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Multiple fibres of a morphism

Fernando Serrano

§0. Introduction

Let us be given a proper, surjective, holomorphic map q&gt; : X -? C with connected
fibres from a complex manifold onto a smooth quasiprojective curve C. Let
{mu m,} be the (global) multiplicities of the multiple fibres of &lt;p, and dénote

by F a gênerai fibre. The aim of this paper is to compute the homology of the
natural complex of abelian groups

Hx (F, Z) - Hx (S, Z) -^-&gt;#, (C, Z) -&gt; 0

in terms of the multiplicities {ml9... 9mt}. Namely, a suitable exact séquence

Hx (F, Z) - Hx (S, Z) -&gt; ff, (C, Z) x

is constructed, where G(q&gt;) i== Coker (/ : Z -? ©, Z/m, Z) and /( 1) (T,..., T).

Next we will address the question of the variation of G(cp) and ©î=i Z/m,Z
under smooth déformations of cp (with the extra assumption that X and C are

compact). It will be shown in §2 that both groups are actually invariant under
déformation. The proof for G(q&gt;) relies on the above exact séquence plus the fact
that a smooth analytic map is differentiably locally trivial. Then a base change trick
will give the invariance of ©, Z/mtZ.

AH this generalizes the already known situation for elliptic surfaces: when X is

a compact surface and F is a curve of genus 1, the above exact séquence on
homology groups can be deduced from the explicit description of the fundamental

group of the surface ([8]). For a larger fibre genus such a description is lacking in
gênerai. As to the behaviour under déformation, the picture is neater for thèse

two-dimensional elliptic fibrations: Iitaka has proved in [7] that the set of multiplicities

of the fibres is a déformation invariant in this case.

Finally, I want to express my thanks to J. Kollar for a helpful remark.
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288 FERNANDO SERRANO

§1. Homology groups

We shall be working over the field of complex numbers. Our complex manifolds
are by définition connected, non-singular analytic varieties. A curve C is a quasipro-
jective complex manifold of dimension one. Equivalently, the smooth compactifica-
tion of C differs from C at finitely many points only. In this paper a fibration is

defined to be a proper, surjective holomorphic map from a complex manifold onto
a smooth curve, ail of whose fibres are connected. We will also use the following
notation:

- Zm:=integers Z modulo

- tor i/:= torsion of an abelian group H.

^ fondamental group of X.

Hl(X, (9X), where 0x is the structure sheaf of X.

Let (p : Jf-&gt; C be a fibration, and F S n,Bt a fibre of q&gt; where the B\ s are the
irreducible reduced components of F and the n&apos;ts are their multiplicities. Let m be

the greatest common divisor of the n&apos;ts. We say that m is the multiplicity of F and
write F — mD, where D S (nJm)Br Whenever we say &quot;let mD be a multiple fibre&quot;

we shall always mean that m is the multiplicity of mD and m ^ 2.

Let cp : X-+ C be a fibration and let mxDx,..., m,/), be ail its multiple fibres.

DEFINITION 1.1.

1, 1)

If ^ is the least common multiple of mu m,, by dualizing the séquence

we obtain an alternative description of G(&lt;p) as

Ker f © Z«, -Z^ (c,,..., a,).

The third characterization that follows will be used later:
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LEMMA 1.2. Write 0J., Zmg a 0*. ldj where each dj divides dJ+x. Then

k- 1

G(cp) * © Zdj.

/. Since /i/m,,..., j*/m, are relatively prime, we can find integers kx,..., kt
such that ZJ=, (Àtfi/mt) 1. The homomorphism

/=1

is a retraction of 0-^Z^ -*©î==1 Zmj -+G{q&gt;) -&gt;0, and this séquence splits.
If we put G(&lt;p) ©J=1 Ze with e} dividing eJ+i for ail j, then ail ejs divide fi
and

Since the d&apos;j$ are uniquely determined, it follows that (du..., dk_u dk)

Now it cornes the main resuit of this paper. Our proof has been inspired in that of
Prop. 1.41 of [2].

THEOREM 1.3. Let q&gt; : X -*C be a fibration from the complex manifold X onto
a smooth curve C. Dénote by mxDu mtDt ail multiple fibres of q&gt;, and let F be

any smooth fibre, and G *= G(q&gt;). Then there exists an exact séquence

HX(F9 Z) -+HX{X, T)-+HX{C9 Z) x G -*0

induced by q&gt; and the inclusion of F into X.

