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Classifying spaces with injective mod p cohomology

HANs-WERNER HENN

0. Introduction

Let G be a compact Lie group with classifying space BG and let p be a prime.
We consider the mod p cohomology H*(BG;Z/p) as an object of U,, the
category of unstable left modules over the Steenrod algebra A,.

Recall that a left A, module is called unstable, if

Sq"x =0 whenever n>|x|, if p=2

B°P"x =0 whenever 2n+e>|x|, e=0,1, if p>2.
Here |x| denotes the degree of x.

THEOREM. Let G be a compact Lie group. Then the following statements are
equivalent:
(1) H*(BG; Z/p) is an injective object of U,.
(2) p- H'(BG; Z,)) =0 for n>>0 (Here Z,, denotes localization of Z at the
prime p).
(3) G is finite and its p Sylow subgroup G, is elementary abelian, i.e.
G, =(Z/p)* for some k.

Remarks. a) The implication “(1)=(3)” was conjectured by Lannes and
Zarati.

b) “(3)=>(1)” is immediate from the facts that H*(B(Z/p)*; Z/p) is injective
in %, ([C], [Mi], [L-Z]) and that the transfer being induced by a stable map (cp.
chap. IV of [A]) provides an A, - linear splitting of the restriction map
H*(BG;Z/p) = H*(BG,; Z/p). In this paper we will prove “(1)=>(2)"” and
“(2)>(3).

¢) If H*(BG;Z/p) is injective then the theorem together with a result of
Swan [S] gives that H*(BG; Z/p) is isomorphic to H*(B(Z/p)*;Z/p)* where
(Z/p)* =G, and W is the “Weyl group” of G,,, i.e. W = N(G,)/G,,, the quotient
of the normalizer of G, by G,.
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d) The injectivity of H*(B(Z/p)*; Z/p) has been crucial in most of the recent
progress concerning the homotopy theory of classifying spaces of finite groups,
e.g. H. Millers solution of the Sullivan conjecture [Mi] and J. Lannes recent work
on classifying spaces of elementary abelian groups [La]. Their work motivated
these investigations.

e) The theorem implies that the following statements are equivalent for a
finite group G and [/ = 1.

(1) p' - H*(BG; Z,,) =0 for all n >0

(2) p' - H'(BG;Z,)) =0 for all n >0
(1) and (2) are also equivalent if /=0, e.g. by the Evens—Venkov-Quillen
Theorem ([Q, sect. 2]).

Question. Are (1) and (2) equivalent for all / = 0?

The paper is organized as follows. In section 1 we prove that (1) implies (2)
and in section 2 we show that (2) implies (3). In the latter section we need part of
Lewis’ computation [Le] of H*(Gs;;Z) where G; is a nonabelian group of
exponent p and order p>. The full computation of this cohomology ring is quite
involved and for the convenience of the reader we give an elementary argument
for the part that we need in an appendix.
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1. Proof of “(1) = (2)”

For an A, module M we define

H,(M; B) = Kern (M, 2> M, .,)/Im (M,_, &> M,,).

If A is an abelian group we denote by Tors A its torsion subgroup. The proof of
“(1)=>(2)” follows from

LEMMA 1. Let H"(X;Z,)) be finitely generated over Z.,. Then the
following statements are equivalent

(a) p-H"(X;Z,))=0 and p-Tors H"*'(X;Z))=0
(b) H,(H*(X;Z/p); B)=0.
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LEMMA 2. If M is injective in U,, then H,(M; B) =0 for all n > 1.

Proof of Lemma 1. This is straightforward using the fact that g8 is the first
differential in the Bockstein exact couple (see [N, §4] e.g.). O

Proof of Lemma 2. (1 owe the following elegant argument to J. Lannes.) We
give the proof in case p = 2. The case of an odd prime is analogous.

Let F(n) be the free unstable module generated by an element i, of degree n.
F(n) is characterized by the fact that

Homg, (F(n), M)— M,
. (*)
@ (i)

is a natural isomorphism. F(rn) has an additive basis given by Sq’i, with I
admissible and excess e(I) =n [S-E]. Using this basis it is easy to check that the
sequence

F(n+1)=s F(n) == F(n—1),

with d,, given by d,.(i,.,) = Bi,, is exact if n > 1. Because M is injective it follows
that

Homa, (F(n + 1), M) <= Homa, (F(n), M) <=~ Homa, (F(n — 1), M)

is exact if n > 1. Via (*) this sequence may be identified with

Mn-H JiMn ('EMn—l

and the Lemma is proved. 0O

2. Proof of “(2) > (3)”

Let H be a closed subgroup of G. Then the Evens—Venkov—-Quillen Theorem
(cp. [Q, sect. 2]) says that the restriction map makes H*(BH; Z,,) into a finitely
generated module over H*(BG;Z,). Consequently the property (*)
“p-H"(BG;Z,)=0 for n>0” is inherited by all closed subgroups. In
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particular, G cannot contain a torus, i.e. G has to be finite. Furthermore, (*) is
inherited by the p-Sylow subgroup G, and therefore it suffices to prove the
following.

LEMMA 3. Let G be a finite p-group such that G satisfies property (*). Then
G is elementary abelian.

Proof. (By induction on the order of G.) If G is nontrivial, then there is a
short exact sequence

1-K—->G—-Z/p—1.

