
Intersection homology Poincaré spaces and
the characteristic variety theorem.

Autor(en): Pardon, William L.

Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 65 (1990)

Persistenter Link: https://doi.org/10.5169/seals-49721

PDF erstellt am: 28.05.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-49721


Comment. Math. Helvetici 65 (1990) 198-233 0010-2571/90/020198-36$ 1.50 + 0.20/0

© 1990 Birkhâuser Verlag, Basel

Intersection homology Poincaré spaces and the
characteristic variety theorem

William L. Pardon

In this paper we affirm a conjecture of R. M. Goresky and P. Siegel [GS] which
states that £-groups L*(Z) defined by A. Mishchenko and A. Ranicki [R] may be

realized geometrically as bordism groups Q1/ of pseudomanifolds whose intersection

homology groups satisfy Poincaré duality. We then apply this resuit to
formulate and prove a &quot;characteristic variety theorem,&quot; which uses intrinsic signature

and Arf invariants of thèse pseudomanifolds, as was proposed by D. Sullivan
in [Su, pp. 59 and 230]. As the problem posed by Sullivan was a primary motivation
for the introduction of intersection homology (cf. [GM1, p. 137]), and since the
characteristic variety theorem is central to the classification scheme of manifolds by

surgery theory, we will (reversing the order of exposition in the paper) describe in
some détail the idea of a characteristic variety and how intersection homology is

used to construct it.
Sullivan&apos;s approach to understanding the space G/PL (or G/TOP or G/0),

which classifies normal maps into a fixed manifold N9

{Normal maps M -&gt;N} -?U [N, G/PL],

was to construct what he called a characteristic variety f&quot; u V-*N. Roughly
stated, this is a disjoint union of spaces V having two properties:

(1) they are sufficiently singular to represent KO -homology and ordinary
homology of N (with appropriate coefficients), and

(2) they are sufficiently smooth to be put into transverse position to submani-
folds of N and to carry basic intégral invariants like the index, de Rham

invariant, or even the Arf invariant (which dépends also on tangent bundle

information).

Sullivan used thèse properties to détermine the homotopy type of G/PL and

G/TOP and, even more, to list the (index and Arf) obstructions to deforming a

homotopy équivalence to a homeomorphism (thus proving a spécial case of the

Hauptvermutung).
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However, the spaces V only satisfy a formai version of property (2), in that the

signature they carry is not intrinsically constructed, as, for instance, it is from the
intersection of cycles when V is a closed manifold. And the représentation in (1)
introduces both indeterminacy and redundancy in the list of numerical invariants
associated to a homotopy équivalence (cf. [Su, p. 59]).

In 1974, Goresky and MacPherson discovered the intersection homology groups
of a p.l. pseudomanifold. Thèse groups and the intersection pairings they carry are
topological invariants, and from them was constructed a signature invariant gener-
alizing that for closed manifolds to pseudomanifolds with only even codimensional
strata. Thèse spaces could not, however, be used to define a bordism theory dual to
G/TOP because

(1) one needs opérations (e.g., coning) which introduce odd-codimensional
strata and

(2) the intersection pairing, from which a signature was extracted, was nonsin-
gular over Q, but not in gênerai over Z: this meant essentially that one
could only hope for a rational characteristic variety theorem.

With this in mind, J. Morgan showed in 1975 (unpublished) how to construct
a bordism theory of singular spaces which carry a signature and whose dual
cohomology theory is that based on the periodic G-spectrum G/TOP. This is the

optimal formulation of a characteristic variety theorem. His idea for intersection

theory was an interesting and non-trivial variant of Goresky and MacPherson&apos;s:

the singular spaces V are defined inductively as stratified spaces together with a

choice of self-annihilating subspace for an intersection pairing on the middle
homology of the link of each stratum. Each such space then supports a graded

group (depending on the choices) satisfying Poincaré duality, which in turn gives
rise to a signature. It is, however, possible for a stratified space to support
différent intersection structures in its links and thus differ as représentatives in this
bordism theory: the signature is, in particular, not topologically intrinsic to the

spaces V.

Back on the intersection homology side, the first difficulty was overcome by P.

Siegel [Si] whose Witt spaces underlay a bordism theory dual to KO[%\, which by
Sullivan&apos;s work is GjTOPfy. Finally, the second problem was solved by Goresky
and Siegel in [GS], where a class of pseudomanifolds was defined whose intersection

homology group satisfy Poincaré duality over Z (see (1.4) below for the

définition).
Thèse spaces are called intersection homology Poincaré spaces, or IP spaces, in

this paper, and their bordism groups are denoted Q1/. The first main theorem is

proved in §2-4.
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THEOREM. There are isomorphisms

fZ, use 0(4)
2, n se 1(4), w &gt; 1

induced by the index and deRham invariant.

The bordism groups Ln(Z) of chain complexes over Z studied by Mishchenko
and Ranicki are also isomorphic to Z for n 0(4); to Z/2 for n 1(4), /i &gt; 1; and

are trivial otherwise. The isomorphisms are given by the index and deRham
invariants. It seems likely that sending an IP space to its intersection homology
chain complex would induce directly an isomorphism

QJf-&gt;L*(Z).

In any case, since

[Z, use 0(4)
nn(G/TOP)-^-&gt;lz/29 » ss 2(4)

(0, otherwise

the (putative) universal coefficient theorem in this setting leads one to guess that the

cohomology theory dual to Gjf(-) is [£?(-), G/TOP]. Actually, since G/TOP
is naturally 4-periodic, the dual cohomology theory must be made naturally
4-periodic. The détails of this construction (in §5 below) were shown to me by John

Morgan, as was the idea for the construction of the map /i in the following, second

main theorem of this paper.

CHARACTERISTIC VARIETY THEOREM. There is a 4-periodic reduced

cohomology theory ÙfP(X)per which in degree zéro detects homotopy classes of maps
of afinite CW complex X to G/TOP: there is an isomorphism of sets

The additive structure on [X, G/TOP] induced by jx is called the characteristic

variety addition. When A&quot; is a sphère, the domain of /i is well-known (as has been

recalled above) and its range is easily computed from QJf. So the hard part is the
construction of /i. For this, èçough intersection homology machinery (functionality
for normally nonsingular maps, characteristic classes) has been developed, so that
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the real difficulties are isolated around the Arf invariant,^ which must appear in
some form in any characteristic variety theorem. Hère it takes the form of the
0-invariant of Morgan and Sullivan, which they showed ([MS, 6.1]) is essentially
équivalent to the Arf invariant. The construction of the ^-invariant is the core of §5

and of the characteristic variety theorem. It is essentially this délicate &quot;two-torsion

information&quot; which advances Siegel&apos;s bordism représentation of G/TOP[ji to one of
G/TOP itself.

Acknowledgement

John Morgan showed me in 1975 how the &quot;right&quot; singular spaces would lead to
the characteristic variety theorem proved hère and it is with his generous permission
that his ideas are reproduced in (5.1)-(5.5) below. The main results of this paper
were proved some time ago. It is mainly due to the much appreciated encouragement

from, and collaboration on [GP] with, Mark Goresky that this work has

finally been completed.

§1. Définitions, notation and preliminary results

(1.1) DEFINITION-PROPOSITION. An n-dimensional pseudomanifold X is

a fini te w-dimensional simplicial complex such that

(î) Every simplex is the face of an w-simplex

(ii) every (n - 1)-simplex is the face of at most two n-simplices. X is closed if
&quot;at most&quot; is replaced by &quot;exactly&quot; in (ii); otherwise its boundary dXis subcomplex
generated by those (n - l)-simplices which are the faces of exactly one n -simplex,
and dX is a closed (n — l)-dimensional pseudomanifold. If there is a p.l. home-

omorphism of dX x / onto a neighborhood of dX in X, the pair (X, ôX) is called a

pseudomanifold with boundary. X is called irreducible if
(iii) for each pair a, a&apos; of «-simplices there is a finite séquence

a a,,..., am a&apos; of w-simplices such that at and &lt;ti + hâve an (ai — l)-face in

common, i 1,..., m — 1.

This is équivalent (in the présence of (i) and (ii)) to

Hn(X, ÔX; 1/2) Z/2.

