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Dedicated to Professor Shôrô Araki on the occasion of his 60th birthday.

1. Introduction

Let G be a compact Lie group, and let Q be an orthogonal représentation of G.

A real algebraic G variety is a G invariant set

for polynomials pt : Q -&gt; U, i 1,..., m. We also say that G acts real algebraically
on the variety V. AH varieties considered in this paper are non-singular. The

purpose of this note is to show

THEOREM A. The alternating group A5 acts real algebraically with exactly one

fixed point on a variety which is diffeomorphic to S6. Furthermore, A5 acts real
algebraically without a fixed point on a variety which is diffeomorphic to Un for any

The principal motivation for this theorem is the

FIXED POINT CONJECTURE. A compact Lie group G acts real algebraically
without a fixed point on a variety diffeomorphic to Un if and only if G acts smoothly
without a fixed point on the disk Dm {jc e Um\ \\x\\ &lt;: 1}.

Pétrie and Rendall [PR] showed the necessity part (=&gt;) of the conjecture, and
hère one may set m n. Previous partial results in this direction are also discussed

in their paper. The conjecture demonstrates a clear différence between smooth and
the real algebraic actions. Conner and Floyd constructed (smooth) cyclic group
actions on Un without fixed point [CF]. By the Lefschetz Fixed Point Theorem,

every smooth cyclic action on a disk has a fixed point. Combined with the resuit
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of Pétrie and Randall this implies that there are no cyclic, fixed point free, real
algebraic actions on any variety diffeomorphic to Rn.

Our theorem deals with the sufficiency part (&lt;=) of the conjecture. Observe that
A5 acts without a fixed point on a disk [Br, page 55], and Theorem A implies

COROLLARY. The Fixed Point Conjecture holds for A5.

The corollary was obtained previously by Dovermann, Masuda, and Pétrie
[DMP]. It was derived from a theorem similar to Theorem A, but there n ^ 24.

Furthermore, Dovermann, Knop, and Suh showed the sufficiency part of the Fixed
Point Conjecture for odd order abelian groups [DKS].

A fixed point free complex algebraic action of a reductive group (such as a
finite group or C*) on V would be a striking counter example to the Linearity
Conjecture by Kambayashi [Ka]: &quot;Any reductive complex algebraic action on Cn is

conjugate to a linear action.&quot; For some results supporting this conjecture see [BH]
and [Kr]. Recently G. Schwarz [Se] has shown that Kambayashi&apos;s conjecture is

false. Many groups, such as O(n, C) x C*, hâve algebraic actions on Cn which are
not conjugate to linear actions. But, thèse actions hâve fixed points. Recently
Masuda and Pétrie extended the results of Schwarz [MP]. The actions in Theorem
A are not conjugate to linear actions because they hâve no fixed points. We only
know that the underlying variety of this action is diffeomorphic to Un, and

algebraically it may not be Un. Generally there are infinitely many real algebraic
varieties diffeomorphic to one smooth manifold (e.g., see [BK]).

The first part of Theorem A addresses a problem raised by Montgomery and

Samelson [MS]. Which groups can act on a homotopy sphère with exactly one fixed
point? Stein [St] showed that the binary icosahedral group has this property, and

Pétrie showed the same for several classes of groups [P2], [P3]. One such class are

odd order abelian groups with at least three non-cyclic Sylow subgroups. Theorem

A provides an answer to the question of Montgomery and Samelson in the real

algebraic category.
The question of low-dimensional smooth one fixed point actions on sphères was

raised by Morimoto [Mol]. He constructed smooth actions as in Theorem A (see

[Mo3] and [Mo4]). In dimensions ^5 one fixed point actions on sphères do not
exist. See [Mo2] and [F] if the dimension is ^ 4 and [BKS] if the dimension is 5. We

give a short proof of Morimoto&apos;s theorem which does not only provide smooth A5

actions on S6, but which also provides such actions in the more rigid real algebraic

category.
The first part of the proof of Theorem A will follow from the next three results.

Let 0&gt; SO(3)/A5 {gA5 \ g e 50(3)} dénote the Poincaré homology sphère. Hère

we identify A5 with the icosahedral group / c S0(3). The alternating group A5 acts
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on &amp; by left multiplication. With this action &amp; is a closed smooth As manifold. The
action has exactly one fixed point because the normalizer of / in SO(3) is / itself.

