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Mean curvature fonctions of codimension-one foliations

Gen-ichi Oshikiri*

0. Introduction

Let F be a transversely orientée! codimension-one foliation of a closed connected
manifold M. If we choose a Riemannian metric g on M, then we hâve a smooth
function H(x) on M. Hère H(x) is the mean curvature function at x of the leaf Lx
of F through x with respect to the unit vector field N orthogonal to F and its
direction coincides with the given transverse orientation. We call H(x) the mean
curvature function of F with respect to g. Recently, Walczak [8], [9] studied the

following problem for some spécial foliations:

[Q] Which smooth function on M can be written as a mean curvature function with

respect to some Riemannian metric on Ml

In this paper, we consider this problem from the view point given by Sullivan
[6], and give an answer to this question. As a corollary, we can give another proof
of the results in Walczak [8], [9]. Thèse are done in Sections 1 and 2. In Section 3,

we apply it for the case of Reeb foliations of S3.

The author is grateful to the hospitality of the Mathematical Institute,
University of Kôln, especially to Professor Dombrowski and the members of his

seminar.

1. Preliminary and resuit

In this paper, we work in the C°°-category. In what follows, we always assume

that foliations are of codimension-one and transversely oriented, and that the

ambient manifolds are closed, connected, oriented, and of dimension « + 1 ;&gt; 3,

unless otherwise stated.

*The author is partially supported by a grant from the Alexander von Humboldt Foundation.

79



80 GEN-ICHI OSHIKIRI

Let g be a Riemannian metric on M. Then there is a unique vector field

orthogonal to F whose direction coincides with the given transverse orientation. We
dénote this vector field by N. We given an orientation to F as follows: Let

{£,,..., En J be an oriented local orthonormal frame for TF. Then the orientation
of M given by {N, £,,...,£„} coincides with the given one of M.

We dénote the mean curvature of a leaf L at jc with respect to N by H(x), that
is,

where &lt;,&gt; means g(,) and V is the Riemannian connection of (M, g) and {£,} is a

local orthonormal frame for TF with dim F n. We also define an n-form XF on M
by

where {£] ,...,£„} is an oriented local orthonormal frame for TF. The restriction
ZF | L is the volume élément of (£, g | L) for L e F. First we hâve the following.

PROPOSITION 1 (Rummler [5]). dXF= -HdV(M,g) =divg(N)dV(M,g),
where dV(M, g) is the volume élément of (M, g) and div^ (N) is the divergence of N
with respect to g, Le.,

div,(AT)=

Let/be a smooth function on M. We call / admissible if there is a Riemannian
metric g on M so that —/ coincides with the mean curvature function of F with
respect to g, and set

CAd {/ : admissible}.

Note that if H 0, then F is a minimal foliation. If we can find such a g, then we
call F tant. We also set

C± {/ :/(*) &gt; 0 &gt;/(7) for some x,ye M}.
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Then, by Proposition 1, we hâve CAd c C± u{0}. From this view point, we hâve:

THEOREM (Sullivan [7]). 0 6 CAd, Le., F is taut ifand only ifeach compact leaf
of F is eut ont by a closed transversal

THEOREM (Walczak [9]). F is taut if and only if CAd C± u {0}.

Now recall the set-up of Sullivan [6]. Let D^ be the space of smooth /&gt;-forms on
M and D* be the dual space of Dp, i.e., the space of p-currents. Then we hâve:

THEOREM (Schwartz [5]). (D*)* D#,.

Let x € M and B {ex,..., en} be an oriented basis of TXF. We define a Dirac
current SxB by

àx,Â&lt;l&gt;) &lt;t&gt;x(e{ a • • • a en) for 0 e Dw.

And set

CF the closed convex cône in D* spanned by Dirac currents ôxB for x e M.

PROPOSITION 2 (Sullivan [6]). CF is a compact convex cône cône in D*. Hère
&quot;compact&quot; means that there is a continuous linear functional L :D* -+R so that the

set L~\\)nCF is compact.

We shall call a compact set L~l(l)nCF of the cône CF the base of CF and
dénote it by C. Let d : D, -&gt;D/,+, be the exterior differentiation and d : D*+1 -»D*
be the dual of d, i.e., &lt;#, c&gt; &lt;0, de} for &lt;/&gt; e Dp, c e D£+,, and &lt;,&gt; means the

natural coupling Dp x D* -* U. Set B d(D*+ {) and Z Ker d : D* -&gt;DJ_,.

MAIN THEOREM. For /6C°°(M), rte following three conditions are

équivalent.

(l)/eCAd.
(2) There are an n-form œ and an oriented volume form dV on M so that

dco =fdV and œ is positive on F. Hère &quot;positive&quot; means that

cox(ex a • • • a en) &gt; 0 for ail oriented basis {el9...,eH} of TXF and x € M.

(3) There is an oriented volume form dV on M so that

(i) \MfdV ^and
(ii) \JdV &gt; 0 for ail c e d~l(CnB).
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In case Fis taut, Sullivan [7] showed that CnB — 0. And it is easy to show the
existence of dV so that \MfàV 0 if fe C ± Thus we hâve another proof of the
results of Walczak [8], [9].

