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An acyclic extension of the braid group

Peter Greenberg and Vlad Sergiescu

Abstract We relate Artin s braid group Bœ hm _ Bn to a certain group F of pi homeomorphisms of
the interval Namely there exists a short exact séquence 1 -*¦ 5œ -? A -*¦ F -+1 where HkA =0, k ^ 1

1. Introduction

Récent years hâve seen a growth of interest in the dynamical, combmatonal and

homological aspects of groups of /?/-homeomorphisms of the real hne ([BS], [Br],
[BrG], [Gh], [GS], [Gl])

In this paper, we hnk certain of thèse groups with the Artin braid groups in an
algebraic construction which exploits the geometncal bases of the two

Let Fbe the group of/?/-homeomorphisms of [0, 1] whose denvative, which may
be undefined at a finite subset of Z[\], îs otherwise an intégral power of 2, and let
F be the subgroup of éléments of F which agrée with the îdentity near 0 and 1 Let
Bn be the braid group on n stnngs and Bœ hm^ Bn the usual infinité braid group
Recall that a group îs acyclic provided ît&apos;s homology with trivial coefficients
vanishes in positive dimensions

Our main resuit îs the following

THEOREM There exists an exact séquence \-&gt;BO0-+A-&gt;F&apos;-+\, with A an

acyclic group

Our task m this paper îs the construction of the group A and the proof of ifs
acychcity We also indicate the homology of related groups, replacing either F&apos; with
a group acting on the circle or B^ with the group 1^ of finitely supported
permutations The latter group îs connected with the Fredholm permutations as

studied by J Wagoner and S Pnddy ([W], [P])
The construction of A îs quite geometncal It exploits the idea of an action at

înfinity on a tree The cntical point îs to force Hx {A, Z) 0 The rôle played hère

by the second denvative recalls the discretized Thurston cocycle mtroduced in [GS]
The initial évidence for the theorem îs homological
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PROPOSITION ([Gl], [GS], [SI]). There are maps BF&apos;-*QS\ BBœ-+Q2S3
inducing isomorphisms in homology with integer coefficients.

Thus, the path fibration Q2S3 -? PQS3 -» QS3 suggests the existence of the group
A claimed by the theorem. However, as we will show in Section 6, given a fibration
F-+E-+B and groups H and K with the homology of F and B, it is not generally
possible to build an extension of groups 1 -+H -* G -&gt; K -&gt; 1 with the homology of
that fibration.

It seems that A is a new kind of acyclic group. Well-known examples of such

groups include Higman&apos;s finitely presented group (see [BDH] and Section 6) as well
as various &quot;large&quot; groups: the group of compactly supported homeomorphisms of
Rw [M2], the group of ail permutations of an infinité set or the group of continuous
automorphisms of an infinité dimensional Hilbert space. The proof of acyclicity of
the Higman group uses a Mayer-Vietoris argument, while for the large groups it
requires an infinité répétition device due to Mather and Wagoner.

In contrast, in order to prove that A is acyclic we use a différent approach
involving a fairly délicate delooping argument.

We note that while a basic theorem of Kan and Thurston embeds any group in
an acyclic one, our construction embeds the braid group in A as a normal subgroup.

This paper is organized as follows. In Section 2 we introduce a technique to
build automorphisms of braid groups starting with the action of a group at infinity
on a tree. Section 3 contains the définition of A and of some auxiliary monoids. In
Section 4 we use the homological properties of B^ and F&apos; and a delooping
technique to prove the Theorem. Section 5 contains related results for other groups
and Section 6 a relevant example.

We thank J. Barge, F. Gonzales-Acuna, D. Epstein and J. C. Hausmann for
stimulating interest at various stages of this paper.

This paper was initiated during a visit of the second author at the U.N.A.M. at

Mexico City and then completed while the first author was visiting the University
of Lille. The authors warmly acknowledge the hospitality of both institutions as

well as the support of C.N.R.S.

2. Trees and Braids

This section starts with some motivating remarks and an overall idea of our
approach. We hope, thus, to make the material in the rest of the paper easier to
follow.

As already stated in the Introduction, our main goal is to build an acyclic
extension 1 -* B^ -? A -* F&apos; -? 1. The group B^ being centerless, it is well-known
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that this cornes down to a certain morphism from F&apos; to the group of outer
automorphisms Out B^

Unfortunately, there îs no natural way to obtain this morphism using the
standard description of Bœ

Instead, we note that F&apos; acts naturally on the group S^ viewed as finitely
supported permutations of the dyadic numbers in ]0, 1[ Indeed, F&apos; îs a group of
bijections of the dyadics This suggests to look for some sort of braiding of the
above action

To avoid braiding a dense set, we fîrst place the dyadic numbers as vertices of
the binary tree

A System of generators for the related braid group can be constructed from the
edges of the tree Note that F&apos; does not act on the whole tree

Fig 2 0

Our basic observation îs that nevertheless, each élément of F&apos; does act simph-
cially ouîside a flnite subtree Moreover, this action will extend to an automorphism
of Bx well defined up to inner automorphisms Thus one gets a morphism from F&apos;

to Out B^
We mention that in fact, a shghtly more involved construction îs needed in order

to get the extension A acychc
We now proceed to put thèse remarks in a proper context
Recalling their relationship with configuration spaces, we define braid groups

relative to a discrète set of points in the plane When this îs the set of vertices of a

planar tree, the edges provide generators for the corresponding braid group
We then introduce braid groups associated to cychcally onented trees Our setup

is appropnate to show that an isomorphism &quot;at mfinity&quot; of a tree becomes an outer
automorphism of the associated braid group This fact will be essential for our
constructions in the next section
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2.1. DEFINITION. Let S be a discrète, closed subset of R2. For any open
relatively compact, contractible set D c R2, let CD be the space of injections of the
finite set SnD into Z), modulo the action of the group of permutations of SnD.
Let BD=nxCD, and Bs lim_ BD, the limit taken over the directed System of open
sets and inclusions. We call Bs the braid group of S.

2.2. Remarks, a) The isomorphism class of Bs dépends only on the cardinality
of S.

b) Consider an embedded arc c in R2 which intersects S precisely at it&apos;s end

points.
Pick a contractible neighbourhood D such that S n D is the end points of c.

Then BD ^ Z; we let ç be a generator of BD given by a counterclockwise exchange
of the endpoints of c.

Fig. 2.2

The ç constitute a &quot;coordinate-free&quot; set of gênerators of Bs, and satisfy simple
relations given by the following propositions, whose proof is left to the reader:

2.3. PROPOSITION (Triangle Rule). Let S be a discrète closed set ofR2. Let
a, b, c be the edges, in clockwise order, of a triangle embedded in R2. Suppose that

a, b, c intersect S precisely at their end points, and the interior of the triangle contains

no point of S. Then ç a ~ xba bab ~l

We recall some homological facts.

