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The maximum principle at infinity for minimal surfaces
in flat three manifolds

William H. Meeks III* and Harold Rosenberg

1. Introduction

Maximum principles are used as basic analytic tools for studying properties of
functions defined on domains in Un and satisfying certain équations (e.g. elliptic).
In gênerai thèse maximum principles play a fundamental rôle in analysis on complète
Riemannian manifolds, especially in the study of variational problems. For example,
the well-known maximum principle for harmonie functions has had both a simplify-
ing and unifying effect on the fields of harmonie and complex analysis.

H. Hopf [18] gave an important gênerai maximum principle for second order
linear elliptic partial differential équations. The Hopf maximum principle easily
yields a maximum principle for solutions of the minimal surface équation. In this
context the principle states that if D c U2 is a smooth connected domain and/i,/2
are two smooth functions on D that satisfy the minimal surface équation, then the

différence/! — f2 cannot hâve an interior maximum or minimum unless the différence
is constant.

The maximum principle for minimal graphs gives rise to the following géométrie
resuit for minimal surfaces in Riemannian three-manifolds: IfMx and M2 are minimal
surfaces in a Riemannian three-manifold that intersect at a common interior point p
and Mx is on one side ofM2 nearp, then Mx intersects M2 in an open surface containing

p. In particular it follows that two differential minimal surfaces cannot intersect in
their interiors at an isolated point. This géométrie version of the maximum principle
has many important applications to the gênerai theory of minimal surfaces and, in
its higher dimensional formulation, to the study of minimal hypersurfaces in
«-dimensional Riemannian manifolds.

Recently Hoffman and Meeks [7] proved a theorem, called the Strong Halfspace
Theorem, that is related to the maximum principle for minimal surfaces. Their
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256 WILLIAM H. MEEKS III AND HAROLD ROSENBERG

theorem can be interprétée as a kind of maximum principle at infinity for minimal
surfaces. This theorem is based on the next fundamental resuit.

HALFSPACE THEOREM. Iff : M -&gt; R3 is a proper connected minimal immersion

that is contained in a halfspace, then f(M) is a flat plane.

The Halfspace Theorem fails for minimal hypersurfaces in R&quot;, n ^ 4. In fact the
w-dimensional SO(n)-invariant version of the catenoid, CncUn+l9 is a properly
embedded minimal surface with bounded xn+ ,-coordinates.

Earlier using the work of do Carmo and Peng [2] and of Fischer-Colbrie and
Schoen [4] on the geometry of stable minimal surfaces in R3, Meeks, Simon and
Yau [14] showed that two properly immersed minimal surfaces in R3 either intersect
at some point or each is contained in a halfspace. This resuit together with the

Halfspace Theorem yielded the following [7].

STRONG HALFSPACE THEOREM. Suppose MX,M2 are connected properly
immersed minimal surfaces in R3. If Mx and M2 are disjoint, then Mx and M2 are
parallel planes.

It is the above generalized version of the Halfspace Theorem that has had many
applications in récent years to global questions in the classical theory of minimal
surfaces. However, for some applications of this type of resuit, there was a need to
reformulate the Strong Halfspace Theorem to a more applicable form. Langevin
and Rosenberg [9] gave a maximum principle at infinity for minimal surfaces of
finite total curvature in R3. Their theorem stated that if M, and M2 are disjoint,
connected, properly embedded, minimal surfaces of finite total curvature and the

boundaries of Mx and of M2 are compact (possibly empty), then dist (Mx, M2) &gt; 0.

They also found interesting applications of their maximum principle at infinity to
the study of the uniqueness of solutions to the minimal surface équation on the

exterior of the unit disk in R2. Choi, Meeks and White [1] gave a generalization that
they needed in their study of the isometry group of a properly embedded minimal
surface in R3. What they found is the following: If Mx and M2 are two disjoint,
connected, properly immersed, minimal surfaces that hâve compact boundary {possibly
empty) and M, is asymptotic to a plane, then dist (M,, M2) &gt; 0.

Thèse maximum principles at infinity for minimal surfaces now play a
fundamental rôle in virtually every aspect of the classical theory of minimal surfaces. In
this paper we shall prove the following maximum principle at infinity for minimal
surfaces in flat three-manifolds.

THEOREM 2 (Strong Maximum Principle at Infinity). Suppose N is a complète

flat three-dimensional manifold and Mx and M2 are disjoint, connected, properly
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immersed minimal surfaces in N with compact boundary (possibly empty). Then:

1. IfdMx or dM2 is nonempty, then, after possibly reindexing, there exists a point
x e ôMx and a point y e M2, such that dist (x, y) dist (Mx, M2).

2. If dMx and dM2 are empty, then Mx and M2 are flat.

When AT IR3, the strong maximum principle at infinity is a simple conséquence
of the following weaker version (see the proof of Theorem 3 in Section 2.)

