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Rational category of the space of sections of a nilpotent bundle

Y. FELIX*

Abstract. Denote by { : F — E % B a nilpotent fibration where F is a 1-connected space of finite category
and B a finite c.w. complex with non trivial rational cohomology. In this note we compute the rational
category of the space I', of continuous pointed sections of {.

§1. Introduction

In 1956, R. Thom studied the homotopy type of the space F; of continuous
maps of X into F homotopic to a given map f. He computed explicitly the
cohomology of F; when F is a product of Eilenberg—Mac Lane spaces [12].

Later on, following ideas of Sullivan, A. Haefliger gave the rational minimal
model of the space of sections of a nilpotent bundle [7]. This model has been
extensively studied by K. Shibata and M. Vigué-Poirrier [14]. In particular, M.
Vigué-Poirrier noted that, if the dimension of X is less than the connectivity of Y,
then the rational homotopy Lie algebra of Y* is isomorphic as a Lie algebra to
H*(X; Q) ® (1,(2Y) ® Q).

The aim of this paper is to show that the category of the space of continuous
maps from X into Y, and more generally of pointed sections of a fibration, is often
infinite.

To be more precise, we prove in fact the following two theorems.

THEOREM 1. Let I', be the space of continuous pointed sections of a nilpotent
fibration F — E — B. Suppose that

() Iy #¢

(2) F is a nilpotent space of finite category

(3) H*(B; Q) #0 and dim H*(B; Q) < ©

(4) dim (7 (F) ® Q) is infinite.
Then, cat (I',) = .

* Chercheur qualifié FNRS.
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In the case where the fibration is trivial, the result is more precise:

THEOREM 2. Let X be a finite nilpotent c.w. complex and Y be a nilpotent
space. We suppose that the rational cohomologies of X and Y are not trivial and one
of the two following conditions is satisfied:

(1) dimzn (Y)®@Q =

(2) dmn, (Y)®@Q < oo and there are odd integers p and q such that

H(X;Q)#0, n,(Y)®Q#0and g —p 2 2.
Then the functional space Y* has infinite category.

This result clearly yields the following corollary previously proved by E. Fadell
and S. Husseini.

COROLLARY [3]. If Y is a 1-connected space of finite category, such that
A*(Y; Q) #0; then the free loop space YS' has infinite category.

The organization of the paper is as follows. We first recall the construction of
the Sullivan—Haefliger model for the space of continuous (resp. pointed) sections I
(resp. I' ). We then show how to deduce the two theorems from the model. We also
deduce a way to compute explicitly the rational homotopy groups of I.

In fact, if X is a l-connected space and X, its rationalization, we have the
inequality cat X, < cat X [13]. The integer cat (X;) is called the rational category of
X and is denoted cat, X. Its relevance comes from the fact that cat, (X) can be
obtained from the minimal model of the space [5].

§2. The Sullivan—Haefliger model

Let { : F—»E> B be a fibration. We suppose that B is a finite nilpotent c.w.
complex and F is a nilpotent space with finite Betti numbers. We suppose that
r,#d¢.

Let (4,d,) > (A® AV, D) —>(AV,d) be a minimal K.S. model of { [9]. As
I, # ¢, we can also suppose that the differential D satisfies:

DIV)cA®A*V.

B is a finite nilpotent c.w. complex. Therefore we can average A is a finite
dimensional graded Q-vector space. Denote by S a graded supplementary subspace
of the graded vector space formed by the cocycles in A. This gives a direct sum
decomposition of 4: 4 =S@Hd(S)PDT. We then choose a homogeneous basis
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(a;);c; of A by taking the union of homogeneous bases of S, d(S) and T. The
graded dual vector space of 4 will be denoted by 4 V:

(AV), =Hom (4", Q).
A" is naturally equipped with the dual basis a?*:
(a},; aj> = 5;‘;’-

We now look at the map of algebras defined by:

E:AQAV 2 AQRAAY®V) 1 e(v) =) a;@(a¥ ®v); e@)=a, aeA.

iel

In [7], A. Haefliger shows how to put a uniquely defined differential d, ® 6
on AQA(AY®V) in such a way that ¢ becomes a morphism of com-
mutative differential graded algebras. Let W be the quotient of A¥ ® V' by the
subspace of elements of degree <0, and by the subspace formed by the J-cocycles
in degree 0.