2.4. PROPOSITION. Let S be a discrète, closed subset ofR2. Then H^Bs) ^ Z,
and the map from Bs to HX(BS) takes ail of the ç to the same generator.

It is classical ([CLM] III, App.) that HXBS~Z, generated by some ç. The

triangle rule shows that ail ç lie in the same conjugacy class.
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2.5. PROPOSITION. For any inieger m&gt;0, there exists a k &gt; 0 such that if
S Ç S&quot; are discrète, closed subsets of R2 and card S &gt; k, then the inclusion Bs -&gt; Bs
induces an isomorphism in homology in degrees &lt;m.

For S, S&apos; finite, this is ([CLM], III, App]. The gênerai resuit cornes on taking
limits.

In our notation, the usual présentation for the braid group is as BN, where
N {(n, 0) | n e N}; BN has generators en e, [/, / + 1] and relations

£,£/+i£, £,+ \e,el+l, \e_ne_j\ 1 if | / —j | &gt; 2. One can show that thèse relations
follow from the triangle rule. In gênerai, the edges of any tree in the plane with the
set S as vertices provide generators for Bs ; the ç, for arcs c which are not edges in
the tree, may be easily calculated in terms of the edges using the triangle rule. We

proceed to develop this idea.

Let T (F, E) be a countable, locally finite tree with vertex set V and edges E.

We always identify T with it&apos;s géométrie realization.

2.6. DEFINITION. An orientation of T is an équivalence class of collections
^ {^v}ve v of bijections dv : E(v) -?{1,2..., card is(v)}, where we set &lt;P ~ &lt;P&apos; if
for ail v g V, &lt;pv and &lt;p&apos;v differ by a cyclic permutation of {1, 2,. card E(v)}.

An embeddingf: T-+R2 is a homeomorphism onto its image, such that/(F) is

a discrète, closed subset of R2. An embedding of a tree détermines an orientation of
the tree, the clockwise ordering of the edges E(v), v e V. The converse is also true:

2.7. PROPOSITION. If T (V,E) is a tree, there is a one-to-one correspon-
dence between orientations and isotopy classes of embeddings to R2.

Namely, given an orientation, pick v e V and define /(v) (0, 0) e R2. The

orientation describes how to embed £(v), and there after by induction on subtrees

(T being connected) the entire tree, up to an ambient isotopy.

Let Tbe an oriented tree. Let/: T-+R be an orientation preserving embedding.
The group Bf(V) has {f\e), e e E} as sl set of generators. The relations satisfied by
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the f{e) in Bf{V) dépend only on the isotopy class of/, that is, by 2.7., only on the

orientation of T. That is, we can make the following définition.

2.8. DEFINITION. Let T be an oriented tree. Let X be the free group on the

set E of edges of T. An orientation preserving embedding / : T -&gt; R2 induces a

surjection X&apos;-&gt; Bf{V). Define BT, the braid group of 71, to be the quotient of X by
the kernel of X-*Bfiy), for any orientation preserving/. We write/: BT -&gt;Bnv) for
the induced isomorphism.

In [Ser] the relations amongst the generators e e E which define the group BT

are determined. They are: [e, e&apos;] 1, if e and e&apos; share no vertex, ee&apos;e efee&apos; if e

and e&apos; share a vertex, and e e&apos; e&quot;e — e&apos;e&quot;e_e&apos; e&quot;ee&apos; e&quot; if e, e\ e&quot; share a vertex, and

are cyclically oriented.

If /: r-*R2,/&apos; : T&apos;-+R2 are orientation preserving embeddings of oriented

trees, such that/(F) =f{V), then/&quot;1 o/&apos; defines an isomorphism from BT to BT.
Our next goal is to define outer automorphisms of BT via embeddings of T in T
defined up to a finite subtree. The approach is suggested by a similar construction
for permutations due to Wagoner ([W], [P]).

Recall that a forest is a disjoint union of trees. We keep the notation T (F, E)
for a forest. We discuss some aspects of the geometry of forests.

2.9. DEFINITION. Let T (V\ E&apos;) be a subforest of a forest T (V, E). The

complément T&apos;c of T&apos; is the subforest of T with edges {e e E | e $ E&apos;}. Whenever
T&apos;c is finite, T is called a cofinite subforest. If T is connected and 71&apos; n T/c is a

single vertex v, then 7&quot; is a rooted subtree whose root is v.

We shall need one more technical notion. Let Tx,..., Tn be rooted infinité
disjoint subtrees of an oriented tree T. Let v, be the root of Tn i — 1, n.

2.10. DEFINITION. We say that r,u • • • uTn has uncut complément if for
some embedding / : T -? R2 which préserves orientation, there exists an embedding
of the closed unit dise g : D2-+R2 such that g(D2) n Tx {v,}. The cyclic counter
clockwise order in which the roots v, occur on g(Sl) =g(dD2) is called the cyclic
order of the Tt (we always assume this is Tu Tn).

Note that a forest can hâve a connected complément without having an uncut
complément.
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T{,T2, T3 m cychc order

We state a technical lemma:

Tl,T2, T3 do not hâve uncut complément

2.11. LEMMA. (a) Any finite subforest T&apos; of an oriented infinité tree T may be

enlarged to a finite subtree T&apos; 2 T&apos; so that T&quot;c has uncut complément.
(b) Let T&apos; be a finite subtree of an oriented tree T so that T&apos;c T, u • • • uTn has

uncut complément. Let v, be the root of Tn i 1,. ,n. Suppose that

f=llf : T&apos;C-&gt;R2 is an embedding, so that eachf : Tt -?R2 is orientation preserving.
Further, suppose that there is an embedding g:D2-+R2 of the disk, with
g(D2) nf(Tt) {ft(vt)} and such that theft(yt) occur in g(Sl) in the order given by
the cyclic ordering of the Tl.
Then f extends to an orientation preserving embedding f : T -&gt; R2.

We leave part (a) to the reader, and pass to part (b). Begin with an embedding
h : T-&gt;R2, which we can assume takes Tf to g(D2), and such that h(v,) eg(Sl) for
each i. By définition of cyclic order, the h(vt) occurs on g(Sl) in the same cyclic
order as the /(v;). Thus we can isotope h, keeping h(T) c g(D2), such that
h(vt) =f(vl). Lastly, we isotope h outside g(D2) until h =f on each Tt.

One has the foliowing key notion.

2.12. DEFINITION. Let T, T be oriented trees. An oriented Fredholm map &lt;p

from T to T is an isomorphism q&gt; {cpl : Tt -? T\, i 1, -, n) from a cofinite
subforest 7, u • • • u Tn of T with uncut complément to a cofinite subforest
T\ u • u Tn of T with uncut complément. Each cpt must be orientation preserving,
and the cyclic orders of the T, and T, must agrée. The index of (p is defined as

ind (y) card {veF,v^uF,}- card {v e V\ v i u V\}.