K satisfies property (*), so by induction hypothesis K = (Z/p)* for some k.

Because (*) is inherited by all subgroups, G cannot contain a subgroup Z/p>.
Therefore each element of G is of order p. If p =2 this implies already that G is
elementary abelian and if p is odd we derive that the exact sequence above splits
and G is completely determined by the conjugation action of a preimage ¢ of a
generator of Z/p. We have to show that this action is trivial. Then G is abelian
and the Lemma follows.

So suppose that ¢ acts nontrivially. Because K is a Z/p-vector space we have
(c —id)? = c” —id = 0. Now, since the action is nontrivial, Ker (¢ — id) is strictly
included in Ker (c — id)?, so there exists a two dimensional invariant subspace K,
of K with basis {e,, e,} and ce, =¢,, ce; =¢, + ¢,.

Therefore the corresponding semidirect product G; of K, and Z/p is a
subgroup of G. However, by Lewis’ computation [Le] we know that
p - H'(BGs; Z,)) #0 whenever 2p divides n. So G; does not satisfy (*), hence it
cannot be a subgroup of G and we arrive at a contradiction. [

3. Appendix

PROPOSITION (cp. Cor. 6.27 in [Le]). Let p be an odd prime and G be the
semidirect product of K =Z/p @© Z/p and Z/p - ¢ with c acting on K via the matrix

11
(() 1). Then there is an element v e H¥(BG; Z) such that pv" #0 for all n.

(Note that for a p-group one always has H*(BG; Z) = H*(BG}; Z,)) if *>0.)

Proof. The Bockstein exact couple shows that it suffices to construct
v e H”(BG; Z) with the following property: if p: H*( ; Z)— H*( ;Z/p) denotes
mod p reduction, then pv” ¢ Im B. Furthermore the restriction homomorphism
i*:H*(BG;Z/p)— H*(BK; Z/p) =Z/p[y:, ] ® E(xy, x,) with |y;| =2, |x,| =1,
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Bx;=y;, factors through the invariants H*(BK;Z/p)*? ¢ where c acts on
H*(BK; Z/p) via the algebra homomorphism determined by

c(x1)=x,, c(x2) =x; + x,, c(y1) =y, c(y2) =y + ys.
So it suffices to construct v such that
i*pv" ¢ Im B | H*(BK; Z/p)*"“.

To obtain v we take a one dimensional complex representation y of K whose first
Chern class c¢,(y) satisfies pc,(y) =y,. Let y' be the induced representation of G
and define v = ¢,(y"). Then i*y' = @%_} y" by Mackey decomposition (cp. Chap.
V, 16.10 in [H]), hence

i*pv = pi*v = p(c,(i*y"))
= p(cp(pﬁ;?l Y)) = p(:f;l; cl(v“))

= H My, = H (y2+ Ay,

A=0

i.e.
i*pv" =2z, with z,:= n (y2 + Ayy).

So it is enough to show that z ¢ Im 8| H*(BK; Z/p)*" . This is an immediate
consequence of part (b) of the following.

LEMMA 4. a) Z/p[y,, y,}*7 € is the polynomial subalgebra Z/p[y,, z,].
b) H*(BK;Z/p)”" is a free module over Z/p|y,, z,] with generators 1, x,,
X1X; and y,x, — y1X;.

Proof. (A more general situation is treated in [Mu] but in our specific case
one may give a direct proof as follows.)

a) It is obvious that y, and z, are algebraically independent and that
Z/p[y, z,] is contained in the invariants. Conversely let ¢ = AyT + y,q', A € Z/p,
q' € Z/p[y,, y,] be invariant. Then y,q’ is invariant and hence divisible by c¢‘(y,)
for all i. Factoriality of Z/p[y,, y,] implies that y,q’ = z,q" and that ¢" is also
invariant. Finally |¢"|<|g| and by induction on the degree we find g€

Z/p[yh zp]-
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b) Again it is obvious that the submodule of H*(BK; Z/p) described in (b) is
free and contained in the invariants.

Conversely let g = go+ q,x, + g2x, + q3x,x, be invariant with g; € Z/p[y,, y,].
Then

c(q) = c(qo) + (c(q1) + c(g2))x, + c(q2)x2 + c(g3)x 1 x2,

which shows that g,, g, and g, have to be invariant. Therefore it suffices to show
that g,x; + g,x> = §,x, + @-(y2x, — y1x,) with G,, g, invariant.
First we see that

g1 1 +q2y.=B(q:x, + q2x>)

is invariant, so by (a)
Gt qy=q1 i+ Az,

with g, € Z/p{y, z,], A€Z/p. Assume A#0; then |q,/]#0(mod2p) and in-
variance of g, yields g,=q;y,, q2€Z/p[y, z,]. 1t would follow that z, is
divisible by y, which is absurd. Therefore q,y, + g,y. =g, y,, i.e. g \x, + g>x; —
g,x, € Kern B. From Lemma 1 we know that Kern 8 =1m 8 in H*(BK; Z/p) and
we deduce that qx, +q,x>— §,x, = q,(y>x, — y1x2) with g€ Z/p[y,, y,]. Now
invariance of the left hand side implies, say by comparing coefficients of x,,
invariance of ¢, and the Lemma is proved. 0O
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