2. Proof of main theorem

We follow the proofs given in Sullivan [6], [7]. To do this we need a Hahn-
Banach theorem of the following type (cf. [1]):

THEOREM OF HAHN-BANACH. Let V be a Frechet space, W be a closed

subspace of F, and C be a compact convex cône aï the origin 0 g F. And let p : W -+U
be a continuous linear functional of W with p(v) &gt; Ofor v g C n W — {0}. Then there

is an extension rj : V-&gt;U of p so that r](v) &gt; 0 for v € C — {0}.

Proof of Main Theorem. First note that (2) implies (3). Because the condition
(ii) of (3) reads as &lt;/rfF, c} {dco, c&gt; &lt;œ, de&gt;, and \JdV &gt; 0, for de g C and co

is positive on F.

(1) implies (2). Now fix a Riemannian metric g on M with —f=H, and
set dV dV(M,g) and œ XF (see §1). Then, by Proposition 1, dXF

-HdV(M,g) =fdV, that is, (1) implies (2).
(3) implies (1). Hère we use the Hahn-Banach Theorem quoted above under

the following situation: V D*9 W 2?, C CF, and 4&gt; is given as follows: As

SinfdV 0, there is an n-form co so that dco =fdV. By the theorem of Schwartz,
we can regard co as a continuous linear functional k : D* -&gt; IR. If we restrict h on B9

then this map k | B is independent of the choice of co. And, by condition (ii),
&lt;/&gt; k | B satisfies the hypothèses. Thus, we hâve a continuous linear functional
L : D* -* M which satisfies L(CF — {0}) &gt; 0, and by the theorem of Schwartz, we
hâve an «-form X on M which is positive on F. Further, the condition dco =fdV
implies dX =fdV, because co\B X\B.

Now choose a Riemannian metric g as follows: On each leaf L, X | L is the
volume forai of (L, g | L), Ker X is orthogonal to F, and on Ker X the metric is

determined by requiring dV(M,g) =dV, where dV is the «-form in the condition
(3). By the relation fdV dX -HdV(M,g), we have/G CAd. Q.E.D.

3. Examples and a concluding remark

In this section, we study, as an example, CAd for Reeb foliations of S3 and close

this paper with a conjecture.
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EXAMPLE 1. A Reeb foliation FR of S3. A Reeb component FRC is a codimension-one

foliation of S1 x D2 with the boundary d(Sl x D2) as a unique compact
leaf (cf. Lawson [2]). To get a Reeb foliation FR of S3, décompose S3 as
S1 x D2uD2x S1 by identifying (jc, y) e S1 x dD2 with (x, y) g dD2 x S\ and
consider a Reeb component FRC on each S1 x D2. We give a transverse orientation
to FR and dénote by R+ (resp. R_) the compact saturated set S1 x D2 on that
boundary the given transverse orientation is outward (resp. inward).

In this case, by our theorem, CAd {fe C°°(53) :f(x) &gt; 0 and f(y) &lt; 0 for
some x e R+ and y e R_}.

Note that 0^ CAd. This fact also shows that we cannot find any Riemannian
metric of S3 which makes each leaf of FR a hypersurface of constant mean curvature
(cf. Ex. 2).

EXAMPLE 2. A generalized Reeb foliation FGR ofS3. Hère we also use the same

notations as in Example 1. We décompose S3 as S1 x D2vT2 x [0,1] kjD2 x S1

with the canonical identification given in Example 1. A generalized Reeb foliation
FGR is given by FRC u {T2 x (t)}, e [0, n u FRC. Then we also hâve CAd {/ : f(x) &gt; 0

and f(y) &lt; 0 for some x g R+ and for some y g R_}.
We choose a transverse orientation so that R+ is the one of S1 x Z)2 whose

boundary is identified with T2 x {0}, and set R+ (a) R+ u {T2 x (t); 0 ^ * ^ a}.
The above condition is équivalent to the following:

For each /g CAd there is a volume élément dV of S3 so that \s*fdV 0 and

fJl
+ (fl)/rfK&gt;Oforanfle[0,l].

Note that 0 4 CAd. But we can find a Riemannian metric of S3 so that each leaf
of FGR is a hypersurface of constant mean curvature. To see this, we simply choose

a smooth function h of [0, 1] satisfying h(t) 1 near 0, and h(t) — 1 near 1, and

lift this function onto T2 x [0, 1] naturally, and set/on S3 to be 1 on R+, -1 on
R_, and h on T2 x [0, 1]. It is clear that/g CAd (cf. Oshikiri [3]).

Condition (3) in our theorem is not easy to apply to arbitrary foliations. By
considering the above examples, it seems to be plausible to conjecture that condition
(3) is équivalent to the following:

(3*) There is an oriented volume form dV on M so that

(i) Jm/^ 0, and

00 \ufdV &gt; 0 for any foliated compact domain D with the transverse
orientation of F being outward everywhere on dD.
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