The set of oriented Fredholm maps from Tto T is denoted Fred+(J, T). We

put an équivalence relation on Fred+(7; T) by setting q&gt; ~ (pf if q&gt; and cp&apos; agrée on
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some cofinite subforest. The équivalence classes are called germs and form a set

Germ + {T, T). For a single connectée oriented tree T, Germ+ (T, T) is a group
and ind : Germ+ (T, T) -&gt;Z is a homomorphism.

Finally, we show how Fredholm maps produce automorphisms of braid groups.

2.13. PROPOSITION. Let T (V, E) and T&apos; (V&apos;,E&apos;) be infinité oriented

trees, and let cp e Germ+ (T, T&apos;) with index 0. Then there exists an isomorphism
&lt;P : BT -+BT, so that &lt;P(e) cp(e) for ail but afinite number of edges e e E. Further,
0 is well defined up to composition with an inner automorphism of BT.

First we show that # exists. Pick V e Fred+ (T, T), W {f, : Tt -» T&apos;l9 i 1,

...,«} in the équivalence class cp. Let /: T-+R2 be an orientation preserving
embedding. Define f\ : T[ ^R2 by f\ =/o &lt;P~l. Because W préserves the cyclic
order of the Tn by 2.11 (b) we can extend/^ to an embedding/&apos; : r&apos;-^R2. Since

ind &lt;p 0, we can choose / so that f(V) =f(V). Then define &lt;P =f_~lf Clearly
&lt;P(e) cp(e) for any e e u Et.

Suppose that Y : BT -? BT, is an isomorphism and that W(e) (?(e) for ail but
a fini te number of edges e e E. Then W~l&lt;P : BT -+Bris the identity on f for ail but
a finite number of edges e e E. Thus there exists some finite subtree T&quot; (V&apos;\ E&quot;)

of T such that W~l&lt;P induces an automorphism BT and ^ ~ {&lt;P~ \e) e, e $ E&quot;. By
this latter condition and 2.4., W~l&lt;P induces the identity on H} of BT The theorem

of Dyer and Grossman ([DG], 4) thus implies that *F~l&lt;P, restricted to Br, is an
inner automorpfiism conjugation of some g e BT Enlarging T&quot; if necessary, it
follows that after possibly multiplying with an élément in the center of BT&gt;, g
commutes with any e, e i E&quot;. Thus *P~l&lt;P : BT -+BT is conjugation by g, q.e.d.

A mild extension of 2.13 is the following.

2.14. PROPOSITION./,^ T9 T&apos; be infinité, oriented trees, and

(p g Germ+ (T, Tf) with index 0. Let t, t&apos; be finite subforests of T, T respectively,
and 9 : t -&gt;t&apos; an orientation preserving isomorphism of trees. Then there exists an

isomorphism &lt;P : BT -+BT such that &lt;P(e) (p(e) for ail but afinite number of e e T,

and such that 4&gt;(e) 0(e) for ail e ex.

First, pick V as in 2.13, but so that t n T, 0. One can then pick/, as in the

proof of 2.13, so that / |t- =/ ° 0 &quot; *.

2.15. COROLLARY. Let T be an infinité, oriented tree, and 0:t-*t&apos; an

orientation preserving isomorphism between finite subforests of T. Then there exists an

inner automorphism &lt;P of BT so that &lt;P{e) 6{e) for ail e ex.

Take cp to be the identity in 2.14.
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2 16 COROLLARY Let T be an infinité, onented tree, x afinite subforest, and

cp g Germ + (T, T) with index 0 Then there exists an automorphism &lt;P of BT so that

ie) e, e e t and &lt;P(e) cp(e) for ail but a finite number of edges e of T

Take 6 to be the îdentity in 2 14

3. Constructions

In this section we perform the main construction of the paper We will define the

group A, to be shown acychc m Section 4, and a related group AG Also, monoids
used in the proof of acychcity of A are constructed We begin by definmg sorne

onented trees

3 1 DEFINITION The trees TN For each mteger iV &gt; 1, we construct an

onented tree TN (VN, EN) The set of vertices of TN îs

(0, N)

and the set of edges of TN is EN CNu \JdFdN, the latter union over

rfeZg]n(0, JV), where

CN \ed, ed,deZ\ - n(0, N)

and

where if d k/2m, k odd and m :&gt; 1, or m=0 then /(&lt;/)= (2fc-

One should think of FdN as a fîber over d, and the éléments of CN as Connecting
the fibers The orientation of TN is that induced by the following embeddmg mto

Rl {(x,y),y&gt;0}
For example, the cychc ordenng of the edges E(vl/2) is as follows elr9ej/29

3/2
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!•/ 1

«M N+V2

r\
N-1

Fig 3 2

3.3. DEFINITION. TG is the oriented subtree of T2 with edges

We write / : TN -+TN + k for the obvious embedding of TN as a subtree of
Other useful embeddings are the translation maps x : TN -? TN f k defined by

3.4. DEFINITION. We write BiN) for the braid group BTn of the tree TN, and

BG for the braid group of TG.

3.5. LEMMA. The map
ail N, kand H*(i) H+(x).

: H^(B(N)) -+H^{B{N + k)) is an isomorphism for

The first assertion is a conséquence of 2.5. We show that H+{ï) =H^{x). Let

x e H^(B{N)). Then, by définition of B(N), x cornes from BT, for some finite subtree

rç TN. The trees i(T) and x(T) are isomorphic subtrees of TN + k. Applying 2.15,
there is an inner automorphism of B{N + k) taking H^(i)(x) to H^(t)(x), D

To define the groups A and AG, and certain monoids, we make some remarks

on the geometry of the trees TN and TG.

3.6. DEFINITION. A dyadic interval is an open interval of the form /
(k/2n, (k -h l)/2&quot;), n &gt; k e Z. If / and / are dyadic intervais, yu dénotes the unique
élément of the dyadic affine group such that yu{J) /. If / is a dyadic interval and

N ï&gt;\ so that / Ç (0, N), let Tt be the subtree of TN with vertices

V, {vdn; d g /}, EÊ {e e EN, de cz V,}.
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3 7 LEMMA Let I and J be dyadic intervais Then GfJ(vdn) vyn»{d\ Gu(e%)
VjtJ)(* n« r&gt; 0 defines an isomorphism Gu Tj -? Tf of trees

Routine vérification

3 8 Constt uction of A

We now define, for any piecewise affine dyadic homeomorphism
g [0, n] -»[0, k]9 an élément cpg of Germ+ (Tn, Tk) Let M be an mteger large
enough so that for every dyadic interval of the form / (k/2M, (k + \)/2M)9 g |y îs

affine, and g(J) îs a dyadic interval

3 9 DEFINITION Let d e (0, n) Define g&quot;(d) log2 gr(d) - log2 gl(d\ where

gr(d) hm£ ^ og&apos;(d + e), gl(d) hm£ x Qg&apos;{d - e)