PROPOSITION B. ([DMP, Section 2]) The Poincaré homology sphère 0&gt; is

equivariantly diffeomorphic to a real algebraic A5 variety.

Let Gbea compact Lie group, and let X and X&apos; be closed (i.e., compact and

without boundary) smooth G manifolds. They are called equivariantly cobordant if
there exists a smooth G manifold W such that its boundary is the disjoint union of
X and T.

Let ^2 be 9 x &amp; with a diagonal action of A5. In particular, ^2 *s equivariantly
diffeomorphic to a real algebraic A5 variety, and the action has exactly one fixed

point.

THEOREM C. The manifold 0&gt;2 ù ^s equivariantly cobordant to S6 with an

action of A5 which has exactly one fixed point.

THEOREM D. ([DMP, Theorem 1.3]) Suppose G is a compact Lie group and M
is a closed smooth G manifold. Suppose M is G cobordant to a real algebraic G

variety. Then M is G diffeomorphic to a real algebraic G variety.

Theorem D is a partial generalization of Tognoli&apos;s Theorem [T] (the proof of
the Nash Conjecture), and it is this resuit which links smooth and real algebraic
transformation groups. Tognoli&apos;s Theorem is without group action. With the help
of Theorem D the proof of Theorem A has been reduced to a smooth problem, and
this problem is solved in Theorem C.

The proof of Theorem C is given in Section 3. There are two propositions which

prépare it. In Proposition 2.1 we construct a cobordism between ^2 and a manifold
X, and the non-free orbits in X hâve the properties implied by an A5 action on a

six-dimensional homotopy sphère. The method of proof is an eXplicit low dimen-
sional construction. In Proposition 3.1 we show that a manifold as in the conclusion

of Proposition 2.1 is equivariantly cobordant to a sphère. In its proof more
abstract equivariant surgery techniques are used to provide cobordism in the
theorem.

The second part of Theorem A follows easily from the first part with the help
of our next

LEMMA E. (See [M] and [DMP]) Let G be a compact Lie group. Let V be a
real algebraic G variety and W a G invariant subvariety. Then V\W is equivariantly
diffeomorphic to a real algebraic G variety.
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Proof. Let (pl9... 9pk) be the idéal which defines the variety V. Set p I p].
Then p-^O) V. Let S dénote the représentation of G in which V is the zéro set.

Find a G invariant polynomial q such that #~!(0) W. Hère one may start with a

non-equivariant polynomial with this property and average its square over G. Then

: {x € V I p(x) 0 and q(&gt;

The assignment which maps x to (x, \/q(x)) defines an equivariant diffeomorphism

V\W-+A {(x,y)eS ® U\p{x) 0 and yq(x) -1=0}.
The action of G on A is real algebraic.

Proof of Theorem A. Proposition B implies that &amp;2 is equivariantly diffeomorphic

to a real algebraic A5 variety. Theorem C implies that &amp;2 is equivariantly
cobordant to S6, and the action on S6 has exactly one fixed point. Theorem D
implies that S6 with this action of A5 is equivariantly diffeormorphic to a real

algebraic A5 variety. This shows the first part of Theorem A.
Furthermore, Lemma E implies that S6\(S6)A5 is equivariantly diffeomorphic to

a real algebraic A5 variety, and this variety is diffeomorphic to IR6. This implies the
second claim in Theorem A for n 6. For n &gt; 6 the resuit follows then trivially.

n

2. Low dimensional surgeries

The topic of this section is the construction of the manifold X described in

Proposition 2.1. The manifold will be used later. We dénote the tangent bundle of
a smooth manifold X by TX. Let Q be a représentation of a group G and B a G

space. The product bundle px : B x Q -? B, whose projection map is projection on
this first factor, is denoted by Q. The base space will be understood from context.

We say that a smooth G manifold X has an equivariant stable framing if there are

représentations Q± and a G vector bundle isomorphism TX © Q_ -&gt;(2+.

PROPOSITION 2.1. There is an As equivariant cobordism between &amp;2 anà on A5

manifold X such that

(1) XAs consists of exactly one point.
(2) XH S0 if H is a dihedral or tetrahedral subgroup of A5.

