisms

y SHàLiL, {t}l

with composition (xMzTy zyT) (yzTy zyT) (xV(t)wTy wV(t)TxT)¥^0. We infer
that {t}i is a direct summand of V in contradiction with the assumptions of the
lemma.

3.4. From now on, we write s X /if sy t e S are incomparable, and we say that
a thick point c is normal if S(c) {s e S :s X c} is a linearly ordered subset of 5.

LEMMA. Assume that b e P is normal and that there is a d eQ such that
a&apos; Xdxè&apos;. Then the éléments of Qb which are incomparable with {a}x are {b}0
and {by c}0, where ûXcXft. The éléments V of Qa which are incomparable wtih

{b}oare {a}Xy {ay c}() where ûXcXft and {ay c, s}x where &lt;

Proof It is clear that the listed indécomposables hâve the required pro-
perties. And the éléments of Qh which are incomparable with {a}t are the listed

ones, because &lt;2ftconsists of {b}i)y {b}l and indécomposables of the form {b, c}{)
where
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It remains for us to examine the indécomposables V e Qa whose support I
does not hâve the form (1) or (1,1) of Fig. 10. The existence of d implies that a
has multiplicity §3 in I (2.3) and excludes the posets (1,2,3) and (1,3&lt;—3) of
Fig. 10. We shall consider the 4 remaining cases separately.

If I {a, c, s} has the form (1,1,1), V equals {a, c, s}x or {a, c, s}0 (d, M)
where rf [1111] and M [111]. The first evantuality is &quot;accepted&quot; by our
lemma. In the second one, c or s is comparable with b (2.4(1)), say s&lt;b. But
then V(a) [1] V(s), and we hâve V &lt; {b}0 by 3.1.

If 2 {xx-*x2,y, z} has the form (1,1,2), V has the dimension-vector

d [21111] and the matrix M \ Then three cases are possible. (1) In

case ae{y, z}, say a~y&gt; we must hâve xx&lt;x2&lt;b or xx&lt;b&gt;z because of
2.4(1) and of the dual of 2.6(2). Accordingly, T(a) is a linear combination of
T(xx), T(x2) in the first subcase, of T(xx), T{z) in the second. (2) In case a -xly
we hâve x2 e P by 2.5 and x2 &lt;f: b by 0.4. By 2.4(1) this implies y &lt; b and z &lt; b.

The associated columns T(y) and T(z) generate T{a). (3) In case a=x2, b is

comparable with y or z, say y &lt; b (2.4(1)). Then T(a) is a linear combination of
T(Xl) and T(y).

If 1= {jtj—»jc2, y y zx—&gt;z2} has the form (1,2,2), two cases are to be

considered (2.3): (1) In case a —x2i we hâve zx &lt;z2&lt;b or zx &lt;b &gt;y (2.4(1) and

2.6(2)). If we let T run through the 3 faithful représentations with support 2&quot; [3], it
remains to check that T(a) is a linear combination of T(x1)&gt; T{zx), T(z2) in the
first subcase, of T{xx), T(zx)&gt; T(y) in the second. (2) In case a=xu we hâve

jc2€P by 2.5 and x2^b by 0.4. Since b is normal, we hâve zl&lt;z2&lt;b&gt;y, and

T(a) is a linear combination of T(y), T(zx), T(z2) by 3.3.

Finally, if E {xx-*x2*-yx-^&gt;y2, zx-*z2}, a equals x2 or yx (Fig. 10). The two
cases are treated like case 1) and 2) of (1,2,2).

3.5. By Qab we dénote the full subposet of Q formed by the représentations
V e Qa U Qb which are incomparable with {b}0 or with {a}x. By Pab we dénote
the union of their supports equipped with the order induced by P.

Cl
• -

ao-

c2 c3

—&gt;ob

Figure 11

rab

LEMMA. Under the assumptions of Lemma 3.4, Pab is equal to {a, b} or
isomorphic to a full subposet of Pab (Fig. 11) containing {a, 6, ct}. The poset Qab
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is identifiée with the full subposet of Qab (Fig. 12) formed by the vertices which
involve only points of Pab.