Proof Let

Q {p g C | q&gt;~\p) is singular}, C C-Q, 2 X-(yjpeQ(p-\p)).

Consider the following commutative diagram with exact rows and columns,
whose homomorphisms corne from the obvious inclusions and restrictions:
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0

î
Z)-^-&gt; J/,(C, Z) —

î*

î
T _ _

î2
0

M, Ni and iV2 are defined to be the kernels of the corresponding homomorphisms.
The second row is exact because Ï-*C is a C°°-fibre bundle.

CLAIM 1. The cokernel of x :N{-+N2 is a quotient of G.

Proof of Claim 1. Given p eQ, dénote by yp a simple loop around p in C The

group N2 is generated by ail the yp, p g Q9 with the single relation TlpeQyp 0.

If B is a component of multiplicity n of a fibre (p~l(p)9 p eQ9 then there is a

loop a in A* around J? such that a € iV1 and t(a) nyp. Consequently, if m is the

total multiplicity of &lt;p~l(p) then myp e Im(t), and the claim follows.

CLAIM 2. There exists an exact séquence:

Z) -^M -^-&gt; Coker (t) &gt; 0.

Proof of Claim 2. Define the map p : M -? Coker(t) as follows. Given x € M,
there is j g /^(Z, Z) such that g(y) a(x). Thus a{y) g JV2, and we write p(x) as

the class of a(y) in iV2/(Im(T)). An easy diagram-checking shows that the above

séquence is exact. This is nothing else than the so-called Snake Lemma, but later we

are going to use the explicit description of the map p.

CLAIM 3. There exists a commutative diagram with exact rows and columns as

follows:
0 0

r l T

H (F, Z) -U M -£-&gt; Coker (t) &gt; 0

#,(jr,z)—&gt; g

1

0
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Proof of Claim 3. 0 : G -+Coker (t) is the epimorphism of Claim 1, and y e °f
by définition. We must define k and prove p 0 ° k ° e. The fundamental group
nx(C) is generated by éléments ocl,Pl,yfnôJ (for i from 1 up to genus of C,

p eQ, and &lt;57 corresponding to the &quot;holes&quot; of C) with the unique relation
(II, a^ar&apos;jSr&apos;Kn, $,Xnp6O yp) l. Given p e Q and m(/?) multiplicity of
&lt;p~l(/&gt;), there corresponds to (p~l(p) a direct summand Zmip) in ©;=1 Zm|, with
%m(P) 0 in case w(/?) 1. Define an epimorphism nx (£) -* G by mapping yp to the

image of T e Zm(p) e 0t Zmj in G, and ail a,, /?„ &lt;5, to 0. We get in this fashion a

ramified covering B -&gt;C, unramified outside Q and such that the ramification index

on points over p eQ divides m(p). If Y dénotes the normalization of XxcB then

Y^X is unramified with group G (see the proof of [1], III 9.1, valid in any
dimension), and thus it is determined by an epimorphism nx(X)-&gt;G which
descends to an epimorphism À : Hx (X, Z) -&gt; G. The preimage of F by Y -*¦ X splits into
as many components as the order of G, so that the induced map nx(F) -»G is 0. It
follows that k °j 0. Finally, the commutativity of the diagram of Claim 3 stems

from the description of p given in Claim 2 combined with the commutativity of the

following diagram:

(•) «T

H, (X, Z) -^-&gt; 77, (C, Z) Coker (t)

CLAIM 4. 0 is an isomorphism.

Proof of Claim 4. Since k °j 0, one has a commutative diagram

M/ImJJ)
k e

In particular, Coker (t) is a direct summand of G. Now it suffices to show that k ° ê

is surjective. The class of the loop yp in HX(C9 Z) maps by q : HX(C, Z) -*G to the

image of TeZm(p)c ©f^Z,^ in G. By the commutativity of the diagram (*)
above, one gets that if cr(x) yp then g(x)elm (e), and (k ° g)(x) is also the image of
\eZm(p) in G. Consequently A ° ê is surjective, as we wanted.