THEOREM 1 (Weak Maximum Principle at Infinity). Suppose N is a complète

flat three-dimensional manifold and Mx and M2 are connected properly immersed
minimal surfaces in N with compact boundary (possibly empty). If Mx and M2 are
disjoint, then dist (M,, M2) &gt; 0.

The proofs of the above maximum principles at infinity are informative and give
some insight into the asymptotic behavior of minimal surfaces. Also their proofs
introduce new constructions that are themselves useful in making nontrivial
applications of the maximum principle at infinity. We refer the reader to
[5], [8], [12], [13] for such applications.

The paper is arranged as follows. In Section 2 we prove the strong maximum
principle at infinity for embedded minimal surfaces in IR3. In Section 3 we reduce
the weak maximum principle at infinity to the case where Mx and M2 are stable
embedded minimal annuli of finite total curvature in U3/Se where S0 is a screw-
motion which is a nontrivial vertical translation composed with a rotation around
the jc3-axis by 6, 0 ^ 6 &lt; n. In Section 4 we complète the proof of the weak
maximum principle at infinity. Finally in Section 5 we show that the weak
maximum principle at infinity implies the strong one.

2. The Strong Maximum Principle at Infinity for minimal surfaces in IR3

LEMMA 1. Suppose Mx and M2 are two disjoint connected minimally immersed

hypersurfaces in a complète flat n-manifold. If the distance between the surfaces is

realizable by a point in Int (Mx) and a point in Int (M2), then M, and M2 are totally
géodésie.

Proof This proof appears in [ 11] but for completeness we repeat the proof hère.

Suppose p e Mx and q e M2 are points where the distance between Mx and M2 is

realized. Let / be a Une segment in N with end points p, q that realizes the distance.

Note / is orthogonal to M, and M2. Choose embedded disk neighborhoods
Up a M, and Vq c= M2 that are small enough so that Up u / u Vq is simply connected

and lift this set to the universal cover IR&quot;. In (Rw let Ûp dénote the translate of Up
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along / so that p gets translatée to q. Since / minimizes distance between p and q,
Ûp lies on one side of Vq at q. The maximum principle implies that a smaller

neighborhood 0p c Ûp actually is contained in Vq. In particular any small parallel
translate /&apos; nearp of / with one end point on Up has its other end point on Vq. Since
/&apos; minimize the length between Up and Vq9 it is orthogonal to both surfaces. Hence

the unit normal to Up and Vq is parallel near p and q. This implies that Up and Vq

are totally géodésie and hence by analyticity Mx and M2 are also. D

COROLLARY 1. Suppose Mx and M2 are disjoint proper minimally im~

mersed hypersurfaces in a complète flat n-manifold. If Mx is compact, then

dist(M,,M2) =min{dist(5M1,M2), dist (0Jlf2, MX)}.

Proof. Since Mx is compact and M2 is proper, there exists points p e M, and

q g M2 such that dist (MX9M2) dist (p, q). If p e dMx or q e dM29 then we are
finished. If p e Int (Mx) and q g Int(M2), then Lemma 1 states that Mx and M2 are

totally géodésie. In this case the proof of the corrollary is immédiate.

LEMMA 2. The weak maximum principle at infinity holds for properly embedded

minimal surfaces offinite total curvature and compact boundary in R3. In other words,

if Mx and M2 are two such disjoint surfaces, then dist (M,, M2) &gt; 0.

Proof Suppose Mx and M2 are two disjoint properly embedded minimal
surfaces of finite total curvature in R3 with compact boundary. In this case Mx u M2
has a finite number of annular ends, each of which is asymptotic to a catenoid or
to a plane [20]. Suppose dist (Mx, M2) 0. This implies there exist annular ends Ex

of Mx and E2 of M2, each asymptotic to a half-catenoid which we may assume is

C {(*i » *2&gt; *3) | jc? -h jc| (cosh x3), x3 ^ 0}, or to a plane, that we may assume is

R2. Clearly we could choose Ex and E2 to be graphs over the exterior of a large disk
D in M2. Since ExnE2 0, we may assume without loss of generality that Ex lies

above E2. After a small vertical downward translation E\ of El9 dE\ still lies above

E2 but outside of a large bail, E\ lies below E2. It follows that E\c\E2 is a compact
nonempty one-dimensional analytic subset of both E\ and E2.