A short computation shows that d(1®v) =1@®dpy, so that the injection
VQ®V o AY ®V induces a K.S. extension:

0 : (AV, d) = (AW, 8) = (A(W/V), 5).

THEOREM A (Haefliger, [7]). @ is a model for the canonical fibration
r,»r 2, F where p denotes the evaluation on the basis point of B.

With this model, we can for instance give a rational analogue of the Cohen-—
Taylor theorem [2].

PROPOSITION. Let X be a finite wedge of spheres of dimension less than m
(X=v!_,8% and Y be a (m + 2)-connected space, then we have a rational
homotopy equivalence

r

(Y¥), = [T (¥™),.

i=1

Proof. The Haefliger model for (Y*), is (A(H; (X; Q) ® (z,(Y)) "), 0). O
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§3. The rational homotopy Lie algebra of a space

If S is a nilpotent space with finite Betti numbers, the minimal model of S is a
free commutative differential graded algebra (AZ, d). The graded vector spaces Z*
and Hom (n (S), Q) are then isomorphic [11].

The differential d always decomposes in the form d=d,+d;+ -+, where
d;(Z) = A'Z. This gives on s ! Hom (Z, Q) a structure of Lie algebra by putting:

(dyz; £,8) = (= 1) * Wsz; [s~'f, s 'g])
zeZ;f,g e Hom (Z, Q).

It is a result of Andrews and Arkowitz [1] that this Lie algebra is isomorphic to
the Lie algebra Lg = n,(2S) ® Q obtained on the rational homotopy groups by

means of the Whitehead product. An extensive study of L has been made these last
years with for instance the following result:

THEOREM B ([6], [4])). If S is a space of finite category, then every nilpotent
ideal I of Lg is finite dimensional.

We now want to compute L, for a given fibration. With the notations of §2, we
decompose the differentials D and 6 in the form

D=D,+D,+ -+ D,(V)cAQAV)
S=8+0+ - 6(A"®V)cA(A V)

0, is completely defined by d, and D,. In fact, put
Dy, =) a,v,, o,eA".
We then have:
(%) Z (—1D)*t@a, @6, (a¥ ®v,) = -—2;, d(a;) ®(at ®v,)
+2 Lo 4@ ®n)

The homology of (4¥ ® ¥, 4,) and (4 ® V, §,) are respectively isomorphic to
the vector spaces of indecomposable elements of the minimal models of I' and I'
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We thus have isomorphisms:
() H¥*(A4" ®V,6) =, (N®Q)"
and
(2) H¥(41®V,0) = (n,(T',)®Q)".
Moreover, the short exact sequence of complexes
0-(V,00 (4" ®V,0,)2(AYRV,8,)—>0

induces in homology a long exact sequence isomorphic to the dual of the homotopy
long exact sequence of the fibration I', —» I = F [9]:

A
o HYAYL®V,0,) = VIt S HIY AV QRV,6,) — HI*' (AL ®V,8) > -

l l

o (M) — (g (F)Y — (g1 (D) — (g (Ty)) Y >

REMARK. “D, is differential” can be expressed by the fact that the matrix a
consisting of the a,, satisfies a? + da = 0.

§4. Proof of Theorem 1

We use the notations of §2 and 3, (AV, d) = (AW, 6) = (A(W/V, ) is a model
of the fibration I', » I' & F. We consider the linear map

D, :VoA®YV.