Let sg max^^o^ | g&quot;{d) \ Define a cofinite subtree of Tn to be the union of
the TJ9 J (k/2M9 (k + 1)/2A/), with subtrees Fd of the fibers Fd9 d k/2M, Fd has

edges {ed, n ^ sg + 1} A glance at 3 2 shows that this cofinite subtree has uncut
complément

We define a représentative çg e Fred+ (Tn, Tk) of cpg e Germ+ (Tn, Tk) as fol-
lows (pg\Tj Gg(J)J, for any / (k/2M9 (k + 1)/2M) For each d k/2M, define

(pg(ei) e£i\ (d), so that &lt;pg(Fd) is a subtree of Fg(c/) It îs clear that the image of
&lt;pg is a cofinite subtree with uncut complément, and that q&gt;g préserves the cychc
order of the components of the subtree

3 10 PROPOSITION Ifg [0, n] -? [0, k], h [0, k] -? [0, m] are piecewise affine
dyadic homeomorphisms, then cphg (ph(pg

This follows in a straightforward way from the following two facts First, if
/, /, K are dyadic intervais, then GUGJK GIK Second, the denvative defined in 3 9

satisfies the chain rule h\g(d)) +g&quot;(d) (hg)&quot;(d)

3 11 PROPOSITION Let g [0, n] -&gt; [0, k] be a piecewise affine dyadic
homeomorphism, such that gr(0) gl(n) 1 Then ind cpg 0

Since &lt;pg takes fibers to fibers, ind &lt;pg ^de(on)g&quot;W Since gr(0) =g\n) 1, by
the &quot;fondamental theorem of calculus&quot; Zde(On)g&quot;(d) 0, so ind cpg 0

3 12 DEFINITION A is the group of automorphisms h of B0), such that there

exists ag e F&apos; such that h(e q&gt;g(e) for ail but a fini te number of edges e € Ex We

say that h lies over g, and define p A -? F&apos; by p(/*) g
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3.13. THEOREM. There is an exact séquence 1 -+B0) -+A ^&gt;F -+ 1.

Définition 3.12 gives p:A-^F\ which is a homomorphism by 3.10, and

surjective by 3.11. The kernel of p contains ail inner automorphisms of i?(1); by
définition, ker(p) is the set of ail automorphisms of B(l) which fix e for almost ail
e e Ex. By the argument of 2.13, ker(p) consists of exactly the inner automorphisms
of B(l). But B(l) has trivial center, and can be identified with its group of inner
automorphisms. Hence ker(p) 2?(I).

3.14 PROPOSITION. The action of F&apos; on H^B0)9 coming from the exact

séquence 1 -» B(l) -+ A -&gt;F&apos; -&gt; 1 is trivial.

Let g e F\x e H^BiX). Then x is the image in H^B(l) of an Je e H^BT, for T a

fini te subtree of Tx. By corollary 2.16, we can pick an h e A over g such that h fixes
T. Thus g fixes x.

3.15. Construction of AG

We briefly describe the construction of the extension BG -+AG-^G. Hère, G is

the group of orientation preserving pieeewise affine dyadic homeomorphisms of S1,

thought of as [0, 1] with 0 and 1 identified, see [GS]. As in 3.8, to every g e G wq
associate a q&gt;g e Germ+ (TG, TG) with ind &lt;pg 0. Then AG is defined as the group
of automorphisms h of the group BG, such that for some g e G, h(e) (/^(e) for ail
but a finite number of edges e e TG. As in 3.13 and 3.14, we obtain an exact

séquence BG -+AG -?G, and G acts trivially on the homology of BG. Note that we
hâve a commutative diagram, whose vertical arrows are inclusions:

(3.16)

The proof of acyclicity of A requires the construction of strictly associative

B(\

i
BG

^A-tF&apos;

ï
-*AG

i
-G

P
topological monoids and continuous homomorphisms MB -+ MA -* MF. The
construction of MF is due, in essence, to Quillen ([Q], §.8).

3.17 Construction of MF

MF is the (thin) geometrical realization B%&gt;F of a category #F. The objects of ^p
are 0, i, 2, The set of morphisms ^F(n, k) is null if n 0 unless k 0, and
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#f(Q&apos; Q) W}- F°r n,k&gt;\, %&gt;F(n, k) is the set of piecewise dyadic affine home-

omorphisms g : [0, n] -&gt;[0, k] such that gr(0) =gl{n) 1. Composition in &lt;gF is via

composition of homeomorphisms. Note that MF Bf€F is the union of a point 0

with a K(F\ 1), and the inclusion Ff^^F(\,{) defines a homotopy équivalence
*I1BF-&gt;MF.

The product \iF MF x MF -? MF is defined via a functor, also denoted

\iF : ^F x ^F-&gt;#F. On objects, juF(£, w) fc+w. If g 6 «V(£, «) and g&apos; g «&gt;(£&apos;, s&apos;),

define fiF(g, gf) e ^F(k +k\ n +n&apos;) by

x~k

Composing with the canonical homeomorphism BfâpxB^p^B^pX^p), we

obtain iiF : MF x MF -&gt; M/r, one checks that /zF is strictly associative with unit
* 0.

3.18. Construction of MB

MB is the geometrical realization BfâB of a category (€B. The objects of C€B are

0,1,.... The set of morphisms ^B(n, k) is empty unless n k, and ##((), Q) {id}.
For « &gt; 1,^(«, «) is the set of éléments of Bin), and composition in &lt;€B is a

composition in the B(n). Thus MB MB =011k^l BBik).
The product [iB : Af^ x MB-+MB is defined via a function vlb\(€bx(€b-+&lt;€B.

On objects, /^fe £) n + k. If ^ g VB(n9 n) and /2 g ^B(k, k) then

M^(^5 A) e^B(n + k, n + k) is defined by

where / : Tn-&gt;Tn + k,x : Tk-+Tn + k are as defined below 3.3. Again, one checks that

\iB is strictly associated, with unit 0.

3.19. Construction of MA

MA is the geometrical realization &amp;€A of a discrète category &lt;€A. The objects of
^a are 0,1, The set of morphisms %A(k9 n) is the set of isomorphisms
h : B(k) -+ B(n), such that there exists some g e %F(k, n), and h(e) (pg(e) for ail but
a finite &lt;number of edges e e Ek (recall 3.8). &lt;£A(0,k) is void if k ^0, and

^(Q, Q) {id}. Composition in ^ is via composition of isomorphisms. The
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isomorphism A ^^A(\, Y) induces a homotopy équivalence * IIBA -+MA ; we send

* to 0.

As before, fiA : MA x MA -&gt;MA is defined via a functor fiA : &lt;#A *(&amp;A-*C€A.