(3) Xe S2 for any non-trivial cyclic subgroup C of A5,

(4) X has an equivariant stable framing.
(5) X is orientable, and the A5 action on X préserves the orientation.
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We prépare the proof of Proposition 2.1. As before we identify A5 with the
icosahedral group / c SO(3). Let H dénote the quaternions and n : S(H) -?S0(3)
the double cover. The binary icosahedral group is /= n~l(I). We will reserve the

letter 3 for the représentation of / whose underlying space is H. The action

/ x 3 -» 3 is given by (n(y)9 v) h-? yvy ~\
We describe T» © R. Set S(H) x H THls(H) TS(M) © R. The binary

icosahedral group acts by left and right multiplication on S(H) x H. Taking
quotients with respect to the right multiplication we get T&amp; © R.

Consider rj : S(H) xH-+0&gt; x S defined by rj(g, v) ([g], vg~l). This map fac-

tors through T9 © R and identifies T&amp; © R with &amp; xS. The action of Ton &amp; is

not effective and induces an action of /. The map r\ is equivariant with respect to
the left /actions on S(H) x H and the / action on &amp; x 3.

Let x € &amp;&gt; be the fixed point. Then TX0&gt; © R S. The Thom-Pontrjagin map
c : &amp; -* S(S) collapses the complément of a small invariant disk around x to the

point at infinity in the one point compactification Tx&amp;+ of Tx&amp;. It is an

equivariant map. We identify TX0&gt;+ with S(3) such that 0 g Tx&amp;&gt; maps to le 3,
and such that — 1 € 3 corresponds to the compactification point. We define the

bundle isomorphism

5:^®| #xS^xS with B([g]9 v) ([g], vc([g])).

Let H be a non-trivial proper subgroup of /. Then &amp;H is diffeomorphic (^)
to the boundary of a disk D and the normal bundle v(&amp;H, &amp;) is trivial. Let v be

its fibre, D:=£&gt; x £(v), and B0-.= dD x D(v). Then Do c 3D. Let £„ : v^^, &amp;&gt;) -?

3i)xv be the trivialization induced by B, and let f : D(v(0&gt;H, &amp;&gt;)) -+&amp;

be the map which identifies the normal disk bundle with a tubular neighbour-
hood of &amp;H in 0&gt;. Define q&gt; : Do~^^ as the composition of (BH)~l (restricted to
the disk bundle) and t. Set WH ^ x [0, 1] u^ D where O is attached along

PROPOSITION 2.2. The I equivariant stable framing B : T&amp;&gt; © |-*^
extends to an H equivariant stable framing f}H : TWH © R -? WH x (S © R).

Proo/. Let Wo ^ x [0, 1]. We use B to define p0 : TH^ © R -^ ^0 x (H © R).
In the direction of 0&gt; we use B, and the summand R which we added to -H is used

to frame the direction [0,1] in Wo. We show that p0 extends over WH. Set
W&apos;= Wou(D x {0}). Because WH contracts to W it suffices to extend p0 to

y:(TWH)]w,@ U^W&apos;x[S © R).
Restricted over W&quot;, p0 décomposes as a direct sum (po)H © (Po)h, where (P0)H

is the isomorphism on the H fixed point set, and (P0)H is the isomorphism on its
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orthogonal complément. Because we used q&gt; to identify O0 with a tubular neigh-
bourhood of 0&gt;H in ^, it follows that (fio)H extends over D and W&apos;. (The same

argument was used in [DP, Lemma 4.28].)
We extend P&quot;. Consider the case where H is dihedral or tetrahedral. Then

0&gt;H ^5°. Dénote the points in &amp;H by x and y9 where {x} =&amp;&apos;. In particular,

-l and

B(x,v)=(x,v) and B(y, v) (y, -v) (2.3)

Because of the spécifie construction of cp using the framing B and the fact that po
is defined by B, it follows that pg extends over the disk Dl [0,1] bounded by 0&gt;H.

Let H be a non-trivial cyclic subgroup of /. In this case &amp;H s S1. The stable

framing of 7^, induced by rj and restricted to &amp;H, gives the stabilized Lie framing
on &amp;H. This framing is twisted, and c untwists it. For this reason B extends H
equivariantly over the disk bounded by 0&gt;H. This complètes the proof of the

proposition also in this case.