CLAIM 5. The following séquence is exact:

HX(F, Z) -U HX(X, Z) a°
&gt; G x //,(C, Z) -*0.
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Proof of Claim 5. Clearly Im (j) s Ker (A, cp+). Conversely if x € Ker (hq&gt;+)

then x e M and p(x) 0, so that jc e Im (y&apos;). Let us finally prove the surjcctivity
of (A, (p+). Let (y,z) eG x HX(C, Z). There exists an élément x e Hx(H9 Z) such

that q&gt;^{x)-z. Since A°e is surjective, one can find teM such that
A(e(/)) =y - k{x). Then A(x + £(/)) =J and &lt;?„(* + s(t)) z. This ends the proof
of Theorem 1.3. D

For the remainder of this section we will assume ail complex manifolds to be

projective algebraic.

REMARK 1.4. When X is a compact surface and F is a curve of genus 1 (i.e.
when &lt;p : X -&gt; C is an elliptic fibration) one has a more accurate information. If q&gt;

has a singular fibre other than a multiple of a smooth curve, then the homomor-
phism HX{F, Z)-*H{(X9 Z) is the zéro map ([2], 1.39). In particular hl0x hl0c
in this case. For the other cases see [11]. In gênerai, the fundamental group of an

elliptic surface can be almost completely described ([8]).

A fibration q&gt; : X -&gt; C induces a surjective morphism Alb (X) -» Alb (C) be-

tween the corresponding Albanese varieties, so that one always has the inequality
hx(9x^hl(9c. Furthermore, one gets the equality hx6x hl0c if and only if either

hl(9x 0 or q&gt; coincides with the map from X onto its image by X-+Alb(X).
This is a conséquence of the universal property of the Albanese variety and uses

in a crucial way the connectedness of the fibre of &lt;p.

Dénote by tor (H) the torsion of an abelian group H. From Theorem 1.3 one

immediately gets.

COROLLARY 1.5. Let J dénote the image of HX(F, Z) in H^X, Z). Then there

is an exact séquence

0 -+ tor / -+ tor Hx (X, Z) -+ G.

Furthermore, tor HX{X, Z) -&gt;G is surjective provided that hl0x hl0c.

We recall that tor HX(X, Z) ^tor H2(X, Z) (non-canonically). The follow-
ing Proposition describes explicitly some of the éléments of tor H2(X, Z) in
case hl(9x hx0c. Let mxDx,... ,mtDt be the multiple fibres of a fibration
cp:X-+C9 and dénote \x the least common multiple of mx,... ,mt. Since

fi/ml9..., \i\mt are relatively prime, there exist integers Al5..., Xt such that

ÏJ.i (A.AI//W.) 1 Let D =!{», A,Dt. Dénote by [E] the class in H2(X, Z) of a

divisor E, and G »= G(q&gt;).
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PROPOSITION 1.6.// hld)x^hl0c, then the classes {[/), - {nlmt)D]\
i l,...,f} générale a subgroup of tor H2(X, Z) isomorphic to G.

Proof. First we remark that the subgroup generated by thèse classes is precisely

In order to avoid technical difficulties we will reduce the proof to the case
dim X 2. Take successive gênerai hyperplane sections of X so as to get a smooth
surface S. We hâve h l0s h l0x and H\X, Z) - H2(S, Z) one-to-one ([5], §1). By
Lemma 1.8, the multiple fibres of the restriction cp\s : S -? C corne as linear sections

of the multiple fibres of &lt;p, and hâve the same multiplicities. Therefore the

Proposition is true for X as long as it holds for S. From now onwards we will
assume dim X 2.

If F is a gênerai fibre of (p then

m,[Dl-Qilmt)D]=[mtDt]-\MD]

[F]-[F]=0.

Thus [Dt — (fi/mt)D] e tor H2(X, Z). Define the homomorphisms:

a : Z -&gt; 0 Zm|, p : ® Zm# - tor if2(Z, Z)

as d(l) i;= A,*»,, pfo) [2), - (n/mt)D]9 where e, (0,..., 0, T, 0,..., 0), (T in
the /th-position).

CLAIM 1. The séquence

zA@ZmiA tor H2(X, Z)

is exact.

Proof of Claim 1. First note that

p

Hence Im (a) s Ker (p). Now assume p(Dl/==1 y^,) =0, and put 5«=Lf
From [(^y.JDJ-a^l^O it follows that (ï, y,/),)-52) belongs to the Picard

variety of X, denoted Pic° (X). As indicated before, the fact that hx0x hlGc
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implies that the Albanese varieties of X and C are isomorphic, hence also their
Picard varieties are isomorphic. The symbol ~ is going to dénote linear équivalence
of divisors. Obviously the restriction Pic° (C) -?Pic0 (Dk) is the zéro map, and it
follows that (Z;=, ytD, - SD)lDk - 0. We know that (A)|z&gt;* ~ 0 if i ** *, and (Dk\Dk
is torsion of order mk in Pic(/\) ([1]; III 8.3). Combining with D\Dk ~ A*(D*)|d*
one gets {yk — àkk){Dk)\Dk ~ 0, which implies that yk — ÔXk is a multiple of mk. Thus

£f ytet à X, Xlel e Im (a), as we wanted.