We now show that E&apos;xnE2 is a simple closed curve y and E\ is transverse to E
along y. Since E\ is a graph over R2 — Z), the projection IJ : R3 -&gt; M2 of E\ n E2

is a compact nonempty one-dimensional analytic variety in M2. If n{E\r\E2) is

not a connected homotopically nontrivial simple closed curve in R2-D, then
R2 — n(E\ n E2) contains a compact component disjoint from D. This is impossible
since the lifts of this component to E2 and E\ correspond to différent solutions to
the minimal surface équation with the same boundary values. Hence, E\ intersects

E2 transversely in a single curve y that is homotopically nontrivial on both E\ and

E2. Let Ëx and Ë2 dénote the ends of E\9 E2, respectively with boundary y.
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The surfaces Ëx and Ë2 represents distinct solutions to the minimal surface

équation over the unbounded région A of U2 with boundary curve J7(y) and they
hâve the same boundary values along /7(y). Since Ëx and Ë2 are asymptotic to
translates of a fixed vertical catenoid, they hâve the same signed logarithmic growth
in terms of |x|, x e A. (By the logarithmic growth rate of such an end Ë we mean the

following: Ë is the graph of a function F on the exterior domain |x| &gt; R. The fact
that F satisfies the minimal surface équation implies that F has an asymptotic
expansion at infinity of the form: F(x) =a log(|x|) + 0(1), a is the logarithmic
growth rate of Ë [17]. Notice that the catenoid C to which we are assuming Ex and
E2 are asymptotic, has logarithmic growth one.)

We will now give a simple géométrie flux calculation to show that Ëx Ë2. (This
proof easily generalizes to deal with similar uniqueness questions that arise in the

proof of Theorem 1.)

First consider a simple closed homotopically nontrivial curve a on the half-
catenoid C defined above. Suppose X is the gradient of the third coordinate
function on C. Let rj be the conormal of the unbounded component of C — oc. This
means the unit vector field normal to a, tangent to C and pointing into the
unbounded component of C — a. The flux of X across a is

-iF(a, X) X -ti=2n.
Ja

This is clear if a dC and follows for any a by the divergence theorem applied to
the harmonie function x3 on C. Similarly if £ is a minimal annulus that is a graph
asymptotic to C, then the associated flux across the boundary of C is also 27t. This
follows from the Weierstrass Représentation (see [20]).

Let Xx and X2 dénote the gradient of the third coordinate functions of Ëx and

Ë2, respectively. From the above discussion we conclude that the flux of thèse

vectors fields across their common boundary curve y are equal. But since Ëx lies

below Ë2 along y, Xx • rç, &lt; X2 - r\2 at every point of y. Integrating this inequality
along y contradicts the fact that the flux of Ëx equals that of Ë2. This contradiction

proves Lemma 2.

The following corollary to Lemma 2 was first proved by Langevin and Rosen-

berg [9] using a différent method.

COROLLARY 2. Suppose Ex and E2 are graphical solutions to the exterior
Plateau problem for a compact domain in IR2. IfEx and E2 each hâve the same limiting
vertical normal vector, the same logarithmic growth and the same boundary, then

EX=E2.
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Proof. Suppose Ex and E2 satisfy the hypothèses of the corollary and EX^E2.
In this case Et is asymptotic to an end-representative Ct of a catenoid or a
horizontal plane. Note that Cx and C2 hâve the same logarithmic growth and

limiting vertical normal vector. Hence, Cx and C2 can be chosen to be translates of
each other.

By the flux argument in the proof of Lemma 2, Ex does not lie above E2 near
their common boundary. Hence any small upward vertical translation of Ex yields
a E&apos;x such that E\ intersects E2 near dE2. Since a large vertical upward translation
of Cx produces a surface that is a positive distance from C2, a large upward
translation of Ex produces a surface that is disjoint from E2. The maximum
principle for minimal surfaces implies there exists a smallest T&gt;0 such that
(Ex + (0, 0, T))nE2 0. Clearly dist (Ex + (0, 0, T), E2) 0, which contradicts
Lemma 2.

Recall that a noncompact surface in a Riemannian manifold is said to hâve

least-area if compact subdomains hâve least-area with respect to their boundaries.

LEMMA 3. The weak maximum principle ai infinity holdsfor properly embedded

minimal surfaces with compact boundary in IR3.

Proof. Suppose Mx and M2 are properly embedded disjoint minimal surfaces in
IR3 with compact boundary and suppose that dist(Àfi,il/2) =0- Suppose B is a

large bail that contains dMx u ÔM2 in its interior and such that dB is transverse to
Mx u M2. In this case Mt — B consists of a finite number of components for i 1,2.
Since dist (Ml9 M2) 0, it follows that a component of Mx — Int (B) is a distance

zéro from a component of M2 — Int (B). Hence, replacing Mx and M2 by thèse

components we may assume that dMt Mt r\B c dB for / 1, 2. By Corollary 1 we

may assume that M, and M2 are noncompact.
Our basic approach to proving the lemma will be to show that Mx and M2 can

be separated by a pair of disjoint complète embedded minimal surfaces with
compact boundary on dB and of finite total curvature. By Lemma 2 thèse finite
total curvature surfaces are separated by a distance e &gt; 0, which gives a lower
bound on the distance between Mx and M2. We now construct thèse finite total
curvature surfaces.