If in addition Hn(X, dX) Z, then X is called orientable.
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Each pseudomanifold with boundary (X, dX) admits a filtration by closed p.l.
subspaces (a stratification)

such that each i-stratum, Xt — X(_,, is an /-dimensional p.l. manifold and such that
for each x e Xt — Xt_l9 there is a closed stratified pseudomanifold L and a p.l.
stratum-preserving homeomorphism of R1 x IL or of R+ x cL onto an open
neighborhood of x in X9 where R1 x cL and R+ x cL are given the product
stratifications and R1 and R+ hâve only one stratum.

(1.2) In this paper we use intersection homology with respect to middle-
perversity only; for a pseudomanifold X it will be denoted

A chain in X is allowable if it is so in the sensé of [GMI, 1.3]. The so-called local
calculation of this middle perversity group is:

(1.3) PROPOSITION. IHk(cX)=0 if k * dim X/2 and the inclusion X-+cX
induces an isomorphism IHk(X) -^-+ IHk{cX) if k &lt; dim X/2.

(1.4) An intersection homology Poincaré space, or IP space9 is a stratified
pseudomanifold satisfying the conditions of [GS, §7]:

(a) if L L2c is the link of a point in the (2c 4- l)-codimensional stratum, then

///c(L)=0

(b) if L L2c+1 is the link of a point in the (2c + 2)-codimensional stratum,
then

Tors/#c(L)=0.

(The validity of the conditions is independent of the stratification of X.)
The reason for our terminology is:

(1.5) PROPOSITION [GS]. If X is an n-dimensional IP space with boundary
dX, then intersection and linking of allowable cycles induce nonsingular (&quot;duality&quot;)

pairings for each i,

IHt (X9 dX)/Tors xIHn_l (X)/Tots -? Z
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and

Tors IH,(X, ÔX) x Tors ///„_,__,(X) -&gt;Q/Z.

The algebraic duals which anse in this theorem are denoted

M* : Hom (M, Z) and M? : Hom (M, Q/Z).

Two closed oriented n-dimensional IP spaces X and A&quot;&apos; are called cobordant if
there is an oriented (n + l)-dimensional /P space W whose boundary is X u — X&apos;.

The resulting group of cobordism classes is denoted

(1.6) PROPOSITION. In case n=4k, i 2k and dX &lt;£, the index of the
intersection pairing in (1.4) is a cobordism invariant and induces a homomorphism

In case «=4/r + l, the number mod 2 of Z/2-summands in Tors IH2k(X) is a
cobordism invariant, the de Rham invariant, and induces a homomorphism

If M41 is a closed oriented p.l. manifold, then

&lt;t(X x M) a{X) • a{M) and dR(X x M) dR(X) • a(M).

Proof The proofs in the manifold case use only duality, so are equally valid hère.

(1.7) REMARKS, (a) In §2 and §4 we prove a and dR are isomorphisms
(k ^ 1) and that the other cobordism groups Q1* are trivial.

(b) Every IP space is cobordant to its normalization: the cobordism is the

mapping cylinder of the normalization (see [GM 1, (4.1)]). Two cobordant normal
IP spaces are cobordant via a normal IP space. Hence it is no loss of generality to
assume ail IP spaces are normal. A normal pseudomanifold has a stratification with
empty codimension two stratum. The link of a point in the codimension three

stratum is a p.l. 2-sphere by (1.4)(a). Hence we may assume there is no codimension
three stratum. This shows that the theorems in part (a) of this remark are valid in
dimensions ^3.

In [S, III.2.2], Siegel shows that every a e IHk{X\ k £ dim X - 2 admits a

représentative cycle x such that |x| is a closed, oriented irreducible pseudomanifold
and bel — bel*&quot;2 s X - Xn_2. We will need a relative, more précise version of this.
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(1.8) PROPOSITION. Let (X,dX) be an n-dimensional pseudomanifold with

boundary, and let a e IHk(X9 dX), k &lt;&gt;n —2. Then there is a représentative y for a

and a regular neighborhood R of\y\ in X such that
(a) |j&gt;| is an oriented k-dimensional pseudomanifold with boundary \x\ \y\ndX

where x dy (the boundary of y as a chairi),
(b) \y\-\y\k-2^X-Xn_2and\x\-\x\k-^dX-(dX)n_39and
(c) S--=RndX is a regular neighborhood of \x\ such that a p.l. retraction induces

injections for l ^ k — 1,

r+&apos;.IHAR, S)^IHt{\y\,\x\).

Proof The injectivity of r* is proved in [GP, 17.3]. The rest follows from
[Si, III.2.2] or is trivial.

(1.9) COROLLARY. With the assumptions and notation above,

(a) IH^R, S) 0 /#,(£), / ^ k + 1

(b) IHk(R) =0, if |*|#tf&gt;

(c) IHk(R,S)=Z, generated by [j&gt;]=a, and IHk_l(S)=Z, generated by

d[y]=[x]
(d) Tors/#*_,(*) =0.

Proof (a), (b) and (c) are immédiate from the injectivity of r*. (One has to use

the absolute version on |x|çS). To prove (d), let |jc|*-3 2;, \y\k~2 £. Then

în|jc| I and if N(ï) dénotes a regular neighborhood of 1 in |&gt;&gt;|, then \y\ — N(£)
is a fc-manifold with boundary drNv(\x\ -iï(Z)) where N(I) N(£)n\x\ is a

regular neighborhood of I in |jc|, and 3riVn(|x| — ÏÏ(E)) dN(E).
Since dim ï &lt; k — 2, we hâve an injection

By excision the group on the right is Hk_l(\y\ — N(£), drN\ and by duality this is

H\\y\ — N(T), \x\ — N(Z)), which is torsion-free. Consequently Hk_ x{\y\) is torsion
free. Since IHk(R, S) -^U IHk_ X(S) Z by (b), the injectivity of r» in (1.8)(c)
implies r* : IHk_l(R) -*IHk_x(\y\) is injective. Hence IHk_x(R) is also torsion-
free.

§2. Even-dimensional /F-cobordism

Let Xn be an intersection homology Poincaré (ÎP) space and Q1/, the group of
their cobordism classes.
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(2.1) THEOREM. (a) Qg 0, k odd.

(b) a : Q&gt;£ —z-^ Z, induced by the signature a when k is even.

Proof. We hâve observed in §1 that the signature of a boundary is zéro. It
remains therefore to show:

(2.2) PROPOSITION. For any k&gt;0, an oriented IP space X2* bounds if k is

odd, or if k is even and a{X2h) 0.

Proof If k 1, then X X2 is an oriented p.l. 2-manifold, hence the boundary
of an oriented 3-manifold. Hence we assume k ^ 2.

Under either hypothesis there is a g IHk(X) such that a • a 0. Represent a by
a cycle y satisfying the conditions of (1.8), (1.9) with |x| &lt;£; let U be its regular
neighborhood.

(2.3) LEMMA. (a) X&apos;*=(X- Û)nc(dU) is an IP-space.
(b) W-=X x Iuc(U x {\}vc(dU x {1})) is an IP-space with boundary XvX&apos;

0=* x {0}u[(X- Ù) x {\}uc(dU x {1})].)

Proof Xr is a stratified pseudomanifold, since X — Û and c(dU) are pseudo-
manifolds with collared boundaries (=dU) respecting the stratifications: for c(dU)
this defines the stratification and for X - Û it is immédiate from the fact that ôU
is transverse to the stratification of X. To check the link conditions defining
/P-spaces, observe that the only links of strata in Xf or W not already appearing
(up to homeomorphism) in X are at interior cône points. Thus, we need to show

(a) Tors IHk_l(dU)=0
(2.4)

(b) IHk(Uvc(ôU))=0.

For this consider the exact séquence

(2.5) IHk(U) -^ IHk(U, ÔU) -+IHk_x{dU) -+IHk_x{U).