{a, c,}0 &gt;{a, cu s,}, &gt;{a, cus2}\ &gt;{a, c2}0 *{&lt;*&gt;\ \Qab {b}o »{b, cjo &gt;{b, c2}o &gt;{b, c3}()

Figure 12

Proof. By 2.4(1), the points cePsuch that a^Ccych form a linearly ordered
set Ci-^c2-^- • • •—*ck. If k was ^4, P would contain the full subposet

If there was an 5 € P such that ûX^Xc, for some i â2, we would hâve

cx-*s-*b by (2.4)(1) and the dual of 2.6(2).
Finally, the points seP such that aycs&gt;Ccl form a linearly ordered set

Si-*s2-+ • • •—»£/ (0.3). If / was è3, P would contain the full subposet

Si-^2-^3 (a, 0)-^(a, d)-^(a, 1) d

The rest should be clear.

3.6. LEMMA. Assume that ae P is normal and that there is a d eQ such that
a&apos; xdxfc&apos;. Then Pab is equal to {a, b} or isomorphic to a full subposet of Pab

(Fig. 13) containing {a, 6, c3}. The poset Êab is identified with the full subposet of
Qab (Fig- 14) formed by the vertices which involve only points of Pab.

C3

Figure 13

{a.

{b}o-

c2}o *{t

c,}0—»{l

l, C3}o

», C2}«,\
Figure 14

Qab

j0 *\D, C3, 52/o
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Proof. This is &quot;the dual of the quasi-dual&quot; of lemma 3.5. Since duality theory
is screened by the use of matrices, we sketch the essentials: For each

représentation V (d, M) of P, we choose a matrix K e kmxe° such that MK 0

and rank K e0 |d|-rank M. Setting e [eod] e Nn+l, we then interpret the pair
3)V (e, KT) as a représentation of the opposite poset F0, and we assemble a

contravariant functor S:repP—»rep(P°) by piecing out the map V*-*3)V as

follows: First we notice that each morphism B e Hom (d, d&apos;) of Pk (0.2) produces
a morphism BT e Hom (df, d) of (P0)*. Our second observation is that, for each

morphism (A, B) : (d, M)—? (df, M&apos;) of rep P, there is a unique matrix C e ke°xeb

such that KC BTKr, where @(d\ M&apos;) (e&apos;f Kf). This means that (CT, BT)
2(A, B) is a morphism of rep(P°) from (ef, K&apos;) to {e, K). The contravariant
functor thus defined induces an antiequivalence from rep0 P (the full subcategory
of rep P formed by the (d, M) such that d0 rank M) to rep0 (P°). For instance,
we hâve 2?{a}0 {a}u ®{a, c}0 {a, c}0, ®{a, c, s}i 3){a, c, s}0 • • •

3.7. LEMMA. Asswme f/urt tfiere is a deQ satisfying a&apos;xdxft&apos; and f/iaf a

or 6 « normal. Let further z e P be such that b&lt;z and (b, z) ~ (bf, z&apos;). Then

Qab H Qbz consists of the représentations {b, c}0 where c is incomparable with ay b

and z. If there is only one such c, then {a}x is the only élément of Qa which is

incomparable with {b, c}0.

Proof The first statement directly follows from 3.5 if b is normal. If a is

normal, we must prove that {b, c3, st}0$ Qab H Qbz (3.6). But this follows from
the validity of c3 &lt; z or of s, &lt; z (2.4(1)).

Now, the points incomparable with a and b form a chain cl-^c2-+ - • •--»c/. If
there is only one c as above, we must hâve c cx. Our second statement
therefore follows from Fig. 12 or Fig. 14.

Remark. By duality and quasi-duality, the first statement of the lemma is also

true under the assumption that there is a q satisfying ft&apos;x^Xz&apos; and that b or z
is normal. If, moreover, there is only one c, then {z}0 is the unique élément of
Qz such that {z}ox {b, a}0.