On objects, iiÀ(k9n) =k+n. If h e%A(n, k\ W e VA(n&apos;, k&apos;) lie over
ge&lt;gF(n9k),g&apos;eVF(n&apos;9 k&apos;) respectively, then iiAKh&apos;) e&lt;gA(n + n&apos;,k + k&apos;), lying
over fiF(g9 g&apos;) is defined on the generators e, e e En + n&gt; by

i&apos;)(enm) =ekm n &gt; 0

liA(h,h&apos;)(Te)=rh&apos;(è) eeTk

where t :Tk-&gt;Tn + k is the translation map defined after 3.3. The above formulae
détermine [iA(h, h&apos;)(e&quot;) and fiA(h, h&apos;)(enr). One checks that fiA : MA x MA -&gt;MA is

strictly associative, with unit 0.

3.20. Homomorphisms

p p
The homomorphisms MB-+MA -+MF are defined via functors &lt;6B-*C€A -^^F.

On objects, the functors send n to n. The map ^B(n9 n) -&gt;(&amp;A(n, n) is the isomor-
phism of Bin) with its group of inner automorphisms. The map ^A(n, k) -^^f(n, k)
assigns to an h:Bin)-+B(k) the élément of ^V(«, k) over which it lies. It is

straightforward that thèse functors define homomorphisms of monoids

4. Proof of Acyclicity

We will now prove that A is acyclic, quoting propositions 4.1.-4.3. which will
be proven later in this section.

Essentially, 4.1. and 4.2. show us how to &quot;deloop&quot; the séquence

BB(l) -+BA-+ BF\ Acyclicity of A then reduces to proving (4.3.) that HX(A\ Z) 0.

It is hère that ail détails of our construction corne into play.
To begin, recall that if M is a (strictly) associative topological monoid, we can

construct BM, namely as the realization of the simplicial space

*&apos; M &lt; M x M • • •
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and that this construction îs functonal for monoids and contmuous homomor-
phisms The évident map IM-&gt; BM has as adjoint a map M -» QBM which îs not,
m gênerai, a homotopy équivalence We will use the group completion theorem

[McS] (see also [D] for a very detailed treatment) to compare the homology of M
and QBM

In the previous section we constructed monoids and homomorphisms
MB -? MA A MF Therefore we hâve spaces and maps BMB -&gt; BMA -5 BMF, whence

BMB -+ BMA -? BMF ~ dénotes universal cover)

4 1 PROPOSITION (a) There is a map BA -+QBMA inducing isomorphism in

homology
.—&lt; Bp

(b) BMB-+BMA -+BMF is homotopically afibratwn There is a weak homotopy

équivalence from BMB to the homotopy fiber of Bp

4 2 PROPOSITION There are weak homotopy équivalences QS3 - BM B,

BMF - S3

4 3 PROPOSITION HlA=0

4 4 Proof of Acychcity

By 4 1 (a) and 4 2, we hâve, up to homotopy, a fibration QS3 -&gt; BMA -+ S3 By
4 3 and 4 1 (a) H2BMA 0 This, and an easy Serre cohomology spectral séquence

argument, show that BMA is contractible Thus QBMA is contractible, and by 4 1

(a), A is acychc

The proof of 4 1 begins with lemmas 4 6 and 4 7 below Recall from Section
3 the maps BA -+MA,BF&apos;-+MF induced by the identifications A =^(1,1), and

consider the diagram

(4 5)

4 6 LEMMA The horizontal compositions in (4 5) induce isomorphisms in

homology

BA &gt;1

Bp

BF&apos; &gt;A

\dA &gt;

dF

QBMA

QBp

QBMF
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We shall use the group completion theorem of [McS]. Recall that
BA -+MA9 BF&apos;-*MF induce homotopy équivalences *J1BA -*MA, *UBF&apos; -*MF.
Thus, for M MA or MF, n0M is a multiplicatively closed subset of H^M with two
éléments (the multiplication in H^M is induced by the product M x M -&gt;M). We
consider the ring H^(M)[n0M~l] obtained by inverting n0M in H^M; one checks

easily that H+BA H*(MA)[n0MA l], H^BF&apos; ~ H^(MF)[n0MF l]. D

The map H^M -+HJÙBM factors through H+(M)[n0M~l], because n0QBM is

a group. The lemma follows if we can show that H^(M)[n0M~l] -» HJflBM) is an

isomorphism for M MA and MF. But this is exactly what the group completion
theorem does for us, provided that we show that n0M is in the center of H^M.
Following Unes of Quillen ([Q], §8) we provide this for MA. For MFy the proof is

parallel.
Recall that A may be identified with VA(l91); let A2 dénote the set VA(2, 2) with

the obvious group structure whose composition is composition of automorphisms.
Proving that n0MA is in the center of H^MA cornes down to proving that the

homomorphisms L, R : A -&gt; A2 defined by

L(g) /iA(g&gt; ^i), R(g) iAA(idl9 g)

induce the same map in homology.

Let Ae be the subgroup of A consisting of éléments g e A lying over éléments of
F&apos; whose support is contained in (e, 1 — e) and such that g{ed+) e£(* /, r, m) if
d &lt; s/2 or d &gt; 1 — e/2. Clearly, A is the direct limit of the Ae, so it suffices to show

that L and R, restricted to an Ae, induce the same map on homology. Let

ge e &lt;£F(2, 2) such that ge restricted to (1 + e/4, 2 - e/4) is translation by -1, and

pick he e A29 K lying over Se such that he{e%) e$~l if d e 1 -h e/4, 2 - s/
4)5 * /, r, m. Then for any g e Ae9 heR(g)h~l L(g). Hence R and L induce the

same map on H+Ae.

4.7. LEMMA. There is a map BB{X) -* QBMB inducing an isomorphism in

homology, so that the square

BB(l)-+QBMB
ï ï

BA-&gt;QBMA

commutes up to homotopy.
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We first apply the group completion theorem of [McS] to prove that
H*(MB)[nQMâx] -&gt;H^(QBMB) is an isomorphism. Thus we need that n0MB ~N
is in the center of H^MB. But this is a conséquence of 3.5.

Now H^(MB)[n0MBl] H^(Z x\im_BB{n)), where / : B(n) -+B(n+ 0 is the
usual inclusion. Since by 3.5, thèse inclusions induce isomorphism in homology,
and since BB(l)^QBMB takes BB(l) to the component (QBMB)X of
1 e nxBMB ~ Z, we hâve an isomorphism in homology BB(X) -&gt;(QBMB)iX). Com-
posing with a représentative of — 1 enlBMB gives a homotopy équivalence
(QBMB)X-&gt;(QBMB)O. Composing with the homeomorphism (QBMB)0^&gt;QBMB,
we obtain

BB(X)

j
BA

-^(QBM^t
I

-+QBMA

^ (QBMLr)o—* QBM

which commutes up to homotopy, because 1 0 in nx QBMA.