By (1.9), IH^^U) is torsion-free, while by duality IHk(U, dU) s Mk(U)* 0
TorsIHk-i(Uf =IHk(U)* (by (1.9) again). Composingy&apos;* with this isomorphism
gives the adjoint of the intersection pairing

IHk(U)xIHk(U)-+Z

which is zéro by assumption. Thus y* 0 and IHk(dU) is torsion-free.
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To prove (2.4)(b), we use the Mayer-Vietoris séquence, where Ût=Uuc(dU):

IHk.x(U)
IHk{dU)^l 0 \-*IHk{Û)-+IHk_x(dU) -

[lHk(côU)\ {IHk.x{cdU))

By (1.3), IHk_x(dU)^-&gt;IHk_x(cdU) and mk(cdU)=0. So it suffices to show

IHk(dU)-&gt;IHk(U) is surjective. But this follows from 7* being zéro in (2.5). This

complètes the proof of (2.3).

To compute IHk(X% consider the Mayer-Vietoris séquence

(IHk(X-U)]
e

IHk(cdU) lHk_l(cdU)

Again using (1.3) and the injectivity of IHk_x(dU) -+IHk_i(U)9 extract from the

Mayer-Vietoris séquence for Ar/ (Ar— Û)ucdU, the vertical exact séquence in
the commutative diagram

IHk(U) &gt;IHk(U,dU)

1

t
i-

IHk(X) -^-* IHk(X, X-U)

IHk+l(U,ÔU) ^Mk(ÔU)

1- 1

(2.6) IHk +X(X9X-U) &gt; IHk(X -
i

IHk(X)

i
0

The vertical isomorphisms are from excision; 5* is injective because IHk + l(U) 0

(1.9); and k+ satisfies the following:

(2.7) LEMMA. k+{co) co • o[/], where t is any k-disc transverse to a k-simplex

of \y\ in X - X2k-i, with boundary dt ^dU, and oriented so that t • y 1.

Proof. IHk(X, X-U) &lt;£— IHk(U9 dU) -^U IHk(U)* Z. Since the second iso-

morphism is the adjoint of an intersection pairing, IHk(U) is generated by a [y|
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and t-y-l9 it follows that any such [/] générâtes IHk(X,X-U). But if w
represents co, then by définition [GM1], the intersection number co • a is computed
by putting w transverse to y so that they meet only interior points of A&gt;dimensional

faœs of \y\ in X— Xlk_1\ while k * co is then just represented by the classes in
IHk(X, X — U) corresponding to the fc-simplices of w which meet y (for U suffi-
ciently small). Each such class has been seen to be ±[t], where the sign is
determined by the intersection number with y.

Now an easy (and standard) diagram chase in (2.6) shows that if a has finite
order, then

IHk(X&apos;)*IHk(X)K&lt;x&gt;

and if a has infinité order, then

rankIHk(X) rankIHk(X) -2.

Hence we may find a corbordism F of A&quot; to Y where IHk{Y) 0; N*= VkjcY is

then a null-cobordism of X.
For application to the odd-dimensional case we append hère some more précise

results about spécial, even-dimensional /P-spaces X2*.

Namely, suppose in the foregoing that IHk(X) Z2, generated by a, /? such that
a2 0 and a • /? 1. Choose a cycle y such that a [y], \y\ is a pseudomanifold,
and U is a regular neighborhood of [y| satisfying the conditions of (1.8), (1.9) with
|x| $. Let iV be the corresponding null-cobordism of X constructed above:

N X x

(2.8) PROPOSITION, (a) There is a split exact séquence

0-&gt;IHk(U)-+ IHk{X) - IHk(N) -&gt;0

where the homomorphisms are induced by inclusions.

(b) IHk(N,X)=0.
(c) IHk+l(N9 X) s Z, generated by cy&apos; {the cône on y&apos;) where y&apos; is a k-cycle in

dU such that i+[y&apos;] [y], i* : IHk(dU)-*IHk(U) and \cy&apos;\ c\y&apos;\ £ c(dU) in N.

Proof. Let W be the cobordism of Lemma (2.3) and let 0 Uvc(dU). Then
there is a Mayer-Vietoris séquence

(2.9) IHk{V)-*\ 0 \^IHk(W)-+IHk_l(U)
[lHk{cÛ)\
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First, IHk(cÛ)=0 by (1.3). Second, IHk_x{U)-+IHk_x(cÛ) is injective (proof
below). From thèse two facts will follow part (a) with W in place of N9 since

IHk(U) ^Z-&gt;IHk(X) is a split injection by construction. To show IHk_x(U) -&gt;

IHk_x(c0) is injective, recall IHj(cÛ, 0) 0,;&apos; £ k +1 by (1.3), so it is enough to
show IHk(0, U) 0, which by excision is IHk(c{dU\dU) 0. Once again, this
follows from (1.3).

Now to complète the proof of (a) we need IHk(W) £ IHk(N). By excision

IHj(N9 W) s IHj(cX\ X% which vanishes for / £ A: + 1 by (1.3). This finishes (a).
To prove (b), first observe that IHk(W, X) s IHk(N, X), again because

IHj(N, HO 0,y £ A: + 1. By excision IHj(W, X) s IHj(cO, U) (for ail y), which we

saw above is isomorphic to IHj(0, U) s IHj(c(dU, dU)9 j? £ k -h 1. For j * this
vanishes, proving (b).

To prove (c) consider the commutative square

IHk+l(W,X)

As we hâve seen above that IHk+x(N9 W) =0, and in the proof of (2.2) that
IHk{X&apos;) 0 it follows that

X(N, X) s cok (IHk + 2(N9 W) -+IHk+x(W, X))

S cok (IHk+x(X&apos;)^IHk+x(W, X))

By duality, IHk+x(W, dW) ^IHk{W)*®Tors IHk_x(Wf By (a), IHk(
and in its proof we showed IHk(N) s IHk(W); hence IHk(W)* s Z. On the other
hand, in the exact séquence

we hâve seen that the extrême terms vanish, while Tors IHk_x(X) s Tors IHk(X$
which vanishes by assumption. Hence Tors IHk_x(W) =0, so //^.^(W)^
IHk(W)*^Z. The fact that it is generated by cy&apos; is left as an exercise to the
reader.
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§3. The linking pairing in odd-dimensional /P-spaces

Let X2k +1 be an orientée! /P-space. Following the muster of surgery theory we
want to cap off cycles to kill classes in Tors IHk(X). Naturally the linking pairing
on this group cornes into the discussion, just as the intersection pairing did in §2.

But hère some second-order, non-torsion information must be included to formu-
late the obstruction to surgery efficiently. We begin with a review of properties of
the linking form adapted to our needs. Much of this material is adapted from [W]9
the only real différence being our lack of framing data from a normal map. This
causes the algebra and topology to be somewhat différent; e.g., the de Rham
invariant appears hère but not in [W],

Let zï9..., zn be allowable, oriented k-cycles in X such that each [z,] is in
TorsIHk(X) and |z,|,..., \zn\ £x are disjoint pseudomanifolds. Let U be the

disjoint union of regular neighborhoods Ut of the \zt\ such that each dUt is

transverse to the stratification of X. To define /([z,], [z,]) choose r, so that rXzt] 0,
then Z, so that ôZt rtzn and set

(3.1) /([zï],[z,])=rr1(ZI-z,)GQ/Z

where Z, has been chosen to meet z, admissibly, hence in isolated points. To make
this work when i =j and to adapt the procédure to the neighborhood U we use

spécial Z/s.
Since IHkJhl(U) 0 Tors/#*(£/) by (1.9), duality says IHk(U,dU)=0.

Hence i+: IHk(dU)-+IHk(U) is surjective and so split (because IHk(U) is free

according to (1.9)). For each i, choose a cycle z\ in dU such that iJiz\\ [z,].
Suppose z,,..., zn generate a subgroup T c Tors IHk(X) and let

(3.2) j:Zn-&gt;T

be the surjection withy^e,) [zj where [et} is the standard basis of Zn. Choose a
basis of ker j,

(3.3) /=XV;î «i^Z, j l,...,n.
Since 0 =j(ft) S (xu[Zj] in IHk(X) there are allowable (k -h l)-chains Z\,..., Z;
in X such that

(3.4) &lt;5Z;=5X*;&gt; / l,...,/i,
and Z; meets U only along the \z) \ for which aiy # 0 and in transverse dises to the

\zj\ in UJ9 one for each isolated.transverse intersection point of Z\ with Zj. (Since ôt/
is transverse to the stratification of X, there is an inward pointing normal field

along the boundary dU of X - Û. Hence there is an allowable imbedding
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\z&apos;j\ x I-+X — Û with \zj\ x {0} sent to dU and its complément to the interior of
X - Û. Now choose Z&quot; with dZ&quot; Z atJ(Zj x {1}) and so that Z&quot; meets each z, in
only isolated points. Take Z\ Z&quot; + E ao(zj x /).)