4. Mixed edges

From now onwards, we suppose that 5 admits a faithful indécomposable
représentation (7 (d, M) (0.6). We dénote by Iv the support of the associated

représentation UQ (dQ,MQ) of (3 (1.4,2.6). We investigate Iv under the
following assumption, valid throughout section 4: aeP is thick, b e P is
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subséquent to a, a&apos; e Q is normal and br eQ is not. By à and b we dénote a

maximal and a minimal élément of Qa D Zv and Qb H 2^ respectively.
The lemmas 4.1-4.5 are preliminary and follow directly from 2.1, Fig. 6. As in

2.1, we dénote by 2* the support of an indécomposable représentation of a

representation-finite poset T.

4.1. LEMMA. Suppose that S has ai least three points. Then, for any two
points c and d {comparable or not), there is an x such that cXjcXd. In case

c&lt;d, {c, d} is contained in a full subposet of I having one of the following three

forms.

(1) • (2) •—*•&lt;*

o &gt;*d €• &gt;• • &gt;• &gt;•

4.2. LEMMA. 2 contains no full subposet which is isomorphic or dual to one

of the following posets.

(1) &lt;^ (2) /&gt;S&apos; (3) / (4) •— &gt;•

4.3. LEMMA. // d el and e e2 are subséquent to c e £ and satisfy dy£e,
then E contains a full subposet of one of the following two forms. Moreover, we
hâve gycf whenever g el is incomparable with c, d and e.

4.4. LEMMA. A proper full subposet Z of the form (1) below is contained in
a full subposet of S isomorphic to (2).

(1) • (2)

4.5. In case v eT, we call duplicate of v in T an élément w e T which is

comparable with v and such that, for any te T\{vy w}, the inequality v&lt;t is

équivalent to w &lt; t and t &lt; v to t &lt; w.
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LEMMA. If X is a full subposet of I (resp. of 1°) of one of the three forms
belowy then E\X (resp. E°\X) contains a duplicate of u in E or of v.

(3)

4.6. LEMMA. Q contains a point q subséquent to a&apos; and a point d such that
b1 ycqycd and a&apos; ycdycb&apos;.

Proof. Consider the full subposet Q(br, •) of Q formed by the points s e Q
which can be incorporated into a triad {b&apos;f c, s} of three pairwise incomparable
éléments of Q. This subposet contains at least two minimal éléments, say qx and

q2. If qx is incomparable with a\ we can set d qx and q q2: Indeed, 2.4(1)
implies af&lt;q2\ if #2 was not subséquent to a&apos;&apos;, each élément q3 such that

should be incomparable with&apos; b&apos; (which is subséquent to a&apos;);

accordingly, q3&lt;q2 would imply q3&lt;qx and Iv would contain à—&gt;q^ in
contradiction with 4.2(1). ^N^

In case a&apos; &lt;qx and a&apos; &lt;q2, the same argument shows that qx and q2 are both
subséquent to a&apos;. By lemma 4.3, 2^ contains a full subposet of the form, say

\ which satisfies x X S if à x S. We claim that x e Q, because y e Q&gt; x e Qv
x—tq2
and x&lt;q2 would imply y^a, hence x&lt;q^ Furthermore, we hâve x&lt;5,
because q2 is minimal in Q(b\ •). We infer that à &lt;b and that Ia contains the
full subposet of Fig. 15 in contradiction with 4.2(2).

Figure 15

4.7. LEMMA. Let P contain a point which is incomparable with ail points of
P. Then âeQaV{Ev and b eQbniu can be chosen so that âxb.

Proof. Otherwise, we can apply 4.3 to the subset /* of 2^ and find an
a* &gt;*b

x eSu such that âycxycd and that either qXx&lt;b or 6&gt;Cx&lt;q. In both cases
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we hâve x $ Q since a&apos; is normal. So let x be in &amp;yy y e P, and first suppose that

y S a: Then x &lt; q, x&gt;£b and y &lt; a since x e &amp;a n 2^ is supposed to imply x &lt; 6;
it follows that (y, b) ~ (y&apos;, £&apos;)&gt; and we obtain a contradiction with 2.6(6), which
reduces our proof to the case y ^ b. But then we hâve q&gt;£x&lt;b, hence y b and
the contradiction à &lt;x (since x e Qb n Sv is supposed to imply à &lt; x).

o

4.8. LEMMA. Let P contain a point which is not normal and P a point which
is incomparable with ail points of P. If 2V has at least 5 points, it contains a full
subposet of the following form, where âe^a, {ft, B} c fèb and {q, d) a Q.