4.8. Proof of 4.1.

4.1. (a) is part of lemma 4.6. We pass to the proof of 4.1. (b).
Let * g BMF be the canonical basepoint arising from the définition of BMF as

the geometrical realization of the simplicial space *+-MF+-- • •. Let Fib+ (Bp) be

the homotopy fiber [Sp] of Bp : BMA -+BMF over *. The natural numbers N are a

submonoid of MF, coming from the objects 0,1,... of &lt;gF, and the image of BMB
in BMF is BN. Now BN is contractible in BMF. Picking a contraction defines a map
P : BMB -*&gt; Fib+(Bp). We aim to show that fi is a weak équivalence. It sufBces to
show that Qfï : (QBMB)0, -? Fib^ (QBp) is a homotopy équivalence; hère we identify
QBMB (QBMB)0, and OFib* (Bp) with Fib* (QBp), the homotopy fiber of
QBp : QBMA -&gt; QBMF, over the constant loop at * e BMF.

Add a whisker to BF\ so that BF&apos; -&gt; QBMF takes the new basepoint to the

constant loop at *. As before, dénote by Bp : BA -*BFf the map from BA to (the
new) BF&apos;. The whisker gives an obvious homotopy équivalence BB{X) —&gt; Fib^ (Bp),
and naturality of homotopy fibers gives a map Fib^ (Bp) -&gt; Fib^ (QBp). Now

QBp
QBMA QBMF is the -h construction [Be] of Bp :BA-+ BF&apos;, by 4.6. Further, F
acts trivially on the homology of B(l)9 by 3.14. Thus by ([Be], 6.4),

Fibs|e(5p) -? Fib+(QBp) is an isomorphism in homology.
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We have a square

BB{\) °-^{QBMB\
I I °* (4.9)

Fib* (Bp) - Fib* (QBp)

which, one checks by hand, is homotopy commutative. Further, every arrow, except
possibly Qfï, induces isomorphism in homology, and so Qfi must as well.

So Qfi is a map between loop spaces, which induces isomorphism in homology.
We can apply Whitehead&apos;s theorem to see that Qfi, and hence /?, is a weak
équivalence.

The proof of proposition 4.2 is divided between lemmas 4.10 and 4.12.

4.10. LEMMA. There is a weak équivalence S3-*BMF.

Let F be the pseudogroup of orientation preserving, piecewise affine dyadic
homeomorphisms between open subsets of R. In [GS], using techniques of [Gl], it
is shown tht BF ~ S3. Results of [G2] extending a theorem of Mather show that
there is a homology équivalence BF&apos; -+QBF, hence BF&apos; -*QS3. But by 4.6, there is

a homology isomorphism BF&apos; -*QBMF. Further, nxQBMF 0. Thus (see e.g. [Be])
QBMF and QS3 are both the plus construction of BF&apos; with respect to nxBF&apos; F&apos;,

and 5.1. of [Be] implies that QBMF and QS3 are weakly équivalent.

4.11. LEMMA. Let X be a space such that QX is weakly équivalent to QS3. Then

X is weakly équivalent to S3.

By the Hurewicz theorem, it suffices to show that X has the homology of S3.

Consider the Serre cohomology spectral séquence of QX -&gt; PX -&gt; X, where PX is

contractible. Let a e H2QX E^2 be a generator. Let b e H3X Z a generator so

that dl°(b) a. A little work with the multiplicative structure shows that
d\2n : E\2n -&gt; Ef2n + 2 is an isomorphism for ail n. Suppose that for some k &gt; 3,

HkX # 0, and let y e Hk(X), y # 0, for smallest such k. Then y must survive to Eœ,

a contradiction.

4.12. LEMMA. BMB is weakly homotopy équivalent to QS3.

It suffices to show that BMB - QS2, since QS2 S1 x QS3. Let M *llk * x BBk
be the disjoint union of the classifying spaces of the fînite braid groups, considered

as a monoid as in [SI]. We will define a homomorphism a : M -&gt;MB, and prove
that Ba is a weak équivalence. Since by [SI] (see also [CLM], III, 3, for an
alternative approach), BM ~ OS2, the lemma follows.
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Fig 4 13

Let Bk (el9 ,ek ,| \ene}\ 1,11 -j \ ^2,etel+let el + [etel+x) as usual
We define a M -&gt; Afjç by a(*) 0, and with homomorphisms ak Bk -&gt; B(k) defined
by &quot;braiding the vô/2, vjj*~ 1/2 &quot; That îs (see Figure 4 13), using the triangle rule
we define ak(et (eJ.) ~ leloelr One checks that M-*MB thus defined îs a homomor-
phism of monoids Applying group completion to both monoids, we obtam a

diagram

H+(Z x hm_ BBk) ^* *
1 1 1

H*(Z x hm_ BBk)~ H^Mb)[k0Mb1]-+H+QBMB

By 2 5, hm _+BBk-&gt;hm_&gt; BB(k) induces an îsomorphism in homology Therefore
QBM -+QBMB îs a homology isomorphism and a loop map, and hence a weak

équivalence, whence BM -&gt; BMB îs a weak équivalence

4 14 Proofof4 3

We hâve an exact séquence B(l) -+A-+F\ and F&apos; acts tnvially on the homology
of B{1) Further, since BF&apos; has the homology of QS3, we know that
HXB{1) ^ H2F&apos; ~Z,HxF=0 Thus, to prove that HXA 0 ît suffices to show that
the differential dx H2Ff -*&gt; Hx B0) m the Leray-Serre spectral séquence îs an isomorphism

We will explicitly calculate the image in HXB{X) of a gênerator of H2Ff as

follows
H2F&apos; îs generated (via Hopf&apos;s formula) by the relation [g, h] 1, for g, h e Ff

descnbed below To calculate the image k e HXB(X), we lift g,htog,/i€A, and

compute the commutator [g, h] which will lie in B(X) The image of the commutator
m Hx B(l) îs k Indeed, we shall see that [g, /*], thought of as an élément of A, îs an
mner automorphism of 2?(1) by an élément e, for a certain edge m T(1) By 2 4, the

homology class of e générâtes HXB{X)
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It is found in in [GS] that the commutator of the following g, h e F&apos; générâtes
H2F&apos;:

x x &lt; 1/8

2x - 1/8 1/8 &lt;: x &lt; 1/4

1/2*+ 1/4 1/4 &lt;:* &lt; 1/2

*(*) 2jc-1/2 1/2 &lt;*&lt;: 5/8

1/2*+ 7/16 5/8 &lt;&gt;x ^7/8
x 7/8 ^x

Recall (Figure 4.15(a)) the standard embedding g : 7, -&gt;R2. As in the proof of
2.13, g and /Tare defined via embedings G,H:TX-+R2 (Figure 4.15 (b), (c)) which

agrées with a o cpg,a ° cph near infinity; the cpg cph being defined in 3.8. Namely,
h H~xa,g (j~1g. Note that, restricted to r(1/2)1), G cr. Similarly, H a re-
stricted to Tm/2). Also, G(e\12) o{e\l2\ H{e)12) e{e}12). It follows that
gfig-lfi-\e) ^ for * ej/2, e\12, e e Em/2)uE(W). Further for n &gt; 2, G(ei/2)
H{exJ2)=exJix. Hence, for « &gt; 3,gfïg-lfï-l(eln/2) =e]j2. It remains to calculate
^g-1^-1 on e)ï\n =0,1,2.