Pick a /r-simplex in |zy|. Then the dual (in X) (k + l)-cell defines a relative cycle
in UmoddU. (Any such fc-simplex is in the n-manifold X — Xn_2 and U is

assumed chosen so that |fy|nd£/ is the boundary of tj.) It is obvious that

tj • Zj=- ± 1 and will be oriented so as to get the plus sign.

Suppose |Z;|n|£/z,| {Pu Ps} and set

(3.5) ^; z;- U tPm

where /Pm is the transverse cell through Pm.

Then Ê\ is a relative {k -h l)-cycle in Z — Ù mod d£/; let d+ be the boundary

(3.6) d+ :IHk+l(X-ÛfdU)-^ IHk(dU).

(3.7) PROPOSITION. IHk(U) and IHk+x{U,dU) are free of tank n on

{[zj,..., [zn]} and {[*,],..., [tn]} respectively, where tj is any dual (k + \)-cell to a

k-simplex of \z} |, j 1,..., n, oriented so that tt - z} bir The portion of the exact

séquence of (U,dU)

IHk+ï(U, dU) -^ IHk(ÔU) -^ IHk(U)

is short exact, so {d*[tt] [dtt], [zfj]\ij 1,..., n) is a basis ofIHk(dU). We hâve

(3.8) rf*[^]=Iyiy[^]+Za0[z;]

where y (ytJ) satisfies

(3.9) /([z/],[zm])=(a-1y)/mmodZ.

Finally, if ô is the diagonal matrix with ôn =zj • z\ (in dU), then

In particular, ifô^O, then ya* is — \)k+x-symmetric.

Proof It was shown above that i* is surjective; d^ is injective by (1.9)
and IHk(U) is free by (1.9). Since loT$IHk+x(U,dU) is Poincaré dual to
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Tors/^_1(f/)=0 (by (1.9)), IHk+x{U,dU) is free and hence isomorphic to
IHk(U)* by duality; the fact that tt • z, 6y makes {[*,],..., [tn]} a basis.

Since a is invertible over Q, there is an n x n matrix p (/?„) and a positive
integer r such that

pa=rln.

Consequently, dÇLPhZ&apos;t) rzh / 1,...,«, so by définition

zm (mod Z)

1

Finally, the intersection number dj^i\\ • d+[Ê&apos;j] is zéro in 3f7. Hence, for each

i and y,

0

(3.10) COROLLARY. //* A: w t?rfrf, rAen yaf &amp; symmetric. If k is even and
K[zt]&gt; [z,]) 0, i 1,. h, ^« admissible k-cycles zt can be chosen in dU such that
U[z&apos;i] [zt] and z\ • z\ 0 m 3f/. Consequently, ya* is skewsymmetric.

Proof. If &amp; is odd, the intersection pairing on IHk(dU) is skew-symmetric so

5=0. If A: is even and l([zt], [z,]) 0 for ail i, we will show that for any choice of
z\ a dU with i+[z&apos;t] =[z,],

(3.11) z&apos;rz&apos;l=2pn pteZ.

Changing z\ to z\ -p,(dtt) gives the desired conclusion.
Set z, z and z&apos;, z&apos;. Recall that /([z], [z]) (l/r)(Z&apos; • z), where Z&apos; is a (k -h 1)-

chain such that dZ&apos; rz&apos; and \Z&apos;\ intersects U only along dual (k + l)-cells, say
kpj&apos; • • • »

l&apos;/J» t0 smooth points of z in X - Xn_2, at which Z&apos; and z intersect
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transversely. Thus there is an integer in such that r | m and

where e(pt){ ± 1) is the intersection number at pt. Consequently, in X — Û,

so

(rz&apos; - X e(p, Ôt, y (rz&apos; - £ £(/,, 5f, 0

in 5£/. Multiplying out, we get

Since r \ m, z&apos; • z&apos; is even, as claimed.

(3.12) PROPOSITION. Let X2k+l be an oriented IP space. Let

[zj,..., [zn] e IHk(X) be torsion classes, U \jUt a regular neighborhood of u |z,|,

and Ê[ relative (k + \)-cycles ofX— Û moddU satisfying (3.1). Given any —1)*+1-
symmetric p e Mn(Z), there are k-cycles wt in X with [wt] [zt] in IHk(X)9 a regular
neighborhood V u Vt of u|w,| and relative (k + \)~cycles W[ of X — V moddV
such that

d*\ft\\ I (y + «p)J^] -h I «&gt;;].

REMARK. Now that a-I(y+ap)=a-1y+P=a&quot;1y mod Mn(Z), so that the

linking forai is unchanged (see (3.9)), as it must be.

Proof In case p has the form \i -H —1)* + x\i\ it is evidently sufficient to make
the construction in the spécial case

where epq is the matrix with {p, q)-tnïty equal to one and ail other entries zéro.
Pick distinct points x and y in the interiors of fc-simplices of \zp\ and \zq\,

respectively, and an imbedded path in X — Xn_1 Connecting them and meeting
them only at its endpoints.
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Let \YP\ be the track of an ambient isotopy which drags (only) a small

neighborhood ofy in \zp | across (and past) x in \zp | along the path Connecting y and

x; let \YP\ be the track of the resulting isotopy of \ZP\. Then \YP\ and \YP\ define
allowable (k + l)-chains Yp and Yp oriented so that

where \zp\ and \zp\ are the results of the above isotopies of \zp\ and \zp\. Further-
more, by construction

Weset

w,

It is clear from the construction that it is sufficient to show

(3.13) ^;-w,-Z;-z,

Since by the construction of W\ and w, and the choice of p, both sides of (3.13) are
zéro ifj^p or q, we assume to begin with that j q. If p # q then wq zq so the
left side of (3.13) is olipY&apos;p • zq olip (&lt;xp)I&lt;r If p q, then wg=zg9 so the left side

of (3.13) is

(zq~zq) &lt;xip + z; • ar.

If j =p, the proof of (3.13) is similar.

Every skew-symmetric matrix is a sum of matrices p as above; and every
symmetric one is such a sum, plus a diagonal matrix. Hence, to finish the proof we
need the case where p is diagonal. This uses a homological version of twisting the
&quot;normal field (which gave us z&apos;t) on zr&quot;

Inside a Euclidean neighborhood N, in X — X^- \ and disjoint from ail the Z&quot;s

and z&apos;s, pick a standardly imbedded fc-sphere a ok. In the boundary of a tubular
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neighborhood T of a there is an imbedded fc-sphere a\ homologous in T to &lt;r, and
in N a (k + l)-chain Z&quot; such that Z&quot;ncr 1 and 32&quot; a&apos;. Let wx be the connected

sum (through X — A^-1) of the cycles zx and &lt;r. There is a regular neighborhood
Ux of h&gt;! in A&quot; and a cycle h&gt;î in dUx which is the connected sum of z\ and c&apos;.

Connecting up 0LltIf with ZJ, for each i, yields a (k + l)-chain W,&apos; with

Evidently, setting w( zl9 w\ zj and W\ ZJ for i # 1,

Hence, if p =diag(l,O,... ,0),

as required.

(3.14) PROPOSITION. Let X2**1 be an IP-space.
(a) Ifk is odd then one may choose generators [zx],..., [zn]for Tors IHk{X) and

admissible relative {k 4- \)-cycles Ê\,..., Ê&apos;n in (Xo, OU) as in (3.5) such that y is

invertible in (3.8).
(b) Ifk is even and the deRham invariant ofX2**1 is trivial, then one may choose

generators [zx\ [zn]for a subgroup S £ Tors IHk(X\ where \S\2 \Tors IHk(X)\
and /(5, S) 0, and admissible relative (k + \)-cycles Ê&apos;l9...,Z&apos;n in (Xo, dU) as in

(3.5) such that y =0 in (3.8).