The curves dMx u dM2 bound a subdomain A of dB with at least one component
having boundary in both ôMx and dM2. It follows that MxuM2uA is a connected

properly embedded piecewise smooth surface in IR3. This surface disconnects R3 into
two components C, D where D is the closure of the component that contains
Int (B). Note that ôMx c ôD is homologous to zéro in B c D. Since Mx and M2 are
both noncompact and proper, there exists a proper arc ô :M-+dC that intersects
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dMx transversely in a single point. If dMx bounded a compact surface Ex in C, then
since dMx bounds a compact surface E2 in D, à has odd intersection number with
the cycle ExkjE29 which is impossible. Hence dMx is not homologous to zéro mod2
in C.

Notice that C has an analytic triangulation since it is an analytic manifold
except along a finite number of compact transverse intersection curves. Change the
metric in a compact neighborhood in C of A c dC in C so that the new metric
satisfies (see the proof of Theorem 1 in [16]):

1. The 2-simplices of ôC hâve nonnegative mean curvature and the edges of two
adjacent simplices meet in an angle less than or equal to n.

2. If ax is a 2-simplex in A and &lt;t2 is a 2-simplex in MxkjM2, ox and &lt;x2 adjacent,
then the angle between ax and a2 is less than n along their common
boundary.

We make this change of metric so that the least-area Plateau problem can be

solved in C, i.e. any smooth 1-cycle in C that is null homologous in C is the

boundary of a least-area surface Z c C and Int (Z) is smooth and embedded.
Moreover if Z meets dC at a point jc, then the maximum principle implies that the
connected component of Z containing x is contained in dC (see Theorem 2 in [16]).
Let r, c Z2 a - • - be a compact exhaustion of Mx by subdomains with smooth
boundary and dMx c dlx. Let Z, be a least-area surface in C with dïl dZt and so

that Z, is Z2-homologous to Zt (rel(dZt)). In this case ZtuZt is a boundary in C
and hence Zt is orientable.

We will now prove that a subsequence of the St converge. This follows by
showing that this family of surfaces satisfy uniform area and curvature estimâtes

that we will now describe in détail.
Let B be a bail in C and W a least-area surface embedded in C, dW disjoint

from B and W transverse to ôB. (If BndC ^ 0, then assume dBndC is a disk.)
Then WndB is the boundary of a région in dB of area at most half the area of dB.

Consequently, there is a uniform local area bound for the ït (since £, minimizes in
its Z2-homology class as a relative class.) Curvature estimâtes of Schoen [19] state

that there exists a universal constant c such that for any stable orientable minimal
surface T in a flat orientable three-manifold and p e T of distance d from dT, the

Gaussian curvature is estimated by \K(p)\ ^ c/d2. This estimate leads to uniform
curvature estimâtes for the family Zl away from dMx.

The above uniform area and curvature estimâtes for {£,} imply the family is

compact, i.e., a subsequence of the surfaces Zt converges to a proper least-area

orientable minimal surface f, c G with ôrx dMx. (See the end of the proof of
Theorem 3.1 in [15] for the proof that the smooth limit of least-area surfaces is
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again least-area.) This compactness property for {2,} is standard and for complete-
ness we outline its proof.

Consider a small bail B(r) cz C — ôMx of radius r. By Schoen&apos;s curvature
estimâtes, after choosing a possibly smaller r, every component of 2t n B(r) that
intersects B(r/2) can be expressed as a graph of small gradient over a plane Pt in
B(r) passing through the center of the bail and Pt does not dépend on the

component. By the uniform area estimâtes, B(r/2)nSl contains a bounded number
of components independent of i and hence there are a bounded number of
associated graphs. Suppose for the moment that for every /, 2, n B(r/2) contains

one component and corresponding graph G(i&apos;). Since a subsequence Pl9 converge to
a plane P in B(r), the usual compactness theorems for minimal graphs imply that
a subsequence G(ij converges to a graph G over its projection to P. In the gênerai
case a subsequence of the corresponding graphs in 2t n B(r) converge to a finite
number of graphs. Note that C — ÔMX has a countable basis of balls {B3}, where for
eachy and for every subsequence ik the associated graphs G(ikJ) in 2lknBj hâve a

convergent subsequence in Br Suppose that the subsequence G(ik9 1) converges in
Bx. Then the associated subsequence of graphs in 2lkr\B2 hâve a convergent
subsequence in B2 as well as Bx. Continuing in this manner ad infinitum from B, to
Bt + x and taking a diagonal séquence, yields a subsequence of the 2, that converges
in each B}. The limit Tx of this subsequence is a smooth properly embedded

minimal surface in C — ÔMX, has least area and has boundary ôMx. The boundary
regularity theorem in [6] implies Fx is smooth along ôMx. This complètes our
outline of the proof of compactness for the family {£,}.