Figure 4.16 is useful for the application of the triangle rule to the calculation of
g~\ey2\g-\e\/2)J-l(el0/2)J-l(e\/2). From 4.16 (a), writing VL={e\l*Yxe\2e}J\
we hâve

(4.17)

and it follows that

(4.18)
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(a) g T, -*¦ U2 standard embedding

(b) G Tx-

i H 8 i
1 (only G restncted to Ti0 i} pictured)

(c) H T, -? U2 (only H restncted to T{\ X) pictured)

Fig 4 15

Hfz)
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(a)

(b)

Fig. 4.16

We also see from 4.16 (a) that

and consequently

From 4.16 (b) we see R~\ey2) e\&apos;2, and

(4.19)

(4.20)

(4.21)

Further, from 4.16 (b), e\l2 R-\(e.y2)~x)fi~\e\l2)fi-\e]l2), and so

(4.22)
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Now, let us calculate. Let c gfig~lfi~l. Then

ck f-) g/fe^) g{ej2) (e \&apos;2) - Y0/2e_ \&apos;2 (4.23)

c(el212) =g(g-](e\l2)-]e\l2g-\e\&gt;2)) (4.24)

(f!/2)-&apos;d/2É!/2

Lastly, c(gj/2) =|%-|((ei/2)-&apos;ey2Ê&apos;/2). Using 4.18 and K{el&gt;2) =elj2,

Kg-\(ey2r&apos;e\i2ey2)=g~\e\i2\

and thus

c(e\l2)=e\12 (4.25).

Now, (4.23) — (4.25) affirm that c is conjugation by e J/2, hence, by 2.4 a generator

5. Related Groups

In this section we describe the homology of two groups closely related to A.
In will be convenient to make use of the plus construction of Quillen ([Q], [Be]).

Recall that if X is a space, and N &lt;^nxX is the maximal perfect subgroup, there
exists a space X+ and a map X -? X+, well defined up to homotopy, such that
nlX+ nxXjN, and X-*X+ is an équivalence in homology. We will often invoke
the fact ([Be], 6.4)] that if 1 -? H -» G -? K -» 1 is an exact séquence of groups, such
that BH+ is a nilpotent space and such that nxK acts trivially on H+(H; Z), then

BH+ -+BG+ -+BK+ is a quasifibration.

5.1. The group AG

Recall (3.15) the group AG which was constructed as an extension BG -? AG -* G.

We will prove:

5.2. PROPOSITION. The cohomology ring H*(AG ; Z) is îhefree graded Z-alge-
bra with generators in dimensions 2 and 3.

We do not know whether BAG+ is homotopy équivalent to S3 x GP°°.
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The proof of 5.2 will involve an auxiliary group Aq. Let G be the group of
homeomorphisms of R S1 which are lifts of éléments of G. Let Bg-&gt;Aô^&gt;G and
BG-&gt;Aaug -? F&apos; be the extensions obtained by pullback over the natural maps
F&apos; -+Ô -? G. We hâve the following diagram:

(5.3)

&gt;BG induces isomorphisms in homology, and thus Aaug is an
acyclic group.

Let LS3 dénote the space of unbased maps of a circle to S3, and let
&lt;£S3 ES1 x siLS3 dénote the homotopy quotient of LS3 by S1, acting by
reparametrization of loops. One can apply the plus construction to (5.3), obtaining
the following diagram commuting up to homotopy, whose vertical arrows are
fibrations.

Q2S3^Q2S3 ^Q2S3

ï ï 1

* -&gt;BAa+-+BAG+ (5.4)
1 1 i

QS3

i
A

ï
F&apos;

1

-*Aaue

ï

The inclusion

i

ï

1

-+A

l
-G

&amp;t, ~* BG

The map QS3 -+LS3 has homotopy fiber QS3, because it is simply the inclusion
QS3 -+ S3 x QS3 LS3. Further, it is not hard to see that the plus construction
commutes with pullbacks of surjective homomorphisms. We thus obtain a fibration

5.5. PROPOSITION. There is a homotopy équivalence S3-+BAÔ+.

Since nxBAG+ 0, it suffices to show that BA$+ has the intégral cohomology of
S3. This foliows from an easy argument on the cohomology spectral séquence of the

fibration QS3 -» * -? BAG+.

5.6. LEMMA. The homomorphism Aq -&gt; G induces an isomorphism

Consider the fibration Q2S3-&gt;S3-+LS3, arising, as an application of 5.5, from
the middle column of 5.4. The identification of LS3 with QS3 x S3 gives an
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élément of n3QS3 x n3S3 Z/2 x Z which is either 0 x 1 or 1 x 1 In either case,
the map H3(LS3) -+H3(S3) îs an îsomorphism

The short exact séquence Z-+G-+G lifts to a short exact séquence
Z -*Aq -+Ag Let e g H2(Ag Z) be the Euler class of this extension, and consider
the associated Gysin séquence

0 -&gt; H\AG, Z) -+ H\AG, Z)
^&gt; H\AG, Z) -^&gt; //%4G, Z) -&gt; - //&quot;(^, Z)

-&gt;//&quot; l(AG,Z)^-&gt;Hn+\AG,Z)-+H&quot;+](Ac,Z)^ (5 7)

Proposition 5 2 follows from the following

5 8 PROPOSITION H3(AÔ,Z)-+H2(AG,Z) is the zéro map

Proof of 5 2 Since BAq+ ^ S3, we hâve isomorphisms H3(AG, Z ~ H3(AG, Z),
and ue Hn(AG,Z)-*Hn + 2(AG Z),n&gt;2 This implies the proposition, indeed, if
j eH\AG Z) is a generator, H*(AG Z) Z[^7]/(j2 0)

Proof of 5 8 Considenng the Gysin séquences ansing from the extensions

0-+Z-+A&lt;*-+AG-+\ and 0-»Z-»(j-»G-&gt;1, we obtain a commuting square

î î (5 9)

H3(G,Z)-+H2(G,Z)

Let j8 g //3(G, Z) be a generator, and a =/(/?) By lemma 5 6, ît suffices to show

5 10 ASSERTION The image of a in H2(AG,Z) is 0

Consider the differential d2 H2(G, Z) -&gt;//,(5G, Z) Z in the homology spectral

séquence of the extension BG -+AG -&gt; G It is not hard to see that the kernel of
d2 is H2(AG, Z) Let y g i/2(G, Z) be the cohomology class defined by d2 We will
show that y a, provmg 5 10