Proof. (a) It is well-known ([W]) that every nonsingular linking form

l:Tx T-+Q/Z

admits a resolution: there is an (n x ri) symmetric matrix a e Mn{T) so that

(a) cok(a:Zn~&gt;Zn)^r
(b) if y : Zn-*coka s T is the surjection induced from (a) and a&quot;1 € Mn(Q) is

the inverse of a, then (a&quot;1)^ l(j(ep)J(eq)\ mod Z where el9..., en is the

standard basis of Z&quot;.

Use such an a in (3.4) to construct the Zf&quot;s. Then from (3.9) we also hâve

(« ~ xy)Pq Kj(ep)J(eq% (mod Z) where p,j l,...,«
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and ot~ly is symmetric by (3.10). Hence

is an n x n symmetric matrix in Mn(Z). Thus our conclusion follows from (3.12).
(b) If the deRham invariant is trivial, then there is a submodule S £ Tors IHk(X)

having the desired properties. Choose generators [z, ],..., [zn] for it. Since
/1 S x S 0, (3.9) says &lt;x~xy has intégral entries; and (3.10) says we can choose the
z\ so that a~ly is skew-symmetric. Taking p — a~ly in (3.12) gives the conclusion.

§4. Odd-dimensional /P-cobordism

It is not possible to reduce the size of IHk(X2k+l) by coning off the boundary
of a regular neighborhood U of a cycle (as was done in the even-dimensional case):
for the cône to be an /P-space its base d U the link of the cône point) would hâve
to satisfy IHk(dU) =0. This is never the case, even if the cycle in question is

null-homologous.
However, according to (2.8), ôU does bound an /P-space N2k + l. We begin by

checking that (X — Û) u N is /P-cobordant to X. Then we examine the effect of this
opération on IHk.

Let zu zn be h -cycles in X and z{,..., z&apos;n, A:-cycles in dU satisfying the
conclusions of (3.7). Let U û TJl where Ut is a regular neighborhood of |zf|. Let
Nt be the null-cobordism of dU, constructed in (2.8) by coning off a regular
neighborhood of z\ in dU.

(4.1) PROPOSITION. Y2k + 2:=XxIvUx{y(vlc(UtvNt)) is an IP-cobor-
dism between X X x {0} and X&apos;t=(X x{\}-U x {1}) u(ulATl).

Proof. It is clear from the fact that X —Û and uNt are /P-spaces with boundary
dU that X&apos; is an /P-space. Similarly, to see Y is an /P-space, it suffices to check the
link conditions (1.4) at the cône points. This means showing

(4.2) Tors///*(£/, u AT, )=0, for each/.

Dropping the subscripts, look at the Mayer-Vietoris séquence:

[IHk(U))

[IHk(N)\ U

where N*= uNt. By (2.8)(a), a is an isomorphism and by (2.8)(b) b is injective,
giving (4.2).
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(4.3) THEOREM. An IP-space X2**1 bounds ifk is odd, orifkis even and its
deRham invariant is trivial.

Proof. If k is odd choose by (3.14)(a) generators [z,],..., [zn] of Tors IHk(X),
a regular neighborhood U of v\zt\, and fc-cycles z\9..., z&apos;n in dU so that y is an
isomorphism in (3.8). If k is even and dR(X) 0, apply (3.14)(b) to get y 0 in
(3.8).

Using the Y and X&apos; constructed in (4.1), consider the braid diagram

a

(4.4) IHk + 1{X&apos;) IHk+l(Y, X) IHk(X)

/ V / \ / \

IHk+x{Y,X) IHk(Xf) IHk(Y,X)

(4.5) CLAIM. IHk(X&apos;) is torsion free.

This will complète the proof, for then YkjcX&apos; will be an /P-null-cobordism of
X. (4.5) will be proved, following some preliminary work, in (4.8) and (4.9)
below.

Recall from (2.8) that to construct the null-cobordism of dU, the cycle z\ was
&quot;pushed out to the boundary of a regular neighborhood&quot;. Call this cycle z&quot;. Then
the boundary of the regular neighborhood was coned off. Thus, the cône onzj&apos;, cz&quot;,

is a (k + l)-chain in Wt (cf. (2.3) and the proof of (2.8) for W\ hence in Vt\ it is

easily checked to be admissible.

(4.6) LEMMA. In (4.4), IHk+l(Y, X) isfree on the classes [czf[l..., \cz&quot;n\ and

IHk(Y, X) 0. The homomorphism IHk+l(X) -+IHk+x{Y, X&apos;) is trivial.

Proof. For / 1,...,«, //f/^^uiV,), Utu Vt) =0 if y^ifc + 1. Hence

IHj(Y, X) s IHj(Y, Xxl)^ IHj(X x lu u, Ni9 X x I) s ®IHj(Nt9 dUt\ where

the last isomorphism is by excision. The first conclusion now follows from (2.8)(b)
and (2.8)(c).

Tors IHk+l(Y, X&apos;) s Tors /i/*(F, X$ 0 by the first part; now the commuta-
tive diagram
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IHk +, (JT)/Tors IHk +l(X) &gt; IHk +, Y, X&apos;)

shows the triviality of the top homomorphism because the image of â was assumed
torsion. This gives the desired resuit.

(4.7) LEMMA. There is a commutatioe diagram (up to sigri)

IHk+l{Y) -±+ IHk+l(Y, X&apos;)

t

¦1

IHk+l(X) &gt;IHk + l(X- Û, OU) -U IHk+l(U, OU)

where g is the homomorphism d+ : IHk + 1(X — Û, dU) -*IHk(dU) o/(3.8) composée
with the splitting a : IHk(dU)^IHk+l(U,ôU) of IHk+t(U,ôU)^IHk(dU), in-
duced by the basis of IHk(ôU) given in (3.7).

Proof. Two of the verticals are isomorphisms by (1.3); the others are excision
isomorphisms.

Let Ê be a relative (k + l)-cycle in X-ÛmoddU. Let [df,],..., [dtn],

[z\],..., [z&apos;n] be a basis of IHk(dU) satisfying the conclusions of (3.7). Since
[z&quot;] [z&apos;,\ in IHk(dU) (cf. the paragraph preceding (4.6)) it is possible to take z&quot; as

représentatives of thèse classes. Let

«/•£] I y. [0*,]+ !«,[*:]

in IHk(ôU). Using the collaring of dU in X — Û it is easy to arrange that Ê meet
dU only along the sets \z&quot;\ and \dt,\ (as was done in §3).

Let Z be the cycle in Y&gt;=X x /u(uc(f/,u7V,)) obtained from Z (viewed in
X x {1} c y) as follows:

z«2 + £-y,/,+£-«.«)
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where cz&quot; is the (k + l)-cycle in Nf appearing in Lemma (4.6). Evidently Z is a

(k + 1)-cycle in Y whose class corresponds in the diagram to [Ê] in IHk+ X(X — £/,

5f/). As \i\ and |ez;&apos; | are in X&apos;9 the image of [Z] in IHk+l(Y9 Xe) is Z -y.fo] which
clearly corresponds (under the right vertical séquence of isomorphisms) to the class

in IHk+ x{UydU) denoted the same way. But by définition of g, the above formula
for d+[Ê] shows g[Ê] Z y,[f,]. So the right side of the diagram commutes up to
sign. It is obvious that the left side also commutes.

(4.8) PROPOSITION. Let k be odd. If U is chosen to satisfy the conclusion of
(3.14Xa) then IHk(X&apos;) is free in (4.4).

Proof IHk(Y,X) =0 by (4.6). Since it was assumed, in case k is odd, that
im ô Tors IHk(X) in (4.4), IHk(Y) must be free.

Since y in (3.8) is an isomorphism, it is immédiate that g is surjective in (4.7) so

by commutativity in (4.7), IHk+l(Y)-+IHk+l(Y,X&apos;) is as well. Thus IHk(X&apos;)-+

IHk{Y) is injective, so we are done.

(4.9) PROPOSITION. Let k be even. IfUis chosen to satisfy the conclusion of
(3.14X6), then IHk(X) is free in (4.4).