Proof of Proposition 2.1. We construct an A5 equivariant cobordism N between
0&gt;2 &amp; x &amp;&gt; (with diagonal action) and a manifold X, and an equivariant stable

framing c of N. The manifold X will hâve ail of the desired properties.
Let AT0:=^&gt;2 x [0, 1]. A stable framing c0 : R2 © TN0-+S © S 0 R of No is

given as follows. Use the product

BxB:U2 ® T0&gt;2^(U © T0&gt;)2 ïê(0&gt; x E)2-+(0&gt; x S)2 ^0&gt;2x (S © S)

as stable framing of 92. The summand R added to S © S accounts for the [0, 1]

direction in No.
We attach handles to No along ^2x{l}. Let H be a non-trivial proper

subgroup of A5 which is an isotropy group. In the set-up of Proposition 2.2 we

assigned to H a handle D with boundary pièce Do. Let So be the nontrivial
summand of S, so So is the tangent représentation of 9 at the fixed point. Set

h(H) |A5 x (D(S0) x Do) if dim &amp;H 1&apos;

This is an As space with diagonal action. Let z be a point in 9 with isotropy group
H, and let rj : D(30) -*&amp; be an H equivariant embedding which identifies D(S0)
with a tubular neighbourhood of z. Let cp be as in the set-up of 2.2. We define an
A 5 map
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by

9
&quot;&apos;

1(OT(«). g&lt;P(v)) if dim »H 1
*

Let û0(H) be the following quotient of fco(H).

x Da x Z)(iS&apos; if dim &amp;H 0

5xw(D(S0)xD0) ifdimP//=T

Then ^(i/) factors through ÙO(H) and defines an A5 equivariant embedding

Finally, we define

x H (D x Z&gt;(E0)) if dim &amp;H 0

x „ (/&gt;(S0) x D) if dim &amp;H=Ï

Observe that 00(^0 is Part °f the boundary of Ù(H). Using ^(/f) as attaching map
we form No uoo(//) 0(//).

We extend the stable framing c0 of iV0 over the attached handles Ù(H). The
stable framing c0 restricts to an H equivariant stable framing of Do, which extends

to an H equivariant stable framing of D (see Proposition 2.2). A stable framing of
D(E0) is obtained easily because this space is contractible. Their product provides
a stable framing of D x D(S0) and D(S0) x D. Thèse stable framings extend A5

equivariantly over Ù(H) because the handles are attached equivariantly. This
provides an A5 equivariant extension of c0.

Consider the set of conjugacy classes of non-trivial proper subgroups of A5

which are isotropy groups of the action on ^. In each of thèse classes choose one
représentative H9 and attach the associated handles Ù(H) to iV0 in the way
described above. Thèse handles are disjoint from each other. The resulting manifold
N is the cobordism which we set out to construct. Because we hâve extensions of
the stable framing c0 over each of the handles, we get a stable framing c of N. The
manifold X is defined by ôN &amp;2\jX and a stable framing of X is defined as

restriction of c over X.
We need to verify that X satisfies (l)-(5). Property (4) and (5) are obvious. By

assumption, &amp;p consists of exactly one point, and this point stays untouched in the

process of attaching handles. This point is also contained in X, and (1) is clear. We
check (2). Let H be an isotropy group of the action on ^, such that H # G, and
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dim »H 0. Then 0&gt;?9éS°x S0. We attachée! one handle cancelling two points in
&amp;%. Thus XH^S°.

We check (3). Let C be a non-trivial cyclic subgroup of A5 with normalizer NC
and W(C)&apos;=NC/C. Observe that W(C) is of order 2, and 0&gt;c^Sl. Identify 0&gt;c

with the unit complex numbers such that {1} corresponds to the A5 fixed point in
^, and {-1} corresponds to the other point left fixed by the action of NC. Then

^^ S1 x S1 and {&amp;%)mc) ^S°x S0. We describe the sphères in 0&gt;% on which we
did surgery when we attached handles to iV0. We used S0 { + 1} x {-1} as the
sphère on which to do surgery when we eliminated two NC fixed points. We also
did surgery on the sphères S1 x {+ i} when we attached the handles associated with
C. So, with above notation we choose z / e 0&gt;c c 0&gt;. The reader is invited to draw
a picture of the torus and carry out the surgeries which we just described. The resuit
of thèse surgeries is S2, as it was claimed for the C fixed point set in X. This
complètes the proof.

3. Surgery on free orbits

The next step in the proof of Theorem C provides an equivariant cobordism
between X as in the conclusion of Proposition 2.1 and S6 with an A5 action.
Restricted to ail non-free orbits the corbordism is a product. We discuss an
obstruction for finding such a cobordism, and we show that the group in which it
lives is trivial, hence the obstruction vanishes.