CLAIM 2. Ker (a) Qi)Z

Proof of Claim 2. Let (v)Z:=Ker (a). Multiplying the équation
Zî=, (hn/m,) 1 by mk we obtain that A*/i is a multiple of mk. Hence (j(/*) 0 and

one can write \i v • d for some rfeZ. Since mt divides A,v we hâve £, (Àtv/mt) e Z.

On the other hand 1 =£, (A^/m,) =^2), (^v/w,), so that d=\ and Claim 2

follows.

The exact séquence

&lt;7

0 -Z, © Zm, Im (p) y 0
1

splits because a admits a retraction t defined by t(el)=/i/wl. Let
©7rŒ, Z^ with bj dividing bJ+ x for ail / Since Im (p) is a quotient of ©(», Zm/ we
see that br divides //. Hence

The uniqueness of this décomposition together with Lemma 1.2 imply that
Im (p) ^ G. D

Finally we will prove some results used before.

LEMMA 1.7. Let V ^Pn be a reduced variety of dimension ^2, and dénote by
(P&quot;)v the variety of hyperplanes. Then dim {L e(Pn)y\LnV is non-reduced} £
n-2.

Proof Let r {(P, L) e V x (Pn)v \ L n V is non-reduced at P}9 and Q

{(P, L)eVx (Pn)v\ LnVis singular at P}. One has dim Q n - 1 ([6], II 8.18)
and fcfi,so that dim T £ n - 1. On the other hand, if n : r -?( P&quot;)v dénotes the

projection and L slmn then dim ti ~ l(L) ^ 1. We conclude dim Im n ^ « — 2.

LEMMA 1.8. Lef &lt;p : Jf-? C be a fibration from the smooth projective variety X
of dimension ^ 3 onto a curve. Let Y be a gênerai hyperplane section of X. Then the
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multiple fibres of the restriction of (p to Y are exactly the hyperplane sections of the

multiple fibres of &lt;p, and hâve their same multiplicities.

Proof Let X s P&quot;, and set r {(t, L)eC x(Pn)v\ multiplicity of (q&gt; ~ \t) n L)
is strictly greater than the multiplicity of ç~l(t)}. Dénote by aiT-^C,
P : T -* Pn)v the two projections. For any t e C, the preceding Lemma applied to
ail the irreducible components of ((p~l(t))rcd yields dima&quot;l(0 ^n — 2. Therefore
dim Im P £ dim r &lt; n - 1.

§2. Families of fibrations

We will consider the following situation. Let X, Y, M be connected complex
manifolds (not necessarily compact), and let /: X-+Y, g : Y-+M be surjective,

proper, flat holomorphic maps with connected fibres. Write h-=g °f9 and suppose
that ail fibres of g are smooth compact curves, and the fibres of h are ail compact
manifolds. If Xn Yt dénote the fibres of h and g over t e M, then the induced map
/, : Xt -» Yt is a fibration as defined at the beginning of §1.

DEFINITION 2.1. With the hypothesis just stated, we will say that

{/, :Xt-+Yt}teM is a family of fibrations. For any 0, t e M, f is called a smooth
déformation of/0.

Now we ask ourselves how do the groups L(ft) of Définition 1.1 vary for a

family of fibrations {/,},eA/- As a matter of fact, we will see that they are ail
isomorphic. To begin with, the following Proposition shows the invariance of G{ft)
under smooth déformations. The proof relies on the fact that a smooth holomorphic

map is differentiably locally trivial. Then we will recall that G(ft) is a direct
summand of L(ft) and will do a base change in order to obtain the invariance of

PROPOSITION 2.2. // {/, :Xt-+Yt}t€M is a family of fibrations, then the

groups G(ft) are ail isomorphic.