d*
b &gt;.B

à • &gt; • q

d* •£
Proof. We apply 4.4 to the full subposet of Ia which is provided

à •—&gt; • q
by 4.6 and 4.7. By 4.4 there is anjcely such that âXjcXç and that dxjc or
ÎXjc. If jc was in Q, it would be comparable with d (because a&apos; is normal) and

provide a contradiction to 2.6(2).
Therefore, we hâve x y e Qy for some y in6 (because jcXg). In case y fe

the proof is perfect. So it remains for us to exclude the case y&gt;b. In this case,

2.6(6) implies d&lt;y&apos;, and 5, lu contain the full subposets of Fig. 16, where

(a, y) ~ (af, y&apos;). By 2.6(1), b is normal; by 2.6(6), y is subséquent to b; by 2.6(5),
there is at most one ceP such that ûXcXy;by3.7 and the assumptions of the

lemma, we hâve b {6, c}0, â-= {a}x and y {y}0&gt; where cxz for ail zeP.

a b y
o »o ?o &quot;• »»y

Figure 16

By assumption, P contains a point eXjc. Since U is faithful and b normal, e

belongs to the support of some e Qt n 2^, where f # b. Up to duality and

quasi-duality, we may assume that t &lt; b. Let us then compare with â, q&gt; by d, y:
Obviously, i&lt;â {a}x. It follows that Fxd, because t&lt;d would contradict
4.2(3). We claim that ï&lt;5: Indeed, this follows from 3.7 if t a; and the case

t&lt;a, Fx5 is excluded by 2.6(6) (since c is incomparable with f, a, &amp; and d with
t&apos;, a\ bf). Finally, we hâve Fxj; because t&lt;y would contradict 4.2(4).
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t à q
Figure 17

Now, by 4.5(3) d or x has a duplicate z in Zv. If z e Q&gt; S contains the stable
subset of Fig. 18 in contradiction to 2.6(2). If z r e Qr&gt; q^&lt;z implies bir, and
b&apos;ycd implies y § r. Then the dual of the quasi-dual of the argument applied to F

above yields the contradiction b &lt; r.

•c
ao

a&apos;o &gt;obr

^•qm ?•

Figure 18

Remark. Our proof involves quasi-duality. This may need some explanation
since we formally use the fact that the &quot;dual of the quasi-dual&quot; 5*° P°&lt;\Q° also
admits a faithful indécomposable représentation. In fact, the antiequivalence
S):repP-»rep(P°) of 3.6 induces an isomorphism of (Q)° onto the poset (Q°)
attached to S*° P°&lt;lj20- The needed faithful indécomposable représentation V
of 5*° is defined by VQo ^ 2(UQ).

Using similar arguments, one shows that the dual 5° Q°&lt;\P° and the
quasi-dual 5* Q&lt;P admit faithful indécomposable représentations.

S. Proof of theorem 3

As in section 4, we dénote by U a faithful indécomposable représentation of
the bipartite completed poset S P&lt;iQ. We suppose that P and Q contain
non-normal points.

5.1. We first prove theorem 3 under the assumption that P has cardinality 2.

Using quasi-duality and 2.6(1), we may assume that P {a &lt; b} and Q {a&apos; &lt;

b&apos;}, where a&apos;, b are normal and a, b&apos; not. By lemma 4.6 and its dual, 5 then
contains the full subposet of Fig. 19. If there is any other point which is

incomparable with a and b or with a&apos; and b&apos;, we may by duality assume that it
lies in Q, hence that c is the unique point which is incomparable with a and b

(2.6(3)).
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Let us now assume that Q contains more points and find the contradiction.
The dual argument will then show that P also has 4 points, and our proof will be

complète.
a • —&gt; • q

By lemma 4.8, £u contains a full subposet of the form - • d, where
b •—? • b

àeQa and {5, b}czQb. By lemma 3.5, â {a}u 6 {b}() and b-{bf c\{).
Accordingly, since U has dimension èl at /?, lu must contain some other a e Qa.
Lemma 3.5 implies a &lt;b and lemma 4.2(3) ûXft (Fig. 20).