The obstruction lies in a Witt group W2(A59 F). More generally, Bak introduced

groups W+(G, F) where G is a group and F is a form parameter [B, Section 1]. Let
v D agg g Z[G]. Then v is defined as 2 agg~l. In our situation G A5 and

Z[A5], &lt;xgeZandlïgeA5 with g
11

In comparison to the éléments in WalFs surgery obstruction group L,2(Z[AS]9 1)

where the self intersection form takes values in Z[A5]/{v + v | v e Z[^5]}, the self
intersection form now takes values in Z[A5]/F. Morimoto noticed the importance of
thèse Witt groups for equivariant surgery.

DEFINITION. Let X be a closed smooth A5 manifold. We call it adjusted if Xp
is a homotopy sphère for ail non-trivial subgroups P of A5 of prime power order.

THEOREM 3.1. Let X be an adjusted A5 manifold of dimension Ak + 2 such

that
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(1) dim Xg &lt;&gt; 2k for 1 ^ g G As and equality holds if g2 1.

(2) XA**Q.
(3) X has a stable equivariant framing.
(4) X is orientable, and then A5 action on X préserves the orientation.

Then X is A5 equivariantly cobordant to a homotopy sphère I such that IAs is

dijfeomorphic to XAs.

Proofof Theorem C. It is the conclusion of Proposition 2.1 that &amp;2 — &amp; x &amp; is

A5 equivariantly cobordant to a manifold X which satisfies the assumptions of
Theorem 3.1 and which has exactly one fixed point. It is the conclusion of Theorem
3.1 that X is equivariantly cobordant to a homotopy sphère E such that IAs
consists of exactly one point. Then &amp;2 anc* E are equivariantly cobordant. In
particular, I is diffeomorphic to S6, and Theorem C is proved.

We need two algebraic computations in the proof of Theorem 3.1.

THEOREM 3.2. ([RU]) Every finitely generatedprojective module over 1[A5] is

Z[A5] stably free.

THEOREM 3.3. For r as above, W2(A5, T) 0.

The proof of Theorem 3.3 was provided to us by A. Bak, and we like to thank
him. It simplifies a proof given by Morimoto in [Mo4].

Proof: Since ^(Z[^5]) 0 (see 3.2), it follows from [B, 8.17] that

W2(A5,r) W2(A5,T) where P signifies that the underlying modules of our
non-singular forms are allowed to be finitely generated and projective over Z[A5].
The maximal 2-hyperelementary subgroups of A5 are the dihedral groups Z)4, Z&gt;6,

and Dl0&gt; Thus, by induction [B, Section 12], it suffices to show that W2(H9 FH) 0

for any of thèse dihedral groups, and

rH iv -h v +XXg |v € Z[H]9 cngeT and 1 *g eH with g2 1 i.

Consider the maximal and minimal form parameters

rmax {aeZ[#]|â=a} and rmm {v + v | v eZ[H]}.

We first show that W2(H, Tmax) =0. Consider the split exact séquence [B, 11.4]

9 rmax) -o.
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The splitting of the first map is given by the Arf invariant. By [K, §6 (2)],
W\(H, rmln) is accounted for solely by the Arf invariant. Thus WP(H, Fmax) 0.

Consider once more Bak&apos;s exact séquence

jrH) -+ wp(h, rH) -&gt; wp(h, rmax) -&gt;o.

We compute S(Fmax/FH). It is easy to see that Fmax/FH is isomorphic to Z2 and a

generator is given by e, the trivial élément in H. Consider Fmax and FH as

T[H] -modules, where the action (right and left) is given by conjugation. By
définition, S dénotes the symmetric tensor product

((FmJFH) ®zm{rmjrH))l{a ®b-b ®a,a®b-a® baE)

The tensor product is generated by e ® e. Let t dénote an élément of order 2 in H,
t¥=l. Then t e FH, 2e + 2t e FH, and in S(Fmax/FH)

e ® e =e ® (e + t)=e ® (e + t)e(e + 0 e ® (le + 2i) 0.

Thus S(rmjrH) 0 and WP2(H, rH) WP(H, Fmax) 0 as claimed. D

We prépare the proof of Theorem 3.1. Let G be a finite group. We give the
définition of an adjusted G normal map as it is appropriate in our context.