Proof Let (X, Y, M,f g) be the quintuplet which détermines the family

{f : Xt -? F,}, as defined before. In order to fix ideas, we will choose an élément

0eM and will write R&gt;=X0, C*=Y0, q&gt;*=f0. The maps/, are smooth déformations

of (p : R -&gt; C. A theorem of Ehresmann ([3]; compare with [10], page 19, and

[12]) states that g and h*=g °/are differentiably locally trivial. In particular, there

exists an analytic open neighbourhood^f/ of 0 e M and a commutative diagram
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g

RxU C X U (projection)^

where the vertical arrows p9 q are diffeomorphisms, and *Ft : R -&gt; C a differentiable

map. Choose a point &lt;JeC such that F*=&lt;p~l(l;) is smooth. The map /: X-+ Y
is also differentiably trivial in a neighbourhood V ^g~\U) of q~l(Ç,O), that is,
there exists a diffeomorphism/~~1(F) ^FxF making commutative the following
diagram

K V

(projection)

Put W&apos;=q(V). We hâve a commutative diagram

(projection)fx w W

ï 1

R x U &gt;Cx U

working as

(z; (y, 0) ^ (j% 0

(A(z, y, o,); 0 ^ i(vt ° A)(z, j, O; 0 {y, 0

The left vertical arrow is a differentiable immersion, and k:FxW-+R is a

differentiable map. Let us define at : F-+R(t e M) by a,(z) A(z, &lt;!;, /)• Notice that

a, (F) is the fibre of ¥t over the point {eC. Furthermore the maps an a0 are

homotopic to each other for t close enough to 0, and thus they induce the same

map in homology. With our identifications and Theorem 1.3 we immediately see

that the cokernel of (at)+ : #,(/% Z) -^H^R, Z) is isomorphic to #,(C, Z) x G(/,),
whose torsion part is G(ft). Since (at)+ (&lt;ro)+, it follows that G(ft) ck G(/o) for t
near 0. As a matter of fact, we hâve just proved that the set of r € M such that
(?(/,) ~ G(/o) is open. But similar arguments show that it is also closed, and the
connectedness of M finishes our proof.
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THEOREM 2.3. Let {ft:Xt-&gt;Y,}teM be a family of fibrations. Then the

groups L(ft) are ail isomorphic.

Proof. Let the family be déterminée by the maps f:X-+Y9 g : Y -+M as

described at the beginning of this section. Write h-=g°f, and choose a point
0 g M. First we will assume that y0 is not rational. Let a : B -? Yo be any étale

morphism of degree 2. Since g is differentiably locally trivial, there is a neighbour-
hood U of Os M such that U x Yo and g~l(U) are diffeomorphic over U. The

composite (id, a) : U x B -&gt; (7 x y0 « g ~ *(£/) makes U x B into a topological cov-
ering space of g ~ *(£/). Let V dénote the space U x B endowed with the complex
structure induced by g~\U\ and set W-=h~\U) xg-l(U)V. The natural projection

X.W-+V defines a family of fibrations parametrized by U. Furthermore,
each fibre of multiplicity m of ft : Xt -» Yn t eU, lifts to a pair of fibres of
kt\Wt^&gt; F,, both with multiplicity m. Thus L(Xt) ~ L(ft)®L(ft). Combining the
invariance of G{Xt) asserted in Theorem 2.2 with Lemma 1.2 yields the invariance
of L(ft) for t e U. Now use the connectedness of M to get that L(ft) is the same

for ail t € M.
Next let us suppose that Yo is rational. Then Yt ^ P1 for ail t € M. It follows

from [4] that g : Y -&gt; M is analytically locally trivial, so that g~l(U) is analytically
isomorphic to U x Yo over U, for some neighbourhood U of 0 g M. Let B -? YQ

be any double cover which is unramified over the points of Yo where /0 : Xo -*&gt; 70

fails to be smooth. Making (7 smaller if necessary one may assume that the

composite f:h~l(U)-+g~l(U)&amp;Ux Yo is a smooth map over ail points (t,x)
where x is a branch point of B-+ Yo. Set V-=U x B and Wt—h~l(U) xg-ï(U)V.
Then W is smooth and the projection k : W-*V defines a family of fibrations.

One checks that kt : Wt-+Vt. has no other multiple fibres than the ones

coming from/, : Xt -+ Yt. Hence also L(kt) ^ L(ft)m for ail f, and one finishes as

before.

REMARK 2.4. For elliptic fibrations on a compact surface something

stronger than Theorem 2.3 holds, namely, that the set of multiplicities of the fibres
is invariant under smooth déformations. This was proved by Iitaka in [7].
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