There are two cases: Either there exists an infinite sequence of homogeneous
linearly independent elements v,, v,, . .. belonging to ¥ such that D,(v;) doesn’t
belong to D,(A* ® V), or we can suppose that there exists an integer N such that
for every v in V of degree larger than N, D(v) belongs to 4 ® A =2y,

We take a K.S. basis (v,);» of V: D(v;) € A ® (v;);<;. Write

D\@,) =) o v,.

r=1

We obtain d,(«,) =0. If [o,] =0, then a, =d,(b) and D,(v, —b - v,) € A ®(v)); <,
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We then replace v, by v, =v, — b - v,. If D,(v) does not belong to D,(4* @ V), we
can suppose [a,] # 0. In this case, formula (*) gives the equality

6,(af ®v,) — (—)* 1@,

This means that the element 1 ® v, belongs to the image of 4 in the dual homotopy
long exact sequence. Recall that the elements in the image of 4 are called the
. Gottlieb elements of the fibration and let us come back to our dichotomy:

In the first case, the v; are Gottlieb elements of I', [5]. By [5], we know that the
category of a space is greater or equal to the number of its linearly independent
Gottlieb elements, so that cat (I',) = oo.

In the second case, put n = max {p such that 47 #0}. For ¢ >n + N, formula
(*) yields the isomorphisms

H(4" ®V),0,) =(H(4,d,)” ®V)*.

The injections 6(4, @ V) c A(AL,®V), valid for p >0, imply that the Lie
algebra L = (H(A,d,)Y ® V)>"*¥ is a nilpotent Lie algebra of infinite dimension,
which is impossible by Theorem B. O

§5. Proof of Theorem 2

In this case, the fibration (Y*), 5 (Y¥) > Y admits a section and so n,()®Q
is injective. It then results from [5] that caty, ((Y*),) < caty (Y*). If (1) is satisfied,
we deduce from Theorem 1 that cat, (Y%) is infinite.

If (2) is satisfied, choose a non homologically trivial cycle « in 4” and a nonzero
element v in V9. We now have D, =0. The formula (*) shows that a*®v is a
d,-cycle which is not a §,-boundary. a* ® v defines thus a nonzero indecomposable
element in the minimal model of Y*. The definition of §, as given in §2 implies the
following formulas (**) and (**x):

(x#) ¥ (—)5 @0, @ 5(at ® 1) = — Y. du(@) ® (@} ® 1) + (D).
(#s%) 60, -0, 0) =33 Y4, a,  a, @], ®v)al,®v) -+ (a} ®v,).

As «? =0 formula (*#*) shows that («* ® v)" can never appear in the decomposi-
tion of &(v, - v, - - v,), and so by (#+), in the differential of an element f*®:. It
then results from ([8] Proposition 1) that cat, (Y*) = o0. (]
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If the dimension of X is less than the connectivity of Y, the result we obtain is
better.

THEOREM 3. Let X be a nilpotent space such that there exists an integer k = 1
with H*(X; Q) =0, p > k and H*(X; Q) # 0 and let Y be a (m — 1)-connected space,
non contractible over Q, with m 2 k + 2, then the functional space YX has finite
rational category iff the three following conditions are satisfied:

(1) 7,(Y) ®Q = 104(¥) ®Q.

(2) H*(X; Q) = H*(X; Q).

(3) dim=n (YY) ®Q < .

Proof. By Theorem 2, Condition 3 is necessary. In this case, we have
dim 7., (Y) ® Q < dim 7,44(Y) ® Q ([8], Proposition 1), so that n,,(¥Y) ® Q #0.
By Theorem 2, the second condition is thus also necessary.

Suppose thus that H*(X; Q) = H***(X; Q). We can suppose that 4>*=0. If
Teven(Y) ® Q #0, let’s choose a cycle a of A* defining a nonzero element of
H*(X; Q) and let’s choose a nonzero element v in V*'*". Then, formula (**#) shows
that no power of a* ® v can appear in the decomposition of &, - v, - - - v,) for any
choice of v;,v,,...,v,. Now by (**) no power of a* ® v appear in the expression
of a boundary, so that, by ([8]) the category of Y* has to be infinite.

On the other hand, if the three conditions are satisfied,

Te(Y") ®Q =7,44(Y) ®@Q

is finite dimensional and concentrated in odd degrees. The minimal model of Y* is
thus finite dimensional. This implies that Y* has the rational homotopy type of a
finite c.w. complex. g
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