DEFINITION 3.4. A G normal map consists of two closed smooth oriented G

manifolds X and F, an equivariant map/: X-+ Y of degree 1, and an equivariant
stable framing b : TX © A -? Q of X. Hère A and Q are appropriate représentations
of G, Y is assumed to be simply connected, and it is assumed that the actions of G

on X and Y préserve orientations. The data of a normal map will be abbreviated as

(X,f,b). A G normal map is called adjusted if fp : Xp -&gt; Yp is a homotopy
équivalence whenever P is a non-trivial subgroup of G of prime power order.

For G normal maps we hâve a concept of G normal cobordism. Let
W (X,f9 b) and W (X&apos;,f\ b&apos;) be G normal maps, with the same target space
Y. Let W be a G cobordism between X and X&apos;. Let F : W-+Y x / be an equivariant

map such that F restricts to / and /&apos;, so f=F\x : X-+ Y x 0= Y and
/&apos; F\]c : X&apos; -* Y x 1 Y. Let B : TW 0 A -+ Q be a stable G vector bundle iso-

morphism which restricts to b over X and to 6&apos; and X&apos;. Then (ff, F, B) is called a

G normal cobordism between HT and iV\ The cobordism is relative to the L fixed

point set, L a G, if ail data restricts over the L fixed point set to a product with the

unit interval. We may also add the same représentation to both A and Q in above
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définition and stabilze b with the identity map. This générâtes an équivalence
relation for stable framings and for normal maps. We abuse language slightly and

call the équivalence relation generated by both of the équivalence relations again

equivariant normal cobordism.
To an orientable G manifold X of dimension 4k + 2 with orientation preserving

action we assign a form parameter F(X). Set

y(X) {g g G |1 ^g, g2 1, X8 has a component of dimension 2k}

F(X) jv + v + £ OLgg |v g Z[G], ag g Z and g e y(X)\.

We say that a G manifold X satisfies the dimension assumptions for surgery, if
dim X ^ 5 and whenever 1 # g g G, then we hâve for each component F of Zg that
2 dim F &lt; dim Z.

THEOREM 3.5. Let (X, byf) be an adjusted G normal map. Suppose that X is

of dimension 4k + 2, X satisfies the dimension assumptions for surgery, and f is

(2k + l)-connected (i.e., for the mapping cylinder Mf of f tt,(Mf, X) 0 for
j&lt;*2k + 1). Then

1) K{X) := ker (H2k +l(X)^H2k+l(Y)) is a projective Z[G] module.

(2) Suppose K(X) is Z[G] stably free. There exists an élément a(f b) g

W2(G,F(X)) such that the vanishing of cr(fb) implies that (X9fb) is G

normally cobordant to a G normal map (X\f\ b&apos;) for whichf is a homotopy
équivalence.

(3) The normal cobordism in (2) may be chosen relative to the Lfixed point sets

for ail non-trivial subgroups L of G.

The first part of this theorem was proved by Pétrie [P]. The other two parts were
shown by Morimoto [Mo5]. Compare [D, Theorem 3.11] for a différent point of
view.

Proof of Theorem 3.1. Let x g X be a fixed point. Let T:= TXX be the tangent
représentation at x. Let Y*=S(Y © (R) and /: X^&gt; Y the map obtained by col-

lapsing the complément of an A5 invariant disk around x to one point, the

compactification point in Y+ S(Y © (R). With appropriately chosen orientations

/ is of degree 1. Let b be the stable framing of X. Then (X,f b) is an adjusted
normal map.

AU cobordisms in this proof are relative to the L fixed point sets for ail
nontrivial subgroups L of A5. Using standard equivariant surgery techniques [DP,
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Sec. 4] we make (X9f, b) connectée up to the middle dimension and find a (2k + 1)-
connected A5 normal map (X09f0, b0) which is As normally cobordant to (X,f, b).

The normal map (X0,f0, b0) satisfies the assumptions in Theorem 3.5. In
particular, K(X0) is Z[A5] stably free because of Theorem 3.2 and the obstruction
cr(/0, b0) m 3.5 (2) vanishes due to Theorem 3.3. It is the conclusion of Theorem 3.5

that (X0,f0, b0) (and hence also (X,f9 b)) is A5 normally cobordant to an As normal
map (Xufubx) such that/, is a homotopy équivalence. So, Xx is a homotopy
sphère because F is a sphère, and I •= Xx is equivariantly cobordant to X with
ZAs xA\ This complètes the proof.
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