Write y ma -h «e, where e e H2(G Z) is the Euler class of the extension

Evaluating both sides of this equahty on the image of a generator of H2(F\ Z) ~ Z,
and using the computation in the proof of 4 3, we see that m 1 The proof of 5 10

is complète when we show that n 0

Now G is a group of homeomorphisms of the circle, and contams the cychc

subgroups Z/2r, r&gt;\ gênera ted by rotations Rr(x) x + 2~r, x eR/Z Suppose

that the inclusion Z/2r-&gt;G lifts to AG Since H2(Z/T, Z) - Z/2r, generated by the
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pullbacks of the Euler class e e H\G, Z), one would obtain that n 0 mod 2r,

r ^ 1, and thus that n 0

It thus remains to show that the subgroups Z/2r lift to AG We do this exphcitly
for r 1, the gênerai case follows similarly, but îs more intncate

The rotation Rx acts naturally on TG away from the edges e)12, e\12 (see Figure
5 11) We define a lift Rx e Ag of Rx by sending e}12 to ô, and e}J2 to e, where ô and
s are as shown in Figure 5 11

Fig 5 11

Let us venfy that R2 îs the îdentity
This îs clear away from e1/2 and e}12 Using the triangle rule, we find

e}&apos;1

So R] îs the îdentity, as claimed

5 11 The group AE

We now introduce a second group related to A Recall the tree Tx fudamental
m the construction of A9 and let V(TX) be the set of vertices of Tx Let AE be the

set of bijections q&gt; V(TX)-&gt;V{TX) such that there îs some g e F\ such that
cp(vdn) vgn^g (&lt;/), vf e V(TX) except for a fimte number of points

Clearly, Az surjects to F&apos; with kernel 1^, the group of finitely supported
permutations If we consider Az as embedded in the natural way in AutCI^), we
hâve a map of exact séquences

&gt;A

i
F&apos;-&gt;1
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Thus the group Az is an analogue of A. In the rest of §5, we shall identify the space

BAZ+. Two auxiliary groups introduced by Wagoner [W] will be useful.

5.12. DEFINITION. Let Pœ be the group of bijections cp of V(TX) such that for
some s &gt; 0, cp(vdn) vdn for d &lt; s, 1 - s &lt; d. Set /&quot;«, Poo/2^.

5.13. Identifying the space BAZ+

It is clear that Az c P^ and that this inclusion induces an inclusion F&apos; a F^, so

that we hâve a pullback

Passing to the plus construction, we obtain a pullback of fibrations:

As BPao + is contractible [W], we see that BAI+ is the homotopy fibre of the map
BF&apos;+ -+BF&apos;O0+. Now, we hâve already used the fact that BF+ ~ QS3 QS2, and a

theorem of Priddy [P] identifies BFOD+ as 0e0&quot; lSco. We conclude this section with
a sketch of the following:

5.14. Assertion

BAI+ is the homotopy fibre of the inclusions QS2-+QCO~ 15°°.

i) Let MB be the monoid, associated to the braid groups, that we considered in §3,

and let ME be its analogue for permutations. The results of Cohen ([C] p.

106-108) imply the existence of a homotopy commutative diagram

BMB-+BMZ

(5.15)

whose vertical arrows are homotopy équivalences.
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ii) Recall (3.19.) the monoid MA associated to the group A, and let MPœ the

monoid constructed in the same way for P^. Further, let MF^ be the monoid
constructed analogously to MF. As we hâve seen in (4.L (b)), we hâve a quasi-
fibration BMB-+BMA-+BMF\ the same is true for ÊJ(ïI -+BMPoo-*BMFgo.
The total spaces of thèse quasifibrations are contractible (cf. (4.4) for BMA).
We therefore hâve a homotopy commutative square.

QBMF -&gt; QBM

J
F -&gt; QBMFo

J
BMB

whose vertical arrows are homotopy équivalences.

iii) As we hâve seen (4.6), there is a homology équivalence BF&apos; -+ QBMF and thus

a homotopy équivalence BF&apos;+ -? QBMF. Similarly, we hâve a homotopy
équivalence BF&apos;OÛ + -&gt;QBMFoc. Further, the square

BF&apos;+ -+BF&apos;o0 +

I * 1 * (5.17)

QBMF-*QBMFoc

is homotopy commutative.

iv) Assembling the diagrams 5.15, 5.16 and 5.17, we can identify the map
BF&apos;_¥-+BFao+ with the inclusions aS2-^00^^00, thus establishing the assertion.

6. An example

In this section we provide the example referred to in the introduction. We

construct a fibration F^&gt;E-+B, and groups L and K with the homology of F and

B, such that there is no exact séquence l-+L^&gt;P -&gt;K^&gt;\ so that

BL+ -+BP+ -+BK+ is équivalent to the original fibration.

6.1. The idea of the construction

Start with the fibrations S1 x S1 -+E-+S1 whose monodromy is the involution
(x, y) -&gt; (y, x). The exact séquence of fundamental groups ZxZ-^/s-^Z has plus
construction the initial fibration. We will enlarge Z x Z to a group L with the same

homology, such that the involution does not extend, and this leads to our example.
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6.2. Main construction

Let Jte be Higman&apos;s acychc group [BDH] : Jf (a, b, c, d \ aba ~x b2,

bcb~x c2,cdc~l d2,dad~l =a2). Let a be the automorphism of Jt which

cyclically permutes a, b, c, d. This automorphism détermines an extension

l-»jf-&gt;//-»Z-»0 where n îs a homology équivalence since 3tf acyclic, and

[H, H]=Jf
Let L =Z x //. Obviously £L+ ^S1 x S1. We shall show that there îs no

automorphism cp oî L such that Bcp+ : S1 x S1 -*Sl x S1 îs homotopic to the
involution (x,j&gt;)-? (&gt;&gt;,•*). This proves that no exact séquence l-*L-*P-&gt;Z-&gt;0
induces a séquence BL+-&gt;BP+-+Sl équivalent to the fibration S1 x Sl-+E-+Sl.

The nonexistence of such a &lt;p îs established by the following three claims.

6.3. CLAIM. The automorphism a is not inner. Clearly, a is of order 4. If
gc(x) =œ~lxco, then a&gt;4 is an élément of the center of Jf. But ^f is an iterated

amalgamated free product, starting with a centerless torsion free group. The center
theorem and torsion theorem for amalgamated products ([MKS], [LS]) show that
co e, a contradiction.

6.4. CLAIM. No élément y e H such that tt(j) 1 commutes with Jf. Indeed,
such an élément allows us to identify H with Jf xZ, contradicting the fact that a

is not inner.

6.5. CLAIM. No automorphism cp of L induces on H}(L) Z® Z the involution

(«, m) -&gt; (m, «).

If such a &lt;p exists, then &lt;p(l,e) =(0,j&gt;), for some je// such that n(y) \.
Moreover, cp(O, jc) (n(x), x(x)) where x;H-+H is a morphism such that

yx(x) x(x)y. But x(^) M as &lt;p([Z x H, Z x H]) &lt;p(0 x [/f, //]) 0 x [^, //].
Thus j; and ^f commute, contradicting claim 6.4.
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