a—-+â &gt;q

b—ÏS d
Figure 20

We now apply 4.5: A duplicate of b in lv cannot belong to Q because a&apos; is

normal, to Qb because of 3.5, to Qa because bXq. Accordingly, only q can
admit a duplicate in Iv. Therefore, Zv contains the full subposet of Fig. 21,
where q is one of the non-specified points. By 2.1, Fig. 6 it follows that Ia has the
form of Fig. 22. But y cannot belong to Q because b x y &lt; b. And y cannot

belong to (5fl U Qb, i.e. in fact to Qah, because of 3.5.

a &gt;Q &gt;% &gt;9 Q }Q &gt;m &gt;%

b &gt; 6 b-yb
d y—*d

Figure 21 Figure 22

5.2. LEMMA. Suppose that P contains points a&lt;b &lt;c and P a point d such

that (a, c)~(a11 c&apos;) and ûXrfXc. Then b is normal.

Proof, Otherwise, P contains two points dlt d2 such that
Since a&lt;d,&lt;c is excluded by 0.4, each point d, satisfies a X d, or dl x c. By



Représentations of bipartite completed posets 521

2.4(1) it follows that we hâve, sayaxd^c and a &lt; d2 x c. By 2.6(1), dl and d2

are both comparable with d. So we obtain dx&lt;d (d&lt;dx would imply d&lt;c\),
d&lt;d2 and the contradiction dx&lt;d2.

5.3. LEMMA. P contains a point s incomparable with ail u e P.

Proof. By the dual of 4.6 we can assume that P has cardinality ^3.

Let a be the minimal and c the maximal point of P. Choose à in Qa n IUf c in
Êc n2&quot;^. By 4.1, lu contains a point x such that ûXjcXc. If x e Q, it follows
that ûXxXc, and we can set s =x. Hence we may suppose that x e Qb for some

beP; if 6#c, P contains an élément incomparable with b and c, since the

contrary would imply x — {b}x ^ {a}x ^â (3.2). Similarly, if a ¥=b, P contains an
élément incomparable with a and b.

This solves our problem in case a b or b c. In gênerai, it implies that,
whenever u e P is subséquent to w e P, there is a point incomparable with u and

w. By duality, the same statement holds for Q.

Now suppose that a&lt;b &lt;c. Let u e P be subséquent to b, and b to u e P. We
claim that one of the points w, fe, v is normal: Indeed, by 5.2 u is normal if a =£ w,

and u is if c =£ v; if neither u nor u is normal, we hâve a u, c v, and b must be

normal (otherwise, ail points a&apos;, b&apos;, c&apos; of Q would be normal by 2.6(1)).
So we can apply 3.7 to u, b, w. Since xeQb satisfies {a}x XjtX {c}0, it

satisfies {u}x XjcX {v}0 and has the form x {6, s}0. But {a}j x {b, s}ox {c}0
implies a x s x c.

5.4. LEMMA. Let b eP and p e P be such that b is normal and p&lt;b. Then

there is a point x e P such that x&lt;b and a représentation teQxC\2u with
dimension ^1 at p.

Proof. Since U is faithful, there is an x e P and a t e Qx C\ Hv with dimension
=1 at p. Since b is normal, Qb consists of {b}0, {b}x and of représentations
{b, c}0 with b x c. We infer that x ^ b. Suppose that x &gt; b. By 4.1, the support 2
of t contains a full subposet X or Y as shown in Fig. 23 (the case (3) of 4.1 is

excluded because x has multiplicity ^2). In case IdI, the inequalitiesp&lt;b&lt;x

}2
y1

pm &gt;

Figure 23



522 L A NAZAROVA AND A V ROITER

imply jtîXbx^ in contradiction to the normality of b. In case Id7, this

normality and the conditionpXy3Xx imply that b is comparable withyx and y2)

hence that b &lt; yx (x x yx implies b ^ yx) and y2 &lt; b. This leads us to the
contradiction y2 &lt; y\.

5.5. Proof of theorem 3. Applying 2.6(6), 5.3 and the dual of 5.3, we first
observe that y must be subséquent to x if (x, y) ~ (*&apos;, y&apos;) and x =£y.