Suppose now that a subsequence of the 2t converges to a properly embedded
least-area surface Fx. Since Fx is orientable and stable, it has finite total curvature
(see [3] or Theorem 2.1 in [15]). Since C — Mx is not smooth, the boundary
maximum principle (see Theorem 2 in [16]) implies that either FX MX or
Int (f,) c Int (C). If FX MX, then M, has finite total curvature. If M2 also has

finite total curvature, then the lemma follows from Lemma 2. Thus, after possibly
interchanging Mx with M2 we may assume that Int (Fx) c Int (C).

The surface Fx séparâtes C into two components where one component contains

Mx and the other contains M2. Let H dénote the closure of the component
containing M2. Arguing as above for M2 c dH in place of Mx cz dC, we obtain a

proper orientable smooth stable minimal surface F2 cz H with F2 n dH dM2. Note
F2 séparâtes H into two components, one of which contains Fx and the other that
contains M2.

It follows from Lemma 2 that dist (FXiF2) &gt;0 since thèse surfaces hâve finite
total curvature and are minimal in IR3 outside of some compact neighborhood of
their boundary curves. On the other hand, since dist (M,, M2) =0, there exist

points p g Mu q e M2 far from the origin such that dist {p, q) &lt; dist (Fx, F2). But
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Fig 1

any arc joining p to q must contain a subarc in C joining a point of Fx to a point
of F2. Hence dist (p, q) &gt; dist (Fx, F2). This contradiction proves Lemma 3.

THEOREM 3. Suppose Mx and M2 are disjoint properly embedded minimal
surfaces in R3 with compact boundary and Mx and M2 are not parallel planes. Then

dist (Mx, M2) min {dist (dMx, M2\ dist (dM2i Mx)}.

Proof. By the Strong Halfspace Theorem we may assume that dMx or
dM2 is nonempty. Let (pnqt) e Mx x M2 be a séquence of points such that
lim(dist(pnq,)) dist(MX,M2). Then a subsequence of the vectors vl=ql—pl
converges to a point v on the sphère of radius dist (Mx, M2). Let Af3 be the surface
obtained by translating M, by the vector v. By Lemma 3 we know that

0. There are two cases to consider:

1. dM3nM2*0 or dM2nM3^0.
2. Int(M3)nInt(M2)#0.

Lemma 1 shows possibility 2 occurs only when M2 and M3 are contained in a

plane. Hence we are in case 1. But case 1 implies

dist (Mx, M2) min {dist (ôMx, M2), dist (5M2, M,)},

which complètes the proof of the theorem.
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3. Réduction to the case of finite total curvature

In this section we reduce the proof of the weak maximum principle at infinity
(Theorem 1 in the Introduction) to the case when the surfaces Mx and M2 are
embedded stable minimal annuli with finite total curvature. We will call a noncom-
pact surface an annulus if it is homeomorphic to S1 x [0, 1).

LEMMA 4. Suppose that the weak maximum principle at infinity holds in ailfiât
manifolds oftheform U3/S0for the spécial case ofembedded stable minimal annuli of
finite total curvature. Then the weak maximum principle at infinity holds in ail
complète fiât three-manifolds.

Proof By Corollary 1 the weak maximum principle at infinity holds if Mx or
M2 is compact. We will now assume they are both noncompact. Let N be an

arbitrary flat three-manifold and suppose Mx, M2 c= N are two properly immersed

noncompact disjoint minimal surfaces with compact boundary (possibly empty). In
particular, N is noncompact. By the classification of complète flat noncompact
three-manifolds [22], we know that N is finitely covered by R3, by U3/S0 or by
T x R where T is a flat torus. After taking possibly a finite sheeted covering space
of N and lifting the surfaces Mx, M2, we may assume that N is R3, U3/S0 or T x R.

Choose a smooth compact analytic subdomain D of N such that dD intersects

Mx u M2 transversely, ôMx u dM2 c= D and D has nonempty intersection with Mx
and with M2. Without loss of generality we will replace Mx and M2 by their
intersection with N — Int (D) and assume they are connected. Let C be a compo-
nent ofN — (MxuM2uD) that contains points of Mx and of M2 in its boundary.
We consider C with its induced metric (the distance between two points is the

infimum of the lengths of paths in C joining the points). The metric completion of
C, denoted C, is a desingularization of C which is the closure of C.

Notice that C is an analytic manifold whose boundary is defined by analytic
inequalities, hence by [10] the boundary of C has an analytic triangulation. We
dénote by MX(C), M2{C\ D(C) the points of C that project to Mu M2i D,
respectively.

If N U3/S0 where S0 is a screw motion, then choose the domain D to be a solid
torus which is a regular neighborhood of the image of the axis of S0. If N T x R,

then choose D to be of the form Tx[-/0,/0] for some t0 and in the case N — U3

choose D to be a bail. In ail cases, the fundamental group of each component A of
N — D is generated by the fundamental group of the boundary of the component.
It then follows from séparation theorems that a properly embedded surface I in A,

séparâtes A into two components. This séparation property has the useful

conséquence in our constructions that if E is a properly embedded surface in C with
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ôZ ôMx(C) or dZ=dM2(C) or dZ 0, then Z séparâtes C into two components.
We next check that ôC is connectée. If dC is not connectée, then C contains a

properly embedded connectée surface Z c Int (C) that séparâtes one component of
dC from another such component. The surface Z can be considérée to lie in N and
Z is disjoint from D. By our previous discussion Z séparâtes N into a component
that contains D and another component that contains some point of Mi or M2. But
since Z is disjoint from M, u M2 it is clear that either M, or M2 is disjoint from Z),

which is contrary to our choice of D. Thus dC is connected.