Proof First consider the modified braid

IHk(Y)

where

IHk +, (*&quot;) IHk +, IHk+2(Y, Xu JT)

and

and 7 and /F are the induced maps (using the second statement of (4.6) to define

h).
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First, h=0: this is immédiate from (4.7), (3.14)(b), and the identification of g
with y upon passage to IHk + l(X — U,dU). Hence Tis an isomorphism so/induces

im i £ im d.

Second, from the diagram

and the surjectivity of the top map (by (4.6)), it follows that / is itself surjective.
Now from above, im / £ Tors IHk+ ,(r, X&lt;oX&apos;). Also, since

|im d\ |Tors IHk(Y)\ |Tors IHk+l(Y, XuX&apos;f | |Tors IHk+ ,(7, XvX%

Now using |im i| |im d\,

(4.10) im i Tors IHk+l(Y, lui&apos;).

Finally consider the ladder

Tors IHk+l(Y,Xv JT) -^^ Tors IHk(X&apos;)

i i

i i
i(7, Zu^O/Tors IHkW)/Tors
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From above, /? is injective; and ô is surjective because IHk(Y,X) 0 (4.6).
Thus ô | Tors is surjective. But it is also trivial by (4.10). This implies IHk(X&apos;) is

free.

§5. The characteristic variety theorem

Let QiP(X) be the bordism of maps Nn-+X9 where N is an n-dimensional
JP-space, defined a la [CF]; the proof given there that Q&apos;/(X) is a generalized
homology theory works hère with one addendum: to replace [CF, (3.1)], given
closed disjoint subsets P and Q of an IP space iV, one needs an IP space N&apos;n (with
non-empty boundary, in gênerai) such that P cN&apos; c N and QnN&apos; &lt;£. For this,
one may assume P and g are subcomplexes and take N&apos; to be a regular neighbor-
hood of P. Then the boundary of N&apos; can be taken transverse to the stratification (in
fact to a triangulation) of N, so N&apos; is an IP space with collared /F space boundary.
Likewise we dénote the bordism group of maps Jfn-+X9 where Jfn is a Z/k-IP
space (defined following [MS,§1]), by O£p(Jf; Z/fc); this defines a generalized

homology theory Q?(X; Z/k), for each k è 0.

For a fixed integer A: &gt; 0 let

(5.1)

12:0

/2&gt;0

f ; Z/k) ¦Z/k

be a commutative diagram in which the verticals are the natural maps, Û1/ dénotes

reduced bordism, and such that for ail i, the periodicity relations

(5.2)
l + 4(Z/k)((jr-+X) x CP2) h

are satisfied, where N (resp. ^40 is 4/-dimensional IP space (resp. Z/fc — IP space).

The set of such diagrams forms a group denoted G(X9 k).
For each /&gt;0 and each {/*„ h^Z/k)}^e G(X9k), there is an élément of

G(X, kl) defined by the outer part of the diagram

x/ z

1 I

G4l(X; Z/kl) ¦ Z/k -^ Z/kl
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This defines a homomorphism G(X, k) -&gt; G(X, kl) and we set

221

The characteristic variety theorem, proved by Morgan (unpublished) for a
différent bordism theory, is:

(5.3) THEOREM. For anyfinite CW complex X, there is a natural isomorphism

of sets

li:[X9G/TOP]^QIP(X)per.

(5.4) REMARKS, (a) Define a negatively graded cohomology theory in the

usual way:

Then thèse groups are periodic mod 4. For

glim

0 O&apos;

s -«(4)

i i

The proof of (5.3) will show that this cohomology theory is naturally isomorphic to
that of the G-spectrum G/TOP.

(b) A standard argument, which uses the Bockstein séquence relating Q&apos;/(X) to
Q&apos;f(X; Z/k), shows that

(5.5)

(cf. [MS, §2]).



222 W L PARDON

To prove (5.3) it is enough to construct a natural fi and then show it is bijective
for X Sn9 n ^ 0. Since ail of our topology has been (in §2-4) and will be in the

p.l. category we need to &quot;reduce to G/PL&quot;; and because of periodicity we can
reduce to showing bijectivity on Sn9 n &gt; 0. Thèse things will get us around
low-dimensional anomalies (e.g., the non-trivial A:-invariant in

(5.6) PROPOSITION. To prove (5.3), it is enough to construct a natural map
of sets

bijective ifX^Sn,n^ 8.

Proof. Recall that the fibre of the natural map G/PL -? G/TOP is K(Z/2, 3) and

that there is a homotopy équivalence G/TOP ^Q\G/TOP). (See, for instance, [Sb,

p. 327].) Assuming the natural map v exists, define \i to be the composition

[X9 G/TOP] -=-&gt; [X, Q\G/TOP)] -^- [Z8X, G/TOP]

-=U [I8*, G/PL] -1 ±

Since ail the isomorphisms are natural, so is /x; and its bijectivity will follow from
that of v for 5&quot;, n :&gt; 8.

(5.7) To construct the map v, suppose given a : X^G/PL. Equivalently, this is

a pair (rç, tx) where r\ is a p.l. bundle over Xand tx is a fibre homotopy équivalence
r\-^-&gt;eL. If f:N-+X (resp. q&gt; \Jf-*X) is a représentative for an élément of
Q&apos;np{X\ n 4i (resp. Q&apos;np(X; Z/k)) we need to produce an élément of Q (resp. Q/Z)
so that (5.5) commutes. This will be done in (5.16) and (5.21) below. We work
temporarily with f:N^X only, since the constructions for q&gt; are basically the

same.

Pulling (rj, tx) back over N gives a pair (^, tN) over N. Let R be a regular
neighborhood of a p.l. imbedding of N in UK9 K P 0 and let c : R -* N be a p.l.
collapse. Let (7 be the total space of a dise bundle of c*£. Using /# and the obvious
collapse SK-+R/dR, U admits a spherical réduction

(5.8) p:SK+L-+U/dU.

According to [Me, §4] the transverse intersection of the graph F(p) and the
stratified space SK+ L x N in SK+ L x (U/dU) is a stratified space M M4i with the

same local structure as SK+L x N; in particular Af is IP space. Transversality in
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this context implies that M has a p.l. normal block bundle v in SK+L x N which is

equal to the restriction to M of the normal bundle of F(p) in S1 x (U/dU).

u/au

N*SL

-L+K

In particular we hâve a normally non-singular map g (see [GMII, 5.4])

E(v) L NxSK+L

(5.9) î &lt;

M -^iV

where î is the zéro section and y is an open inclusion. We may and will replace SK+L
by UK+L when convenient. Then g induces maps

g, : g* : IH* IH+

essentially given by image and inverse image of cycles, and satisfying the projection
formula

(5.10) g*{g*zy)=zg+y.

(5.11) PROPOSITION. The homomorphism g* is a surjection in each degree,
and ifxe IHk{M), y e IHn_k(M), gm(x) • gm(y) =x-y.

Proof. The first assertion follows by taking y 1 in the projection formula. The
second follows by taking z =g*x in the projection formula and using the fact that
g*g*x x.
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(5.12) REMARKS, (a) The construction of g in the diagram (5.9) evidently
generalizes that of a normal map of manifolds M -+N from a map N -+ G/PL.

(b) Changing the imbedding of N in UK9 Kt&gt;09 the collapse c, the choice of a
in its homotopy class, the choice of N in its class in Q&apos;f(X\ or the perturbation of
F(p) to transverse position with N x SK+L9 will change the diagram (5.9) by a
cobordism in the obvious sensé. We refer to such a cobordism as a normal
cobordism.

(c) Let £i&quot;! dénote the bundle nf Ç~l over N xUK+L9 where Ç~l is a stable p.l.
inverse to Ç over N. Then we claim that the normal bundle to the inclusion
M E(v) iVxlR^+Lc^ E(£ïl) is trivial, hence extends to an open inclusion

(5.13) M x DJ c&gt; Etf-1) (5.13)

where Ç~l is a(nother) stable inverse of £ over N. Evidently this will follow if we

can show that { restricts (stably) to v over M.
For this, note that by construction p : SK+L-*UjdU restricts to the canonical

collapse k : SK-+R/ôR and that the normal bundle of R in U is {. Consequently,
the stable normal bundle of M T(p) n (N x SK+L) in r(k) n(NxSK)=N is the
restriction of £ to M.