By lemma 2.6(1), out of two équivalent points at least one is normal. We
choose two équivalence classes {u~u&apos;}f {b~b&apos;} such that u,beP and
u&apos;, b&apos; eQ, that u&apos;, b are normal and that u, b1 are not. Furthermore, we suppose
that ail points of P between u and b (if there are any) are normal, as well as ail

points of Q between u&apos; and b&apos;. Up to quasi-duality, we may also suppose that
u &lt; 6. We then dénote by u € P the point subséquent to m, by a e P the point to
which b is subséquent (uia, v^b). To the pairs (a, b) and (u, v) thus
constructed we apply the lemmas 4.6, 4.8 and their duals, which provide us with
the full subposets of P, Q and (3 described in Fig. 24.

Cm • P ab &gt;obf B*

q*
Figure 24

By 2.6(4), there are at most two points incomparable with a and b. Using 3.5,
we infer that â~{a}i or â {a, c&apos;}0 where aXc&apos;Xè. Accordingly, à has

dimension 0 at p, and is distinct from the point t e &amp;x, x^-a, constructed in 5.4
and obviously subjected to t &lt; q.

Let us suppose that t &lt; b. Then we hâve à x fx d by 4.2((3) and (4)) and can

apply 4.5(1) to _N^ But there is no way of obtaining a duplicate z of b in

lu from Q because a&apos; is normal; from Qb because b, b exhaust the éléments of
Qb incomparable with à (â x t implies à {a, c2}0, 6 {b, cjo, b {b}0 in 3.5);
from Qy, y&gt;b, because a&lt;b&lt;y implies (a,y)-f (a&apos;,y&apos;) and â&lt;z. Nor can we
obtain a duplicate z of â from Q (q is subséquent to a&apos; and z &lt;â would imply
z &lt;b); from Qa by 3.5; from Qy, y &lt;a, because y &lt;a&lt;b implies z &lt;b.

So we are reduced to the case t x 5, hence x a. By 3.5, fis comparable with
â. It is &lt; â because &lt;z is supposed to be maximal in Qa n 2^. The case â {fl}i,
f={a, c2}o&gt; &amp; {6, cjo, 5 {&amp;}0 is excluded by the assumption that f has

dimension ë 1 at p, By 3.5 this implies that t &lt; b. In this case, we obtain Fig. 20
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and can repeat the argument produced in the last paragraph of 5.1. Theorem 3 is

proved.

6. Appendix

Our objective in this section is to expose a more synthetical point of view for
the réduction used in section 1. The foliowing is due to P. Gabriel.

6.1. Let km A:lxm be the space of m-rows and modk the category of finite
dimensional vector spaces. The category Sk (0.2) is naturally equipped with a

functor F:Sk-+modk, v*-*km which maps the morphism Z?eHom(w, v) onto
x&gt;-*xBT. Using F, we can interprète a représentation (d, M) as a pair (d,f)
consisting of an object deSk and a linear map / : kd&lt;&gt;-&gt; Fd, y &gt;-+yM. In this way,
we obtain an équivalence between repS and the following Fsubspace category
subF [5]: An object of subF is an &quot;F-subspace&quot;, i.e. a pair (v,f) formed by an
object v e Sk and a morphism / : V—» Fv of mod k. A morphism (u, e)—&gt; (v, f) is

given by a pair of morphisms B eHom(uyv) and AeHom(U, V) such that
fA (FB)e.

The natural décompositions of the rows v eSk and x e Fv into &quot;blocks&quot;

vP [vi • • • V|P|], vQ [U|pi+i • &apos; • yn] and xP [xx - • • *|Upl], xQ [*|t,pl+1 • • • x|v|]
yield an exact séquence of functors

0—&gt;FG-L*F-iL»Fp-^0,

where FPv k]Vp\ jtu:x*-*xp, FQv k)v&lt;*y and (iv)[yx - - • ylVQÏ]

[0 • • • 0yx • • • y,Wel]. The residue-functor FP gives rise to an FP-subspace category
subFP, which is defined like subF and contains the full subcategory sub0FP
formed by the proper FP-subspaces, i.e. by the pairs (v, g) such that g is injective.
The subcategory sub0 FP finally provides us with the wanted reduction-functor

subF&apos;Q

^), Ker (nv)f j-* FQv)

where /P, fQ are induced by / and

F&apos;Q : sub0 FP -^ mod k

maps (v, (/-y» FPv) onto FQv.
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PROPOSITION. The reduction-functor 91 : sub F-* sub F&apos;Q induces a bijection
between the isomorphism classes of sub F and of sub F&apos;Q.