Change the metric in a compact neighborhood of D(C) in € so that the new
metric satisfies:

1. The 2-simplices of dC hâve nonnegative mean curvature and the edges of two
adjacent simplices meet at an angle less than or equal to n.

2. If ax is 2-simplex in D(C) and a2 a 2-simplex in M1(C)uM2(C) that are
adjacent, then the angle between ax, a2 is less than or equal to n and différent
from n at some point.

We make this change of metric so that the least-area Plateau problem can be

solved in &lt;?, i.e. if ô is a smooth cycle in that is null homologous in C mod 2,

then à bounds a least-area surface Z and Int (Z) is smooth and embedded (see [16]
and [21]). Moreover if Int (Z) meets dC at a point jc, then the maximum pnnciple
implies that the connected component of Z containing x is contained in d€.

Since dist {MUM2) 0 and dMxKjdM2 is compact, we can choose the component

C so that dist (MX(C), M2(C)) 0 in the metric induced by the Riemannian
metric on C. Notice that the boundary of Mx(C)\jM2(C) is contained in the

boundary of D(C). Let Zx&lt;zZ2&lt;z- - - be a compact exhaustion of MX(C) by
piecewise smooth subdomains where ÔMX(Ç) cdZx. Let St be a least-area surface

in C with dtt dln and that is Z2-homologous to Z, (rel (dZt)). The cycle f,ul,
bounds in C. In particular S, is orientable. (See Figure 1 where an analogous
situation is described.) As in the proof of Lemma 3, a subsequence of the ït
converge to a least-area surface Fx.

As in the construction of Fx at the end of the proof of Lemma 3, we can assume

that Int (Tx) c Int (C). The surface Fx séparâtes € into two régions, one of which
contains MX{C) and the other H that contains M2(C). Arguing as before with

M2(C)adH in place of Mx(C)&lt;=:dC, we obtain a properly embedded stable

minimal surface F2 with dF2 dM2. Furthermore, F2 séparâtes H into two components

where one of the components has Fx, F2 and part of D(C) on its boundary.
Recall that C was chosen so that dist(M,(C),M2(C)) =0. Since Fx and F2

separate MX(C) and M2(C) in C, we conclude that dist(r1? F2) =0. However

outside a compact subset of €, the metric on C is flat. Theorem 2.1 in [15] states

that a stable orientable properly immersed minimal surface with compact boundary
in a flat orientable three-manifold has finite total curvature (also see [3]). Thus, Fx
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and F2 hâve a finite number of stable annular ends of finite total curvature. IfN U39

then Lemma 3 shows dist (Fx, F2) &gt; 0, a contradiction. If N T x IR, it was shown
in Theorem 3 in [13] that the ends of Fx and F2 stay a bounded distance from each

other, which contradicts dist (Fx, F2) 0 (proved by a flux calculation similar to the

calculation in the proofof Lemma 2). Thus, if the weak maximum principle at infinity
holds in U3/S0 for a pair of disjoint embedded stable minimal annuli, then the weak
maximum principle at infinity holds in ail flat three-manifolds.

4. The Proof of the Weak Maximum Principle at Infinity

We now prove Theorem 1 (Weak Maximum Principle at Infinity) stated in the

Introduction. By Lemma 4 we need only check the weak maximum principle at

infinity for two properly embedded disjoint stable minimal annuli Au A2aN
U3/S0 that hâve finite total curvature and such that dist (AXiA2) 0. Let y c N
dénote the image of the x3-axis. After removing compact subdomains from Ax, and

A2, we may assume that Ax and A2 are disjoint from y. Let DR dénote the tubular
neighborhood of y of radius R.

Using the Weierstrass représentation when 0=0 and a related analytic représentation

when 6 # 0, we derived analytic formulas for a minimal annulus A of finite
total curvature in N [12]. When A is embedded, we proved that it is asymptotic to
one of the following standard ends (see [12] for précise définitions):

1. A plane or catenoid in N;
2. A flat vertical annulus in N;
3. Helicoid-type ends.

We will now dérive a contradiction if dist (Au A2) 0. It follows immediately
from the description of standard ends in [12] that if Ax is asymptotic to one of thèse

standard ends S, then A2 is also asymptotic to the same end S. In particular Ax is

asymptotic to A2 and, after removing compact subdomains of Ax and A2, we may
assume that Ax is a small graph over A2.