We will refer to this &quot;stabilization&quot; of the normally nonsingular map (5.9)

MxDJL

(5.14)

M -^N
as a normal map also. From now on we work exclusively with it. The following
proposition is the central homological fact about thèse normal maps.

(5.15) PROPOSITION. Let g:M4l-^N4t be the normal map in (5.14). //
x € ker g* : IH2l(M) -&gt;IH2l(N\ then x - x is even.

Proof. Since Ç~l is fibre homotopically trivial, it has trivial Stiefel-Whitney
classes. Let s : N-+E(Ç~l) dénote the zéro section, and let IH+ mean intersection

homology with Z/2-coefficients. Then Sq2ls+z =s+Sq2lz for each z e IH2l(N)9 by
[GP, 4.2]. Any y 6 IH2l(E(Z~1)) is s+z, for some z since s* is an isomorphism. Thus

we hâve n*Sq2ly n+Sq2ls+z Sq2lz Sq2ln+y. Again by [GP, 4.2], for any
xeIH2l(M), i+j*Sq2lx Sq2liJ+x. Consequently, if xe ker g*, 0 Sq2lg+x

g*Sq2lx. But g* is the identity on IH0, so Sq2lx 0. Since Sq2nx -x - x mod 2, the

proof is complète.
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(5.16) COROLLARY. In the notation above, for each homotopy class of maps
ol : X-+G/PL there is a well-defined homomorphism

ht:Q&apos;£(X)-+Z

given by

hl(f:N+X)

where &lt;r(kerg*) dénotes the signature of the intersection form on

ker g :IH2i(M)^IH2l(N).

(5.17) Next, given a normal map of Z/k manifolds

M xDJ

(5.18)

M &gt;JT

arising from a Z/Â&gt;bordism élément Jf -? X and a map X-+G/PL (as constructed
in (5.7) and (5.12)(c) above) we need an élément of Q/Z to use together with ht in
(5.16) in a commutative diagram (5.5). This will be done, following [MS], by
associating to the bockstein of (5.18) an élément of Z/8, hence to (5.18) itself an
élément of Z/k (g) Z/8 Z/(k9 8) £ q/z. In more détail, given a (An - l)-dimen-
sional surgery problem g : M -+N (normal data omitted from the notation) of p.l.
manifolds, each (In — 1)-cycle in the 2-torsion subgroup of ker g* : H2n-\(M) -&gt;

H2n -1 (N) is represented by an imbedded submanifold having a non-zero section
of its normal bundle. Using this &quot;normal field&quot;, Morgan and Sullivan define a

self-linking form on the torsion subgroup of ker g*; a &quot;Gauss sum&quot; of the values

of this form is the Z/8 invariant referred to above.

We will proceed in the same way hère. The détails are necessarily more
complicated because our cycles hâve no chance to be represented by imbedded

submanifolds nor even by normally nonsingular maps (which do hâve

normal bundles) of stratified spaces to M (now an IP space). Hence no normal
bundle, let alone normal field, is possible in the usual sensé. The substitute is the

following.
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(5.19) DEFINITION. Let M be a stratified pseudomanifold and let zcM
be an allowable cycle. A normal field on z is an allowable chain z x I a M
extending z.

Given such a normal field on a représentative x for a e Tors IH^_ x{MAn~*)
let jc&apos; jc x {1} and let w be an allowable 2n-chain with dw sx, where 5a 0.

Define

(5.20) q((x) w - x&apos;/2s e Q/Z. (5.20)

The fact that this can be well-defined is the non-trivial part of the following
proposition, whose proof will be given at the end of this chapter.

(5.21) PROPOSITION. Given a normal map of(4n - \)-dimensional IP spaces

MxDJ

(5.22) î

there is a function q : Tors IK2n _, (g) -» Q/Z, IK2n _, ker g+ : IH2n _ x (M)
IH2n_x(N)9such that

2q(a) /(a, a)

where l : AT2n _ i (g) x K2n _ {(g) -? Q/Z w fA^ linking form. Define

G{q) X e2mq(a) G z/8-
a e K2n - i (g)

r/i^« if (5.22) w /A^ boundary of a normal map of An-dimensional IP spaces, its
signature {in the sensé o/(5.16)) is congruent mod 8 to G(q).

Now just as in [MS, §5], this proposition shows that the maps arising from a

homotopy class a : X --&gt; G/PL,
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from (5.16) and

Q4i(X;Q/Z)-+QIZ

given by the Gauss sum from the bockstein in (5.21) together produce an élément
v(a) of 0/F(Ar)per as described in (5.4)(b). The fact that this élément is well-defined
is completely routine, given (5.12)(b).

So given this last proposition, what remains (see (5.6)) is to show that
v : [Sn, G /PL] -+fifP(Sn)per is an isomorphism, n ^ 8.

Recall that we hâve shown in §2-4 that

fZ, n s 0(4)

Z/2, «5l(4),ol
[0, otherwise

Since Û{p(Sn; R) s 0f_ i(5&quot;~!; R), for k &gt; 0, n &gt; 0 and R Q or Q/Z, we hâve

4i&lt;n
(5.23) fl^S.JI)

It follows easily from this and (5.4)(b) that

so that &amp;//&gt;(S&quot;I)Per and [5n, G/PL] are abstractly isomorphic for each n ^ 0. We need

to show v induces an isomorphism for ail n ^ 8.

Begin with the case n =4k + 2. Let c/T6 be a Z/2-manifold with non-trivial
de-Rham invariant on its bockstein. For instance, take the non-zero représentative
of (2f° Z/2, SU3/SO3; it will hâve non-trivial deRham invariant, and there will be

an oriented 6-manifold iV with boundary SU3/SO3kjSU2/SO3. Identifying the

copies of SU3/SO3 by an orientation reversing homeomorphism gives Jf. This Jf
also represents the non-trivial élément of Q&apos;fiQ/Z) Z/2, so (CP2)k x jV repre-
sents the non-trivial élément of fl^ + élQ/^), for any k ^ 0. The suspension

isomorphism for Qlf(—; Q/Z) again says, for 4i &gt; 4k -h 2,

(5.24) fljf(S4^ + 2, Q/Z) s Oif_4.-2(Q/Z) S Z/2
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where the non-trivial élément is représentée! by

&lt;p :

(The isomorphism (5.23) is given by sending (p : M -&gt;S4k + 2 to the Z/2 — IP space
&lt;p~x{p), where cp has been put transverse to p e S4k + 2.)

Let a : S4k + 2-&gt;G/PL represent the non-trivial élément of [S4k + 2y G /PL] Z/2.
Then carrying out the procédure of (5.7) with this a and &lt;p as above produces the

Z/2-surgery problem

*&quot;2 x/x (K4k + 2-+S4k + 2)

where K4k +2 -&gt; S4* + 2 is the Kervaire problem. Since the Gauss sum G(q) (in (5.21))
of its bockstein is non-trivial by [MS, Theorem 6.1], v(a) is the non-trivial élément

Finally we show v induces an isomorphism [S4k, G /PL] -?fi/pOS4*)per» A: ^ 2. By
a discussion completely analogous to that above, a generator of Q4t(S4k) Z, i &gt; k,
is f:(CP2)&apos;-kxS4k-+S4k. Let &lt;x:S4k-+G/PL be a generator of S4k-+G/PL.
Carrying out the procédure of (5.7), with this a and/, produces the surgery problem

(CP2y-kx(M4k-+s4k)

where M4k has signature 8. It foliows easily from (5.16) that v(a) is the generator
of ÛIP(S4k).

(5.25) To complète the proof of (5.6) and hence of (5.3), it remains to prove
(5.21). Changing notation slightly, let

M xlk

(5.26) I

M -£-&gt;N

be a normal map of IP spaces M and N9 where dim M dimN 4n — 1,

/ [ — 1,1] and k &gt; 0. Motivation for the construction to follow can be found in
Remark (5.36) below.