It follows that 3? also induces a bijection between the isomorphism classes of
indécomposables.

Proof. It is easy to show that â? hits each isomorphism class of
Indeed, each object ((v, U—»FPv)&gt; W~&gt;FQv) of subF^ is isomorphic to the

image of the object (v, U © W {sgh]&gt; Fv) of sub F, where s : FPv-&gt; Fv dénotes an

arbitrary linear section of jzv.
To prove the injectivity of the map induced by S?, we first remark that, for

each linear map e:FPu-*FQv, there is a morphism E:u-*v of Sk such that
FE (tv)e(jtu) (if u and v are indécomposable in Sk, this immediately follows
from (0.4b)). We then consider two objects (u, V-^Fv) and (v, V&apos;^Fv) of
sub F having isomorphic images in sub F&apos;Q. This means that there are isomorph-
isms By C and D which make commutative the first two squares of Fig. 7. We
extend D to an isomorphism A:V2$,V which induces C Then f&apos;A — (FB)f
vanishes on Ker (nv)f and factors through iv:FQv-*Fv. In other words,

f&apos;A - (fB)fcan be written as a composition

We infer that f&apos;A - (FB)f (iv)e(nv)f (/£)/ for some E:v-*v such that

(F£)2 0, hence E2 0. So we finally obtain the isomorphism (A, B + E)\

zi 1** ct

ïFB

Fig. 7

6.2. The construction of the subspace category subF^ considered in 6.1 is

based on the category sub0 FQ which, in gênerai, does not hâve the form tk. We
therefore insert some remarks about gênerai subspace catégories [5] [9].
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Let K be a /c-linear category such that the dimensions of the morphism spaces
are finite and that each object is a finite direct sum of indécomposables with local
endomorphism algebras. If &lt;P: K-&gt; mod k is a A&gt;linear functor, sub &lt;P is related in
a simple way to the category of représentations of a poset: Let Uu Us be

pairwise non-isomorphis indécomposables such that dim &lt;PUt 1. Define a partial
order on the set V= {Ulf. Us} by setting U,^U, is tfty^O for some

p\Ut-*Ur Dénote by &lt;ï&gt;:K/Ket&lt;P K-*modk the functor induced by &lt;P,

where Ker &lt;P dénotes the idéal of K formed by the morphisms v such that 4&gt;v 0.

We then hâve the following comparism diagram

sub 4&gt;-^ sub 4&gt; ^-rep Y,

where y is the functor (N, f) *-* (Nf f) and e is determined by the choice of a basis

vector in each &lt;PUt. The functor y induces a bijection between the &quot;isoclasses&quot; of
indécomposables of sub 4&gt; and the isoclasses of indécomposables of sub &lt;P which

are not of the form (N, 0) with &lt;PN 0. The functor e is fully faithful; it is an
équivalence if Uu Us exhaust the indécomposables of K. This takes place
for instance in case K sub0 FP and &lt;P F&apos;P, when S P&lt;Q is representation-
finite (2.5).

6.3. With proposition 6.1 we can also prove that, if S P&lt;\Q is faithful&apos;, the

subsets P and Q are uniquely determined by S. Indeed, suppose that S P&lt;Q
P&apos;&lt;Q&apos; and that, say, P H Q&apos; =£0. The (trivially completed) poset P then has the
form P (P\Q&apos;)&lt;](P H Q&apos;). From 6.1 we infer that an indécomposable
représentation of P has its support m P\Qf or in PHQ&apos;. In particular, there is no

indécomposable of repF whose support intersects P a P\Q&apos; and PC\Q&apos;. From
o.l it then follows that there is no indécomposable of 5 whose support intersects

Pand PDQ&apos;.
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