Suppose that the limiting unit normal vector to S is v. Note v is vertical when

N U3/S0 and 9 ï o. It follows that N has a parallel Killing vector field V that is

generated by translation in the direction v in R3. Without loss of generality, we may
assume Ax and A2 are chosen so that the normals to Ax and A2 make a small angle

with v. Thus, after a small translation of Ax along the direction v, we obtain a new
annulus A3 whose boundary is above A2 and that eventually lies below A2. Standard
ends do not intersect themselves after a small translation in the v or — v directions.

Thus, as in the proof of Lemma 2, A3 intersects A2 transversely in a simple closed

curve a that is homotopically nontrivial on both A2 and A3.
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Let E2, E3 dénote the ends of A2,A3, respectively, with boundary curve a. Let
V2, V3 dénote the orthogonal projection of V onto E2 and E3. Let rç2, rj3 dénote the
conormals to E2,E39 respectively. Since V2 and V3 are divergence free, the fluxes

:= f V2-rj2, F3= f V3-rj3
J&lt;x Joe

are géométrie invariants of E2 and E3. However, as shown in [12], F2 and F3 only
dépend on the corresponding flux of S. We conclude that F2 F3. However, since
Ë3 lies below Ë2 along a, V2 - rj2 &lt; V3 • r\3 along a and so F2&lt;F3. This contradiction
complètes the proof of the weak maximum principle at infinity. D

5. The Proof of the Strong Maximum Principle at Infinity

We are now in a position to prove Theorem 2 (Strong Maximum Princple at
Infinity) stated in the Introduction. After possibly taking a finite sheeted cover of N
and lifting the surfaces to this cover, we may assume that N is R3, S1 x R2, T x IR

or U3/Se where 6 is not a rational multiple of n. First suppose that N # U3/S9.

Suppose dist (dMl9M2) ^ dist (dM2, M,) and that dist (dMx,M2) &gt; dist (M,,
M2) &gt; 0. Consider a séquence of points (/?,, qt) e Mx x M2 such that
lim (dist (/?,, qt)) dist (M,, M2). Consider the isometry /, of N taking pt to qt that
lifts to a translation in R3. We may assume after picking a subsequence that /,
converges to an isometry I :N-+N. If I{Mx)nM2^0, then there exist interior
points p e Mu and q e M2 with dist (p,q)= dist (M1, M2), which is impossible by
Lemma 1. On the other hand, dist (I(MX), M2) 0 so the weak maximum principle
at infinity shows I(Mx)nM2^ 0. This proves the strong maximum principle at
infinity in the case N # U3/S0. Assume now that N U3/S$9 0 an irrational multiple
of n.

The proof of the strong maximum principle at infinity that we just gave for
iV ^ R3/^, 9 an irrational multiple of n, fails to work when N U3/S0 because for
p e Mx and q e M2 there does not always exist an isometry of N taking p to q. Let
(/&gt;„ qt) e Mxx M2 with lim (dist (/&gt;,, qt)) dist (M,, M2) and consider lifts Mx{ï)
and M2(ï) to R3 so the lifted points pn qt hâve the same distance in R3. If the vectors
(&amp; ~~ Pi converge to a vertical vector y, then translation in R3 by v induces an
isometry I:N-+N that moves points a distance dist(M,,M2) and such that
dist (/(MO, M2) =0. In this case the argument in the previous paragraph shows

that the strong maximum principle at infinity holds for Mx and M2.
When Mx and M2 are embedded in N with finite total curvature, then the vector

v is always vertical. To see this first note that the ends of Mx and M2 are asymptotic
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to standard ends and hence hâve vertical normal vectors at infinity (see Proposition
5.1 in [12]). Since the Gaussian curvature of Mx and M2 is asymptotic to zéro, and
the surfaces are a positive distance apart, it is clear that the séquence of points
(qt —pt) converges to a vertical vector. We will now reduce the proof of the gênerai

case to the case of embedded surfaces of fini te total curvature (where the principle
is true by the previous discussion).

For the moment assume that Mx and M2 are embedded in N. Also assume
that dist (Mi, M2) &lt; min {dist (3M,, M2), dist (3M2, Mx)}. Let y dénote the image
of the *3-axis in U3 and let DR dénote the tubular neighborhood of y of radius R.

The failure of the strong maximum principle at infinity to hold for M, and M2
means that distance between Mx and M2 is never obtained by points on the
surfaces. This property also holds if we remove a bounded subset from each of the
surfaces. There exists a T &gt; 0 such that after removing MtnDT from Mni= 1,2,
the new surfaces (which we also call Mx and M2) hâve their boundary in dDT.
Mx u M2 séparâtes N — DT into a finite number of components where 1 or 2 of
thèse components hâve both Mx and M2 on their boundary. Let C be one of thèse

components where the distance from M, to M2 in C equals the distance from M,
to M2 in N.