Given a (In — 1)-cycle x representing a e IK2n-i(g) #=ker g* : ///2«- i(^O -*
///2/ï _ (N), we view it as a cycle inMx{0}çMx/* which is the boundary of an
allowable 2n-chain y in E(Ç~l). We may assume that (\y\, \x\) is a pseudomanifold
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with boundary, where the collaring factor [0,1] of |jc| in \y\ is identifiée with [0,1]
in the first /== [ —1, 1] in /*.

Let R Rk + 4nl be the relative regular neighborhood of \y\ in E(t~l)9
meaning that S Sk + 4&quot;-2*=Rn(M x {0} x Ik~l) is the product of 7= TAn~\
a regular neighborhood of |jc| in M, with Ik~\ and Rn(M x Ik) T x
[0, 1] x Ik~!. Note that S is collared in R and that R is a (k + An — l)-dimensional
pseudomanifold whose boundary décomposes into SuôrR where S ndrR =dS.

We thus hâve

(5.27) (a) the inclusion of collared pairs (|&gt;&gt;|, |x|) c» (R, S) where

(b) S T x [0, 1] x /*- \ T is a regular neighborhood of |x| in M and
R is a relative regular neighborhood of \y\ in £(^~1), and

(c) dR SvdrR,dS SndrR.

Consider the diagram of vertical and horizontal exact séquences

(5.28)

IH2n+l(R,ÔrR) —

I i

IH2n +l(R,Sud,R) IH2n(drR, dS) -£-» IH2n(R, S)

I- 1 I

IH2n(S u dr R, drR) &gt; IH2n _ (dS) —^ IH2n _ x (S)

i

IH2n(R, àrR)

First of ail we know 1.9)) that

/ r OQ\ JJ-f J? Ç!\ ~ TfJ C\ __ ~ïï

with source generated by [y] and target, by [x]. The exact séquences in the diagram

give us:

g : IH2n _ (dS) -&gt; ///2m _ (S) is an isomorphism
(5.30)

if k &gt; 1 and is surjective if /c 1
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p : IH2n{drR, dS)-*IH2n(R, S) is an isomorphism
(5.31)

if k &gt; 1 and is surjective if k 1.

The second assertion follows from the vanishing of IH2n(R9 SuôrR) IH^iR, dR)
for k ^ 1 and of /i/2w +1(R, dR) for k &gt; \. This in turn follows by duality from the

vanishing of IHj(R) for j ^ 2« and its torsion-freeness for y ^ 2w — 1 (see (1.9)). The

proof of the first assertion is similar.
Assume k&gt;\. Then by (5.30) and (5.31) there is an admissible relative 2n-cycle

y&apos; in drR, unique in IH2n(drR,dS), such that x&apos;*=dy&apos; is an admissible {In - 1)-

cycle in dS and

(5.32) p[y&apos;]=[y)

(5.33) «1*1= [jc].

We may assume (\y&apos;\, |x&apos;|) is a (collared) pseudomanifold pair. Now

dS d(T x /*-*) ÔT x /*-* u T x 5/*-!

and evidently we can also choose [x*] satisfying (5.33) to be represented by
x x (0,..., 0, 1) where

But by (5.30) the class [x&apos;} satisfying (5.33) is unique, so x&apos; is admissibly ho-

mologous to x x (0,..., 0,1). Using the collar factor [0, 1] in T x [0,1] x Ik~\ we

may append an allowable homology of x&apos; to y&apos; to get x&apos; x x (0,..., 0, 1).

Now let R&apos; be a regular neighborhood of y&apos; in drR, let S&quot; be the regular
neighborhood T x Ik~2 of x&apos; in dS, and push S&apos; back along the last factor of
Ik~l (taking a collared neighborhood of S&apos; in Rf with it) so that
R&apos;n(M x/*-2) rx/*-2.

We hâve now reproduced the data (5.27) used to make the above constructions,
but with k replaced by k — 1 (assuming k &gt; 1). Since ôrR and ôS are transverse to
the stratifications of E(Ç ~l) and M x /*, what we hâve also done is to produce a

normal field on \y&apos;\ in E(!;~x) which restricts on |jc&apos;| to the normal field given by the

last factor in /* where |jc&apos;| |jc| c M x [0, 1] x Ik~x a M x Ik. We may now repeat
this process, eventually reaching k 1. This means we hâve (5.27) where

(5.34) (a) dim R An, R R x {0,..., 0} c R x Ik~l c
(b) dim S te 4n - 1, S T x (0,..., 0) £ T x [0, 1] x /*-l ^R x Ik-\

where the first inclusion is induced by M £ M x /* and the second

by the collaring T x [0,1] S x [0,1] s /?.
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(5.35) REMARK. Hère is the first key homological point. We can push
[x] e IH2n-\(S) (homologically) out to the boundary of its regular neighborhood
by (5.30) where k 1. This how the self-linking of [jc] in (5.20) is to be defined. But
there are infinitely many ways to do this: kera : IHln_ \(dS) -&gt;IH2n_ \(S)
IH2n(SKjdrR,erR)^IH2n(S9dS)^IH2n_l(S)* Z, by (1.9). (If S were a normal
dise bundle neighborhood of a smoothly imbedded (2w — l)-manifold |jc| in a

smooth M4n~\ a choice of [jc&apos;] such that o[x&apos;] —[x] corresponds to a réduction
of the group of the bundle from GL2n to GL2n _,, or to a nowhere zéro section; i.e.

a normal field on |jc|.) The point of our construction is the observation made in
[MS, p. 501]: if the choice of [x&apos;] is made so as to corne from a [y&apos;] such that
p[y&apos;] [y] (which is also non-unique) then the choice of[x&apos;] becomes unique. This
follows from the fact that t=0 in (5.28) when k — \. We will not use this

uniqueness explicitly, but it helps explain how the &quot;normal bundle information&quot;,

M x Dk c+ E(Ç~l) is being used to construct the &quot;normal field&quot; on \x\ in the

définition of q(&lt;x) in (5.20).
The second key point is the framing information in (5.22). It is used to show

that any two choices of x&apos; above lead to the same q[x]. In fact, let jc0 and x,
be allowably homologous (In — 1)-cycles representing a ekerg* : IH2n_x(M) -+

IH2n_x(N). Suppose xt=ôyn ytciE{^~x). Using the procédure above, we may
assume the data of (5.27) and (5.34) for both (|}&gt;o|» |*o|) and (tvi|»|*i|)- since

[x0] [jc,], there is an admissible 2«-chain

XœM xi
such that dX jc, — jc0. Thus, with the obvious notation we hâve

x[0, 1] xIk~lKjRl xlk~

(RouMx[0,l]vRl) x/*-1

x [0,1].

Push y, out to y\ £ drRt using (5.31); let X&apos; £ M x [0, 1] be an admissible homology

from x&apos;o to x\9 x\-tdy\.

(5.36) LEMMA. X • X&apos; is even.

Proof. In RovM x [0, 1] u Jli, the self-intersection of the class represented by
the cycle y0 -h X - yx is

(5.37)
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which is X • X&apos; since y0 • y&apos;Q 0 yx- y\. But we hâve the data for a normal map

x[0, \]uRx) xlk~l xC c+ E(Ç~l) xi
î A

-&gt;NxI

used in the proof of (5.15), where C is a collar factor and yo + X — yx is allowably
null-homologous in E(Ç~l) x I. This shows (5.37) is even.

(5.38) PROPOSITION. Let &lt;x e Tors K2n_x(g), as in (5.21). Choose a représentative

xfor a, a regular neighborhood S of \x\ in M and a cycle x&apos; in dS by applying
the procédure of(5.25) -(5.33) k times. Then if soc 0 and dw =sx9

w -x&apos;/2s eQ/Z

dépends only on [x].

Proof For fixed x, independence from the choice of w is well-known and easy.

Using the notatin of the lemma, the 2n-cycle wo + sX — wx in Mxl has self-

intersection number zéro, as do ail 2n -cycles in M x I. Using the argument for
[MS, Fig. 5.8] this number is

sw0 - x&apos;o + s2X - X&apos; — swx • x\.

Divide by 2s2 to finish the proof.
The rest of the proof of (5.21) is routine, in the sensé that it follows [MS].

Hence the proof of (5.3) is complète.
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