Change the metric in a compact neighborhood of dC so that dC is a good
barrier (see the proof of Lemma 4) for solving Plateau problems in C. Suppose Mx
does not hâve finite total curvature. By the argument in Lemma 4, dMx is the

boundary of an embedded stable minimal surface F of finite total curvature and
such that F c Int (C) and F séparâtes C into a component containing M, and a

component containing M2. Furthermore, the ends of F consist of a finite number
of annuli. Thèse annuli are asymptotic to either a finite number of parallel flat
planes or catenoids in N or they are asymptotic to a finite number of parallel
helicoid-type ends in N.

In the case the ends of F are asymptotic to parallel planes or catenoids, then
outside of some large DR, F disconnects N — DR into régions in which

Mtn(N — DR) lift with compact boundary to U3. Replace Mx and M2 by components

of M,r\(N — DR),i 1, 2, respectively, such that the new Mx and M2 are also
closer at infinity than along their boundaries.

Let Mx be a lift of Mx to IR3. First note that there are only a finite number of
lifts Nx,N2,...,NkofM2to R3 such that the distance of the lift from M, is less

than 2 • dist (M,, M2). This is because the lifts of M2 to U3 are separated by parallel
catenoid or planar type ends ail essentially a constant distance apart. Clearly one of
the surfaces N, in {Nl9.. ,,Nk} has distance dist(M,,M2) from Mt. However
min {dist (dM\, N,)9 dist (dNn Mx)} &gt; dist (Ml9Nt). This contradicts the strong
maximum principle at infinity in R3 (Theorem 3). We are left with the possibility
that the ends of F are asymptotic to parallel helicoid-type ends.



The maximum principle at infinity for minimal surfaces in flat three manifolds 269

Now choose R much larger than T. In particular we choose R large enough so
that the ends of F intersect dDR almost orthogonally in almost hélices for R&apos; ^ R.

Let P Mxn dDR and note that /? is homologous to dMx in the component H of
C — F that contains M,. Applying the argument in the proof of Lemma 3 to /? in
//, we see that p is the boundary of a least-area orientable surface F2 of finite total
curvature and Int (F2) &lt;= Int (H).

Recall that the metric in H agrées with the induced metric as a subset of N
except in some compact neighborhood A of dDTr\C. We claim that by choosing R

sufficiently large, the surface F2 will be disjoint from A and, hence, can be

considered to be a minimal surface in N. First suppose that R is large enough so

that A &lt;=/)(i/X0)R and F intersects dDR almost orthogonally in almost hélices for
R&apos; ^ jqR. In particular, the components of F n(N - D±R) are very flat multisheeted

graphs over their projection onto the (x1} *2)-plane. Consider a surface component
ER of F2n(DR — D^R). Since F2 is a stable orientable minimal surface in a flat
three-manifold, the curvature estimâtes of Schoen [19] imply that the Gaussian

curvature oï x e ER is at most KJd2 where k is a universai constant and d is the

minimum of the distances of x to the boundary of DR or D^R. Hence, when R is

large, the surface ER is very flat near points in dD^Rr\ER. Since ER is caught
between the flat helicoid-type ends F n(N — F&gt;±R), thèse curvature estimâtes imply
the existence of an e, 0 &lt; e &lt; jqR, such that the projection of ERn(DiR — D^_e)R)
onto the (xu x2)-plane is a submersion. It foliows that if ERnDj^R # 0 for R

large, then Area (ER) grows quadratically in R. Assume that the translational part
of S0 is (0, 0, 1). Since ER is disjoint from DT, dER bounds a surface in HndDR of
area less than nR. Since F2 is a surface of least area, the area of ER grows linearly
in R, a contradiction. This proves that Int (F2)nA 0 for R large, and hence, F2

is a minimal surface in N.
Since F2 séparâtes M, - DR from M2 and the surfaces Mx and M2 are asymptot-

ically closer at infinity, dist (F2, M2) &lt;&gt; dist (M,, M2). Since Mx and M2 are asymp-
totically closer at infinity, it is clear that we can choose some large value R so that
dist (ÔF2, M2) &lt; 2 • dist (M,, M2) and dist (5M2, F2) &gt; \R. Since dF2 c M{ is compact,

dist(dr2, A/2) &gt; dist {Mx, M2). Hence, F2 and M2 violate the strong maximum

principle at infinity in N. If M2 also has infinité total curvature, then repeating
the above argument with F2 and M2, we can replace M2 by a properly embedded

minimal surface F3 of finite total curvature such that F2 and f3 violate the strong
maximum principle at infinity in N. As remarked earlier, the strong maximum

principle at infinity holds for embedded surfaces of finite total curvature in N. This

contradiction complètes the proof in the case Mx and M2 are embedded.

If Mx and M2 are not embedded, the modification given in the proof of Lemma
4 by metrically completing components of N — (MxuM2kjDt), reduces the argument

to the embedded case. This complètes the proof of Theorem 2.
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